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Abstract-In this paper, we study time-optimal trajectories for
Unmanned Aerial Vehicles (UAVs) to provide convoy protection
to a group of stationary ground vehicles. The UAVs are modelled
as Dubins vehicles flying at a constant altitude. Due to kinematic
constraints of the UAVs, it is not possible for a single UAV to
provide convoy protection indefinitely. In this paper, we derive
time-optimal paths for a single UAV to provide continuous ground
convoy protection for the longest possible time. Furthermore, this
paper provides optimal trajectories for multiple UAVs to achieve
uninterrupted convoy protection. The minimum number of UAVs
required to achieve this task is determined.

I. INTRODUCTION

In a number of future civilian and military applications,
it is expected that heterogeneous, unmanned vehicles have
to be coordinated despite their highly varying dynamics and
sensing capabilities. In particular, uavs (Unmanned around
Vehicles) are expected to solve such tasks as surveillance,
clearing of hostile terrains, transportation in convoys, and the
establishment of logistic support chains. At the same time, the
uavs will need to interact with more dynamically capable
UAVs (Unmanned Aerial Vehicles) to give them access to
large-scale area surveillance, convoy protection, and advanced
scouting capabilities ([7], [15]). There arises naturally the
problem of control and coordination of UAVs in order to
provide ground convoy protection to the uavs in an optimal
manner, while satisfying the kinematic constraints due to non­
holonomic dynamics of the UAVs. The goal of this paper is
to provide the optimal control strategy for a single UAV, as
well as optimal path planning for multiple UAVs in order to
provide successful convoy protection.

In this paper we address the problem when the ground
vehicles are stationary, and the convoy protection is defined
as providing coverage for some given ground vehicles. The
UAVs are modelled as Dubins vehicles [4] flying at a constant
altitude. Due to kinematic constraints of the UAVs and limited
ranges of sensors on-board the UAVs, it may be impossible
to provide coverage to the ground vehicles with a single
UAV. In this case, the problem of interest becomes that of
providing an optimal path for a single UAV so that it can
monitor the ground vehicle for the longest amount of time,
and coordinating multiple UAVs so that the ground vehicles
are visible to at least one UAV at any given time. Figure 1
illustrates 2 UAVs flying a circular path of radius R while
providing coverage to a group of uavs.
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Fig. 1. Illustration of 2 UAVs providing convoy protection to UGVs.

A Dubins vehicle is a planar vehicle with bounded turning
radius and constant speed that always moves forward. L.E.
Dubins was the first to give a characterization of time-optimal
trajectories for such a vehicle using geometric methods [4].
Shortest-path problems for Dubins vehicles have been since
studied extensively (e.g. [5], [12]). A Dubins vehicle that
can move backwards was studied by Reeds and Shepp [11],
and the shortest-path problem for a Reeds-Shepp vehicle was
further studied and classified by Soueres and Laumond [13].
Walsh et ale found optimal paths for an airplane on SE(2)
[16]. Dubins vehicle has been used as a simplified model to
describe planar motion of UAVs [12], [2]. Chitsaz et ale extend
the Dubins' model from SE(2) to SE(2) x lR to account
for altitude changes and gave a characterization of the time­
optimal trajectories for this model based on the final altitude
[2].

An important approach to solve problems involving Dubins
vehicle is to use motion primitives to produce optimal trajecto­
ries (e.g. [1], [6], [8]). In the case of minimum time point-to­
point transfer problem for Dubins car, Pontryagin minimum
principle provides a set of necessary optimality conditions
which state that the optimal solutions are curves consisting
only three motion primitives: line-segment and circular arcs
turning maximumly to the left and to the right [10], [14].
We will use the same idea of motion primitives to construct
optimal trajectories, but it will be seen later that line-segments
are not part of optimal trajectories for this problem.

The technical report [3] describes the content of this paper
in more details and it contains all the proofs.

The rest of the paper is organized as follows. Section II

peri
Callout

peri
Typewriter
ROBOCOMM 2009, 31st Mar–2nd Apr 2009, Odense, Denmark.

Copyright © 2011–2012 ICST ISBN 978-963-9799-51-6 

DOI 10.4108/ICST.ROBOCOMM2009.5867

peri
Typewriter

peri
Typewriter



(1)

with given r < R and initial condition q(0) satisfying the state
constraint x(0)2 + y(0)2 - r2 = O. We henceforth denote this
problem as IIq(o).

We exclude initial conditions that generate no path entering
the convoy circle. This occurs when the initial heading 0(0)
points away from the convoy circle. The set of initial condi­
tions A that are considered for the optimization problem can
be defined as:

(7)

(6)

(3)

(4)

1 1
-- < w(t) < -

R R'
x(t)2 + y(t)2 - r2 ::; 0,

A = {q = [x,y,O]T : x2 + y2 = r2, and
1r 1r-"2 <O-atan2(y,x) <"2} (5)

The set A is denoted as the feasible entry set. For simplicity
of notation, we assume that all angles are taken modulus 21r.

State inequality constraint optimal control problems are
usually hard or impossible to be solved explicitly. In this
problem, the special structure of the problem provides that the
constrained arc of the solution is at only two points, initial
condition and when the DAV is exiting the circle. Due to
this special structure, the state constraint for this problem is
handled by an auxiliary state. Define e(x2 + y2 - r2) as an
inverted Heaviside function:

{
0: x2 + y2 - r2 < 0C(x2 + y2 _ r2) = -

~ 1 : otherwise.

Define a new state r(t) as:

f(t) = (x2 + y2 _ r2)2e(x2 + y2 _ r2),

the DAV and the centroid in the x-y plane is less or equal to r.
Thus, the problem can be reformulated as finding time-optimal
trajectories of a DAV so that the time the DAV remains inside
the convoy circle is maximized.

III. OPTIMAL PATHS FOR A SINGLE DAV

In this section we consider the problem of finding the
optimal paths for a single DAV to maximize the time it stays
in the convoy circle. We will determine both the time-optimal
path for a single DAV starting at a fixed initial condition and
optimal paths if the DAV is allowed to pick the position and
heading when entering the convoy circle.

Fix the origin of the x-y plane at the centroid of the DaVs.
This problem can be considered as an optimal control problem
with state constraint x2 + y2 - r2 ::; 0 and input constraint
Iwl ::; -k. Furthermore, it can be assumed that the DAV starts at
a point on the state constraint boundary (convoy circle), since
we are interested in complete trajectories of DAVs inside the
convoy circle.

The problem at hand is the following (maximum time)
optimal control problem with the cost function defined as

min J = rT

-ldt, (2)
wet) io

subject to the dynamics of (1), and the input and state
constraints

1The unit speed assumption is justified since the results presented in this
paper describe paths, and they are invariant under different forward speed.

formulates the problem. In Section III the optimal solution for
controlling a single DAV for maximum-time convoy protection
is proposed. Section IV proposes optimal paths for multiple
DAVs to provide successful convoy protection for all time.
Section V concludes the paper.

II. PROBLEM FORMULATION

In this paper, the DAVs in question are modelled as Dubins
vehicles flying at a constant altitude and they follow paths of
bounded curvature. The minimum turning radius of the DAV
is assumed to be R. Without loss of generality, we assume the
vehicles to be of unit speed.1 The kinematic equations of the
Dubins vehicle are written as:

{

X = cos(O)
iJ = sin(0)
O=w

where x and yare the posItIon of the DAV in the x-y
plane on the altitude the DAV is flying, and w is the angular
velocity of the vehicle. The angular velocity is bounded by
the inverse of the minimum turn radius R of the vehicle, i.e.,
w E [--k, -k]. Hence, the paths of the DAVs are curves with
curvature bounded by [0, W. The state ofthe system is defined
as q(t) = [x (t ), Y(t ), 0(t )] .

We assume that the DAVs have cameras or other sensors
rigidly mounted on-board the vehicle, and the camera monitors
a disk of radius r on the ground. The ground vehicles are
assumed to be stationary, and the centroid of the vehicles
are defined to be the point which must be visible to the
DAVs. Convoy protection is considered to be provided when
the centroid of the DaVs is visible to the DAV and inside
the aforementioned circle defined by the camera. Successful
convoy coverage is achieved if the centroid of the ground
vehicles is visible to at least one DAV at any time.

In many cases, cameras or sensors on-board the vehicle
have narrower field of vision than the DAV's turning radius,
especially for cameras and sensors that carry out a specific
objective, for example executing computer vision algorithms.
If R > r, then a single DAV is not capable of providing
convoy protection to the ground vehicles indefinitely, and
a control strategy is needed to optimize the time in which
convoy protection is achieved. This is assumed to be the case
throughout the paper. Note that if R ::; r, then the convoy
protection problem is solved by using a single DAV flying on
a circular path of radius R with the center being the ground
vehicles.

This paper considers the problem of finding optimal trajec­
tories of a single DAV to maximize the time in which the
ground vehicles are visible, and optimal paths for multiple
DAVs so that the DaVs are visible to at least one DAV
at any time. There is an equivalent reformulation of this
problem. Fix a circle of radius r centered at the centroid
of DaVs. This circle is denoted as the convoy circle. The
ground vehicles are visible to a DAV if the distance between
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Definition 3.1: For a state trajectory q(t), t E [0, T] sat­
isfying the state constraint (4), if the costate trajectory and
corresponding input satisfies the control strategy (11), then
q(t) is referred to as a Candidate Optimal Trajectory (COT).

Pontryagin's minimum principle states that being a COT is
a necessary condition for being the optimal solution.

When the state constraint is satisfied, i.e. the UAV is
inside the convoy circle, the first three costate equations are
independent from the augmented state and costate equations,
and they can be rewritten as

then the state can be augmented as q(t) = [q(t), r(t)]T. Let
us require that r(O) = 0 and r(T) = O. This enforces the
constraint since being outside of the constraint produces a
positive derivative of r(t) and thus the terminal condition is
violated. When there is no ambiguity, we assume that the state
constraint is satisfied and we still call q(t) the state trajectory.

To help the analysis, it is useful to impose an extra terminal
manifold constraint. Since the optimal solution always in­
volves the terminal state (henceforth denoted as the exit state)
being on the boundary of the state constraint set (exiting the
circle), the terminal constraint of being on the convoy circle
when exiting is enforced. For simplicity of notation, denote
qT := q(T) and [XT' YT, BT] := [x(T), y(T), B(T)]. Using
this notation, the terminal manifold can be defined as a set of
states that satisfies:

~1

~2

~3

o
o
Al sin(B) - A2 cos(B) (13)

The Hamiltonian for this optimal control problem can be
written as:

where A = [AI,···, A4]T are the trajectories of costates.
The necessary optimality condition from the Pontryagin's
minimum principle states that

8M
8x (XT) = 2xTa

8M
By (YT) = 2YTG

8M
8B (BT) = 0,

with the terminal condition:

11,lt=T = -1 + Al(T) COS(BT) + A2(T) sin(BT)

+A3(T)w(T) = 0,

where a is a constant Lagrange multiplier for the terminal
manifold.

Furthermore, being a minimum-time optimal control prob­
lem the transversality condition gives that

(8)

(9)

-1 + Al cosB + A2 sinB + A3W +
A4(X2 + y2 _ r2)2e(x2+ y2 _ r2),

11,(q* (t ), A* (t ),w* (t ), t) ::; 11,(q* (t ), A* (t ),w(t ), t),
1 1

Vw E [- R' R]' t E [0, T], (10)

where the costates are obtained as:

Using the necessary optimality condition, and substituting
the Hamiltonian from (9), one can see that the optimal
controller is a function of the costate A3 (t) as:

{

I: A3(t) > 0
w*(t) = "*R :A3(t) < 0 (12)

Thus it can be seen that when A3 (t) > 0, the optimal control
is maximum turning right, and when A3(t) < 0, the optimal
control is maximum turning left. Hence, the optimal control
trajectory is in the form of bang-bang control. It should be
noted that when A3 (t) = 0 for a finite time interval, then any
control w(t) satisfies (10) and this case is referred to as a
singular condition (see [9]). For a singular condition to occur,
it is necessary that there exist a time t such that A(t ) = 0
and ~(t) = O. For Dubins vehicle problems, this results in
line segments and we elaborate later in this section when this
scenerio arises.

(11)

(15)

~1

~3

811,
- Bx = - 2XA4(X2 + y2 - r2)e(x2 + y2 - r2),

811,
- By = -2YA4(X2 + y2 - r2)e(x2 + y2 - r2),

- ~~ = Al sinO - A2 cosO

_811, =0
8r .

which implies that:

1
a-----------

- 2(XTcos(BT) +YTsin(BT))·

Thus,

Al = XT., Vt E [0, T]
XT cos(BT) + YT sln(BT )

YTA2 = .,Vt E [0, T]. (14)
XT cos(BT) + YT sln(BT )

Therefore, A3 costate equation can be rewritten as:

~ _ XT sin(B) - YT cos(B)
3 - XT COS(BT) + YT sin(BT)'

with the initial condition A3 (T) = O.
Define the angle tt/JT = atan2(YT' XT). Note that since qT

is an exit point, then by definition -1r/2 < tt/JT - BT < 1r/2.
If not, then qT is an entry point instead of an exit point. The
case where Itt/JT - BTl = 1r/2 is excluded from consideration,
since in this case qT is both an entry point and exit point, and
it does not belong to the feasible entry set A.

Assuming a trajectory q(t) is a COT and given the terminal
state qT, we will show that A(t ) satisfying the necessary
optimality conditions can be uniquely determined. First note
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that (15) can be simplified as quotient of two inner-products:

(16)

If q(t) is a COT then w(t) satisfies the optimal control strat­
egy (12). In addition if A3(t) =1= 0 and has the same sign for a
time interval [8, T), then w(t) = --k if A3(t) > 0, Vt E [8, T)
and w(t) = -k if A3(t) < 0, Vt E [8, T). Thus A3(t) can be
determined as:

A3(T) - iT A3(s)ds

{

R (1 - ~O:~1(J~)~:;/) if w(t) = *
- R (1 - COS(B(t)-'l/JT)) if w(t) = _1.

COS(BT-'l/JT) R

t E [8,T). (17)

8 ~:~[2J ~::EJ
o 5 .10 15 0 5 .10 15

8 ~}ES2j ~ o:[2j
-2 -05

-3
-1

o 5 1~ 15 20 0 5 1~ 15 20

8 15~05[Sd1

05

Z' 0 S 0

~ :-; • -00

o 5 1~ 15 20 0 5 1~ 15 20

Fig. 2. A number of q(t) is plotted for different terminal conditions qT
resulting in different number of switches. The left plot is the state in x-y
plane, the middle plot is the costate A3 and the right plot is the angle 8(t).

characterized as:

We denote T as the O-th switching time. Using equations
(19), the following lemma can be proven. This lemma is useful
to obtain a simple and geometric law to determine optimal
switching points.

The following lemma characterizes COTs.

Lemma 3.1: For any terminal state qT, a unique COT
q(t) and its corresponding input and costate history can
be reconstructed. Furthermore, if ()T =1= tt/JT, then q(t) is
composed of maximumly turning right or left curves, or
combination of both at some switching times. If ()T = tt/JT,
then q(t) is a line that goes through the origin.

T -t~

()(t~)

()(t~)

2RI()Tli
-()T, i odd

()T, i even (19)

A direct consequence of the Lemma 3.1 is that, an optimal
trajectory can not contain both a circular arc and a line
segment. Furthermore, from the proof of Lemma 3.1, it was
shown that if a COT contains at least one switching point, then
the angle of first switching satisfies the following equation:

(18)

To ease analysis of optimal trajectories, it is useful to rotate
the exit point qT clockwise by tt/JT to iiT, so that after rotation
XT = r, YT = O,OT = ()T - tt/JT. In this case {;T = 0 and
OT E (- ~, ~). Since the costate equation does not change
under rotation (function of relative angle differences), the
corresponding COT is simply rotated as well.

For a number of terminal conditions qT, the correspond­
ing COTs are shown in Figure 2. The state in x-y plane
[x( t), y(t)], costate A3 (t) and angle ()(t) is plotted from left
to right. From Figure 2, it can bee seen that the angle () (t )
bounces between ()T and -()T. Going back in time and starting
at ()T, the COT switches every time ()(t) reaches - ()T or ()T
again.

After rotation to [r, 0, ()T]T, using the analysis outlined in
the proof of Lemma 3.1 (see [3]), the i-th switching time
t~ and switching angle ()(t~) starting from time T can be
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Lemma 3.2: For any initial condition q(O), all switching
points of the optimal trajectory lie on the line passing
through the origin and the exit point.

Lemma 3.2 is then used to establish an important characteri­
zation of optimal trajectories as described in the next theorem.

Theorem 3.3: For any initial condition q(O), the optimal
trajectory of the UAV does not switch more than once.

Since the optimal trajectory can only switch at most once,
the number of COT that can be optimal is drastically reduced.
It is then possible to construct optimal curves for any initial
condition in the feasible set A. Similar to many other Dubins
car path planning approaches (see [4], [14], [10], [2] for
example), we can define 2 motion primitives {L, R}, where
Land R motion primitives turn the car maximumly to the
left and right, respectively. For this problem, there is only
one case where a straight line is a COT (initial condition
q(O) = [-r, 0, O]T). However, in this case, there are 2
other COTs that are both shorter in length and involve one­
switching. Therefore unlike the Dubins vehicle shortest-path
problem ([10]), there is no straight line motion primitive.
Furthermore, since the optimal trajectory only switch once,
there are only 4 possible sequences of the {L, R} motion



Fig. 3. A number of optimal state trajectories with initial heading ~. The op­
2

timal motion sequence depends o~ the initial position. If x(O) E (-r, - ~],

then R is optimal. If x(O) E (- ~ ,0], then LR is optimal. If x(O) E [0, ~ ),
2

then RL is optimal. If x (0) E [~, r), then L is optimal. The optimal
switching points are plotted together to form the optimal switching surface.
In this case, R = 15, r = 10.

The above switching surface provides a control law which
produces the optimal trajectory for any given initial condition.
However, a more important problem is to find the optimal path
inside the convoy circle with initial condition free. Hence the
problem of finding

q* (0) = arg min IIq(o). (21)

The optimal path with this initial condition is denoted as a
globally optimal path. q* (0) is referred to as an optimal entry
point. It is apparent that any rotation of this point around
the origin is also an optimal entry point. This set of optimal
entry points, denoted by Q*, can be exactly determined by the
following theorem.

An easy way to recognize a globally optimal path is to
observe the fact that the entry point of a globally optimal path
is always on the same line as the origin and the exit point.

IV. MULTI-DAV CONVOY PROTECTION

Due to kinematic constraint of the DAVs (r < R), it is
impossible for one DAV to provide complete convoy protection
for a group ofDGVs. In this situation, multi-DAY coordination
is required in order to successful carry out convoy protection.
The last section laid out the ground-work to achieve optimal
convoy protection by a group of DAVs. Theorem 3.4 char­
acterized a set of optimal initial conditions that produces a
set of globally time-optimal trajectory. It can be shown that
these optimal trajectories not only specifies a path inside the
convoy circle, but also a path for a single DAV to come back
to the convoy circle without changing direction. As shown in
Figure 4, the path constitutes a circle of radius R and part
of the path is the optimal trajectory inside the convoy circle.
There are many similar optimal paths, and they are referred
to as optimal convoy protection paths. These paths maximize
the ratio of time inside the convoy circle over outside of the
convoy circle, since it is the quickest path to come back to the
circle, always reenter optimally and repeat as a limit-cycle.

From the proof of Theorem 3.4 (see [3]) we saw that
all entry points are rotations of the two points: q(0) =
[-r,O,arcsin(i)]T and q(O) = [-r,O,-arcsin(i)]T. By
rotating these two points around the origin, the optimal entry
point set Q* can be obtained and it is represented in the
following form:

Q* {q = [-rcos(O), -rsin(O), ± arcsin(~) - O]T,

fJ E [-7r,7r]} (23)

Fig. 4. Two optimal convoy protection paths are shown. They maximize
the time spent inside the convoy circle over the time outside of the convoy
circle. The triangles indicates position of the UAVs on the paths. The smaller
circle is the convoy circle, and the larger circles are optimal convoy protection
paths.

(20){L,R,LR,RL},

primitives, namely

where LR stands for turning left then right and RL for turning
right then left. There are two ways to determine the optimal
switching point. The first one is geometric. As Lemma 3.2
states, the switching point must be on the same line as the
origin and point of exit (this exit point can be determined by
projecting the state either turning left or right until exiting the
convoy circle). The second way is to check for the heading
fJ(t), which is required to satisfy equation (18). Since there is
only 4 possibilities for the motion sequences in an optimal
trajectory, it is easy to determine the global optimal path
for any initial condition. A set of optimal paths for initial
conditions with heading fJ(O) = ~ are shown in Figure 3.
Figure 3 also shows the optimal switching surface on which
switchings are optimal.

Theorem 3.4: The angle of the optimal entry point q*(O)
satisfies the equation:

fJ*(O) - ~r = -(fJr - ~r)· (22)

To ensure that all the DAVs maximize their time providing
convoy protection, their paths should be set to optimal convoy
protection paths such as the ones shown in Figure 4. In order
to achieve successful convoy protection, it is required that the
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DGVs are visible to at least one DAV at all time. Thus, we
can establish a lower bound on the number of DAV required
to provide successful convoy protection based on the optimal
path length.

Corollary 4.1: Given the convoy circle of radius r for
the DGVs and maximum turning radius R for the DAVs,
the minimum number of DAV needed to provide convoy
protection for all time is:

N = r 1r l (24)arcsin( i) ,
where r·1 denotes the ceiling function.

Assume that there is N DAVs and they can start at an
optimal initial condition q* (0) E Q*, the DAVs need to space
themselves evenly in terms of the time entering the convoy
circle. This can be achieved by slowing down and speeding
up with respect to the other DAVs so that the i-th DAVenters
the convoy circle at time 2"fvR i. This strategy is possible since
the optimal paths derived for this problem remain the same
for DAVs of any speed (instead of unit speed).

V. CONCLUDING REMARKS

In this paper we have obtained optimal paths for a single
DAV so that it provides ground convoy protection for maxi­
mum time. We also obtained optimal paths for multiple DAVs
and the minimum number of DAV needed to provide convoy
protection to ground vehicles for all time.
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