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Abstract- Formation building and keeping among vehicles
has been studied for many years, since 1987 with Reynolds'
rules [1]. This paper presents a control algorithm, based on re­
cent work in graph theory, able to reconfigure static formations
of non-holonomic vehicles endowed solely with local positioning
capabilities. The convergence of our approach is mathematically
proven and applied to a realistic robotic platform.

II. BACKGROUND

A. The Consensus Problem

The consensus problem [13] is a well-known and widely
studied problem in the field of decentralized control. If we
consider agents with a single integrator kinematic model

Fig. 1. Closed loop control for the consensus algorithm.
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where £ is the Laplacian matrix of the underlying graph
representing the swarm of agents. The corresponding closed
loop control is reported in Figure 1, where g(x) == -£ and
Bias == O. In particular, the Bias value can be changed in
order to obtain predefined steady states.
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where Xi is the state of the i-th robot, the consensus
problem for N agents can be solved with the Laplacian based
feedback method, that is based on the algebraic description
of the system. The feedback control is in the form

III. FROM HOLONOMIC AGENTS TO REAL ROBOTS

The solution of the consensus problem briefly outlined in
Section 11-A is based on the assumption that the agents are
modelled as holonomic vehicles. Dealing with real robots,
we cannot make this assumption because, in reality, robots
have some kinematic constraints!. A typical example of a
real robot model is the differential wheel robot depicted in
Figure 2, where the red circle identifies the front side of the
robot. The kinematic equations of the i-th robot are reported
in (3).

I. INTRODUCTION

The problem of bringing a multi-agent system to a pre­
defined configuration has been studied extensively. Many
methods can be used to drive a swarm of robots into a
formation: from a simple Braitenberg controller [2] to the
use of potential fields [3], [4], [5].
The problem of driving a multi-agent system to a final
common state is known as the consensus problem and is
based on the idea of using some information from the
communication network to drive the system to a final state.
As explained in [6], consensus algorithms can be used to
achieve formations, i.e. drive all the agents to a predefined
configuration characterized by a specific steady state. Many
problems related to the consensus arise when a limited
communication range is considered: in these situations the
link between robots can be unstable and drive the system to a
different final steady state. A possible solution, introduced in
[7], takes into account the possibility of combining potential
fields with graph theory.
This work presents a solution to the consensus problem
taking into account not only kinematic constraints but also
those related to local inter-robot positioning information.
First, we will introduce the basic concepts in graph the­
ory and the classical solution of the consensus problem
in Section II. The classical solution enables us to drive
a group of holonomic vehicles having global positioning
information to a predefined configuration. In Section III, we
explain how to solve the consensus problem extended to non­
holonomic vehicles using local positioning information. We
also give the proof of the stability of our control algorithm.
Finally, in Section IV, we test our approach in Webots
[11], a realistic mobile robotic simulator carefully calibrated
using real robotic data. Section V concludes this paper and
introduces possible future work.
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where Ui is the linear speed, Wi the rotational speed and Xi,

Yi and ¢i form the triplet defining the absolute coordinates.
Moreover, in our approach, we assume only local data, i.e.

1Given our platform of interest, the Khepera III robot [14], characterized
by a very low mass, we neglect dynamic constraints.
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Fig. 4. The range and bearing board developed at EPFL on a Khepera III
robot.

that are not accessible to our robots, i.e. the global position
and orientation of each robot. In this section a new control
algorithm based only on local sensing is introduced, and a
proof of convergence and stability is given using a Lyapunov
function. With reference to the Ri robot in Figure 5, we
define the following:

Definition 1: For a robot Ri with ~i =1= 0 (~i is the
number of robots connected to the robot Ri), we define:

(5)
~il+ I L.f~ I [-£i,j . ei,j . cos(ai,j )]

~}+l L.f~l [-£i,j . ei,j . sin(ai,j)]

Xl UI COS(¢I)
YI UI sin(¢l)
¢l WI

(4)

XN UN COS(¢N)
YN UN sin(¢N)
¢N WN

Yi

Since the new system is nonlinear, we have to modify the
control loop:

using for the i-th robot a range and bearing module to detect
the position of the other robots within a given range. This
introduces another limitation: a robot cannot have the global
position and orientation of all its neighbors. Furthermore,
occlusions between robots can happen and the positioning
network can become unstable. The MIMO system in Figure 1
for a group of non-holonomic vehicles becomes:

Fig. 2. Kinematic model of a non-holonomic wheeled robot. The red circle
identifies the front side.

Fig. 5. Definition of the relative position of the centroid of the group
(black star) with respect to the robot Ri.

where ei,j is the Euclidean distance between Ri and Rj,
and ai,j is the azimuth Rj with respect to Ri. The global
relative error is defined as Ci == [ei, Qi]T, where:

The global relative error Ci identifies, with respect to
reference frame of the robot Ri' a point in the plane that
corresponds to the centroid of the group. The demonstration
that proves that all robots point to the same centroid is
omitted due to space limitations. Our foal is now to define
a control vector [UI,WI, ... UN,WN] that stabilizes the

(6)

(7)

[Ui Wi]i=l. .. N
Nonlinear

[Xi Yi ¢i]i=1. .. N
...... ............. ......

MIMO

Controller [ei Oi] Local
Bias .::.... Positioning........ g(.) Information

Fig. 3. Control loop for the non-holonomic vehicles.

If we fix the Bias value, our goal is to find a control func­
tion g(.) to make the system converge towards a predefined
configuration.

A. Range and Bearing

A hardware extension board for the Khepera III robot
[14] has been developed in [15] to enable robots to find
the position of the other robots. The robot has a diameter of
12 cm, making it appropriate for multi-robot indoor exper­
iments. Figure 4 shows the sixteen evenly-spaced infrared
Light Emitting Diodes (LEDs) that this platform uses. This
range and bearing board has also the ability to broadcast low
bit rate communication packets using the IR emitter.

B. Control Algorithm

The stability of a swarm of non-holonomic vehicles has
been already considered in [16]. However, in these papers
the convergence is proved taking into account some data
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(8)

Theorem 1: Assume that the communication graph G of
a given group of robot is connected. Then the decentralized
control law (8) will stabilize the system to a final common
value.

Proof: Consider the candidate Lyapunov function:

N

V(c) == VI (CI) + V2(C2) + ... + Vn(CN) == L Vi(Ci)
i=1

~d>rl:l). .. r ..... ,.1 ~Robotl
---e--- Robot 2

~·I··· ."7'"'.. ; ;.1 ~Robot3

Robot 4
- - - - - Ymean

(a) Evolution of the X coordinates. (b) Evolution of the Y coordinates.

Fig. 6. Four non-holonomic agents solving the consensus problem.
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Fig. 7. Four non-holonomic robots converge to a square formation.

where bi,j is the desired distance between the i-th and the
j-th robot. As our control law is based on local positioning,
it is easy to modify (5) to:•

(9)

(13) (b) Evolution of the distances to the (c) Evolution of the distances be-
center. tween the robots.

(11)

(12)

(10)

> 0, \lci =1= °
0, \lci == °

< 0, \lCi =1= °
0, \lci == °

-Ui cos(ai)
-w' + Ui sin(ai)

~ ei

As explained in [17], we obtain for the i-th robot:

which prove that the system converges.

where:

We will consider the stabilization of the generic i-th robot.
Deriving (9) we obtain,

() 1 -2 1 -2Vi Ci == -e· + -a·2 ~ 2 ~

and c == [CI, ... CN]T. As the candidate Lyapunov function
is quadratic in the relative range and bearing with respect to
a calculated mean point, it is

lii = -Ui€i COS(iii) + iii (-Wi + Ui Si~(iii))

Now, if we apply the control law in (8),

lii == -KI (eicos(ai))2 - K 2 (ai)2

as K I , K 2 > 0, follows that:

and we can rewrite lii as:

In Figure 6 the behavior of a group of four robots is depicted.
Note that the mean value (dotted line) is not static but
changes dynamically due to the nonlinearities of the control
law.

In [6] it is clearly explained how to use the Laplacian
approach to achieve a formation control: setting the Bias
input in Figure 1 to a value other than zero, we can
drive the system to a predefined final state. Because of the
nonlinearities of our system, the Bias input is defined as a
matrix

B(i,j) = {
bi,j,
0,

\lrj E Ni
otherwise

I ~~i [~i+1 L.Jj=1 -Li,j' (ei,j - bi,j) . cos(ai,j)]

~il+ I L.f~ I [-Li,j . (ei,j - bi,j) . sin(ai,j )]
(14)

that drives our system to the equilibrium state when all
the distances between the robots match the ones specified
in the Bias matrix (assuming a feasible Bias matrix). The
symmetry of B follows from the definition of the Edge set
of an undirected graph. As an example, we consider 4 robots
stabilized in a square configuration with side equal to ~ and

d
. y2

a lagonal equal to 1. As long as the graph is connected, we
assume that it is complete and the corresponding Laplacian
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matrix is:

£=[
3 -1 -1 -1

]-1 3 -1 -1
-1 -1 3 -1
-1 -1 -1 3

and the matrix B is:

0 1 1 1
V2 V2

1 0 1 1
B== V2

1
V2

11 V2 0 V2
1 1 1 0V2 V2

(15)

(16)

Fig. 8. Example of a blocked line-of-sight where broadcasting is important.

Fig. 9. Broadcasted data packet format.

IV. EXPERIMENTS

Experiments were conducted using simulated Khepera
III robots [14]. All sensors and actuators of the simulated
robotic platform, including the range and bearing module,
were calibrated to match reality. In particular, the range
and bearing module suffers from a 10% noise ratio in the
estimation of the distance and a 0.1 radians noise in the
relative angle.

A. Experimental Setup

At the beginning of each simulation run, four robots and
either zero or ten obstacles are randomly placed in a 3 x 3
m area in the middle of a 4 x 4 m arena. Figure 10 shows an
example of initial and final positions for the robotic nodes.
Obstacles are represented by cylinders with a 10 cm radius.

The goal of the four robots is to converge to a square
formation where the diagonal of the square is one meter.
Thus, they use the Bias matrix B (16). The controller of
the robot has K I == 25000 and K 2 == 50000. It is important
to note that if at any time ~i == 0, the robot Ri will start to
move randomly to acquire the positioning information again.

B. Results

The position of each robot is monitored during a run. After
1000 runs, distances to the center of mass of the robots are
computed to assess the convergence of the algorithm. Since
the robots need to converge to a square configuration with a
diagonal of one meter, their distances to the center of mass
should converge to half a meter. Two main scenarios are
tested, one without obstacles and one with ten obstacles.

The behavior of the group is depicted in Figure 7.

C. Additional Optimizations

In the previous section, we proved, that assuming perfect
sensors and environment, robots will converge into the speci­
fied formation. Unfortunately, the transition to the real world
is not as straight forward and we need additional recipes
to achieve good performances. The idea presented in the
following subsection represent a local optimization technique
that we used in the experiments presented in Section IV.

1) Data Broadcasting: When navigating through a terrain,
robots often encounter obstacles that can prevent point-to­
point communication. To make the system more robust and
redundant we added the ability for the robots to broadcast
their relative positioning information. It has the additional
advantage that the underlying graph, representing the swarm,
does not need to be complete, but only connected. Broad­
casting virtually recreates the missing connections. Figure 8
depicts a typical situation where broadcasting is useful. In
this figure, the line-of-sight between robot R o and robot R 2

is blocked by a wall. Fortunately, robot R 1 can be used as a
relay to compute the missing information about the position
of R 2 with respect to R o. The idea is to have R 1 broadcasts
its relative positioning information (in our case aIO, eIO, aI2
and eI2, where eij is the distance sensed by Ri to Rj). This
information enables R o to compute an estimation of a02 and
e02 with the following equations:

(302 1r + aOI - aIO + aI2
e x ,02 eOI cos(aOI) + eI2 COS((302)
ey,02 eOI sin(aOI) + eI2 sin((302)

e02 Je;,02 + e~,02
a02 atan2(e y ,02, e x ,02)

The data broadcasted by the range and bearing board is
grouped into a data packet. Figure 9 shows how the packet
sent by R o and R 1 in our previous example looks like. This
data packet not only contains the measurements (aij and eij,

for all j such that Ri is sensing Rj), but also contains a hop
count hij that is incremented each time a robot broadcasts
positioning data that it is not directly measuring. In Figure 8,
the hop count h02 will be one, meaning that R o used one
relay to compute a02 and e02. The data broadcasted can be
ignored if the hop count is too high (hij > hmaxJ.
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Fig. 11. Average and standard deviations of the distances to the center of
mass depending on time without obstacles.

30
time[s]

(a) Average and standard deviations of the distances to the center of mass
depending on time without obstacles and using a perfect connectivity.

30
time[s]

(b) Average and standard deviations of the distances to the center of mass
depending on time without obstacles and using an unstable connectivity.

predefined square formation. Broadcasting implicitly adds
communication links and makes the communication network
more stable; it proved to be particularly efficient when the
connectivity was unstable or when obstacles could occlude
lines-of-sight.
During some experiments, we observed that the robot team
could stabilize to a wrong configuration due to the presence
of local minima. To overcome this issue, each robot is able
to change the order of the rows and columns of its Bias
matrix.
Since our approach is fully decentralized, the system is fault­
tolerant and the number of robots can easily be increased.
On the other hand, if there are more robots, occlusions
happen more frequently. To maintain the group connected,
we need to increase the maximal number of hops and thus the

Fig. 10. Example of an experiment with ten obstacles and four robots.
Obstacles are in red, robots are white. Ii and Fi denote the initial and final
position of robot Ri respectively.

Each scenario is subdivided into two test cases: perfect links
between robots (no packet loss) and intermittent connectivity.
During the intermittent connectivity, or unstable connectivity,
positioning and communication links are unstable and can go
up or down with constant probability at a rate corresponding
to a Poisson distribution. We chose a mean time constant
for the Poisson process of lOs. Furthermore we analyze the
usefulness of the broadcasting algorithm by varying hmax ,

the maximal hop count.
Figure 11(a) shows the evolution of the distance to the

center of mass with perfect connectivity and no obstacle
present. We can see that, even though there are no obstacles,
point-to-point communication can still break when another
robot passes in between two other robots. Hence, a two hop
broadcasting enables a faster convergence of the algorithm.
This figure also shows that the approach used converges.

Figure 11(b) shows that, even though the communication
links can easily go down, the system remains stable. Since
a robot starts to move randomly when it loses all its com­
munication links, the figure shows a mean of the distance
to the center of mass a little higher than half a meter and
large standard deviations. Again it is worth noting that a two
hops broadcasting achieves similar performances to the full
broadcasting and we can safely have the robots not send data
with two hops or more, thus saving energy.
Figure 12(a) and Figure 12(b) really demonstrate the impor­
tance of broadcasting in real - not trivial - environments.
The figures show that the control law used enables conver­
gence even in more challenging scenarios. Again two hops
broadcasting is achieving identical performances to the full
broadcasting.

C. Discussion

The results obtained during the experiments show two
interesting properties:

• the convergence and stability of our approach and
• the usefulness of ad-hoc optimizations in difficult envi­

ronments.
Using a minimum of two hops for broadcasting enabled a
fast convergence of the distributed robotic system to the
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propagated positioning information becomes less accurate.

In this paper, we demonstrated that we could drive non­
holonomic robots to a specific formation using only local
positioning information. We proved mathematically that our
approach converges. In particular, before dealing with the
formation problem, we solved the consensus problem for
kinematically constrained vehicles. We also tested the ro­
bustness of our control under challenging conditions such as
obstacle field arenas and unstable communication links.
The next step of this work will include systematic validation
between simulated and real robots. In particular, we will
focus on real-world sensor and actuator limitations.
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