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Abstract- This paper considers the problem of coordinating
multiple pendula attached to mobile bases. In particular,
the pendula should move in such a way that their motion
is synchronized, which calls for two problems to be solved
simultaneously, namely a constrained optimal control problem
for each pendulum, and a constrained agreement problem
across the network of pendula. A novel way of manipulating
the initial conditions in the consensus equation is presented that
will solve the latter of these problems, and simulation results are
presented that support the viability of the proposed approach.

I. INTRODUCTION

In this paper we consider the problem of controlling a
collection of pendula in a coordinated fashion. In particular,
their mobile bases are to be controlled in such a way that, at
some specified terminal time, they move in unison (with the
same frequency and phase) at a fixed inter-pendula distance.
This should be achieved using only local information, i.e. the
control actions are only to be controlled based on information
from neighboring pendula.

The motivation behind this work comes from recent efforts
to develop robotic marionettes [1], [2], as shown in Figure
1. There, the ambition is to have the marionette execute
sequences of motions in such a way that the transitions
between different modes of operation are graceful and, at the
same time, reflect the original play script. For this to work, it
is paramount that the different limbs on an individual puppet
are coordinated. If multiple puppets are acting together, this
coordination issue becomes even more important. However,
to reduce the computational burden, it is important that
the coordination can be achieved while only taking into
account the relevant, local information [2]. This paper is
a manifestation of that idea and it provides the first basic
building block needed to pull off this endeavor.

In this paper, we will let each pendulum solve an initial
optimal control problem based on local information. The
output of the optimal control problem is a desired final state,
as well as a final state associated with neighboring pendula.
The problem then becomes that of ensuring that, after an
agreement on the final states over all pendula has been
reached, the agreed upon states satisfy the constraints. And,
it turns out that even though running the standard consensus
equation (e.g. [3], [4]) - or versions of the gossip algorithm
[5], [6] - will result in an agreement, the agreed upon states
do not satisfy the constraints. However, what will be shown
is that one can manipulate the initial conditions in order to
satisfy the constraints.
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The agreement protocol (or consensus equation) has by
now emerged as a standard way in which to achieve agree­
ment among agents in a distributed network. It can be
utilized for anything from agreement in embedded physical
systems like mobile robots or DAVs, to distributed computer
networks, e.g. [7], [8], [9]. And, as the final value of
agreement is dependent on the agents' initial conditions, it is
not overly surprising that this dependency can be employed
such that the final agreement state is guaranteed to satisfy
certain constraints.

Relevant work on agreement for systems with constraints
or oscillating dynamics include [10], where the stability of
the Kuromoto model of coupled nonlinear oscillators was
investigated, and [11], [12], where constrained consensus was
considered. However, in the former case, no constraints were
present, and in the latter case, the proposed solution required
that the consensus update law be modified over time. In
contrast, this paper will present a simple, static update law
for achieving agreement while satisfying the constraints.

The outline of this paper is as follows: In Section 2, we
introduce the networked pendulum-cart system, followed by
a discussion in Section 3 about the optimal control design
needed to synchronize the system if complete information
(about all pendula) is available to each individual pendu­
lum. In that section we also introduce our solution to the
constrained agreement problem, followed by the simulation
results, in Section 4.

II. PENDULUM DYNAMICS

A. Dynamics

The dynamics of a single cart-pendulum system (referred
to as an agent) can be derived using Lagrange's Equations
(e.g. [13])

~(8£)_8£=Q £=T-P
dt 8q 8q' ,

where T is the kinetic energy of the system, P is the potential
energy of the pendulum, Q is the parameterized forces acting
on the system, and £ is the Lagrangian.

We can define the kinetic and potential energy as well
as the parameterized forces acting on the system. Based on
Figure 2, the only parameterized force, Q, on the system
is the force, F, applied in the Px direction. This force will
be the control input, u, to the system. No damping force is
considered in this model as pendula can be approximated as
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(a) Puppet in initial configuration. (b) Puppet in wave motion. (c) Puppet starting a walle (d) The final step in the walk
mode.

Fig. 1. An image sequence of the a robotic marionette executing a wave followed by a walk mode.
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Fig. 2. Pendulum Diagram

zero damping systems. The resulting equations of motion are

- Px cos(B) - fL sin(B) (1)
l l
mlO mlfJ2 . U

M cos(B) + M s'tn(B) + M (2)+m +m +m

B. Linearization

These dynamics can be linearized about the 0 = 0, fJ =
0, Px = 0 equilibrium point, giving the single pendulum
system as Xi(t) = Aixi(t) + BiUi(t), where:

o
o
o

-(M+m)g
Ml

Note that this pair, (Ai, Bi ), is completely controllable.
For a N planar pendulum system, the system can be

written as x(t) = Ax(t) + Bu(t), where
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x' [x~, ... , x~],U=[UI UN]'

A [AI 0 ] ,B = [BI 0 ]

o AN 0 BN

Note that in this paper, Ai = A j and Bi = B j for
i, j = 1, ... , N, since the pendula are assumed to be
homogeneous.

C. Assumptions

Throughout this paper, some assumptions will be made
and here we gather the assumptions for the sake of easy
reference. We first assume that each cart-pendulum system
can measure its own cart position, cart velocity, pendulum
angle, and pendulum angular velocity. It is also assumed that
pendulum angles and angular velocities are small enough so
that the linearized dynamics can be used to model the system
behavior. Damping is also assumed to be small enough
to approximate it as exerting zero forces on the system.

The network topology used in this paper is restricted to a
static line graph topology. This assumption follows from the
mechanical set-up of the robotic marionette. As such, it is
also assumed that each agent can measure the state values of
adjacent agents only. Adjacent agents can also communicate
state estimates with each other.

III. COORDINATED SYNCHRONIZATION CONTROL

A. Two Pendula Control

Given a system comprised of two planar pendula,
a control law is sought to drive these two pendula in
such a way that they achieve identical angles, angular
velocities, and cart velocities while maintaining a set
distance, d, between the carts. Therefore, a control
law is desired to enforce the terminal constraints
Px,I(T) - Px,2(T) = d, Px,I(T) - Px,2(T) = 0,
01(T) - 02(T) = 0, fJ1(T) - fJ2(T) = 0, i.e. Cx(T) = k,



where which implies that

where we assume that XT satisfies the constraints, i.e. CXT =
k. The solution to this optimal control problem is

Uopt(XT) = B'eA'(T-t)W-1(XT - eATXo), (7)

The associated minimum energy, point-to-point transfer
control problem becomes

minJ(u(t)) = [T Ilu(t)112dt (3)
u io

(17)

(15)

(14)

~Si~(wt)]
cos(wt)

o
o

cos(wt)
-wsin(wt)

is block diagonal. In fact,

[

1 T
e AiT = 0 1

o 0
o 0

by plugging in R.
Now, since Al A2 and B 1 = B 2 , block diagonality

implies (after some calculations) that

1 [e
A1T

e
A1T

] 1,
XTopt = 2 e A1T e A1T Xo + 2C k.

Now, this approach can of course be extended to the N
pendula case as well. This direct extension, however, requires
complete initial state information for the computation of the
optimal terminal state. In the next section, we will see how
to overcome this problem.

Substituting the value for eA1 T and k into (17) now gives that
the cart velocity for each pendulum is equal to the average
of the initial velocities, i.e.

. 1 . . .
Px,i(T) = 2(Px,1(O) + Px,2(O)), 1- = 1,2. (18)

•

. . /(M+m)gwhere w IS the natural frequency, V Ml .

In fact, one can show that the controllability Grammiam,
W, as well as Q, are block diagonal as well. From (12), we
can write XTopt as

XTopt = (_Q-l +Q-1C'(CQ-1C,)-lCQ-l).

.( _2e- A'TW- 1)xo + Q-1C'(CQ-1C,)-lk (16)

(9)

(4)
(5)

(6)

(10)

(11)

o
o

-1
o

o
-1
o
o

XT,

Xo

Ax(t) + Bu(t)x(t)

x(O)
x(T)

[

1 0 0 0 -1

C- 0 1 0 0 0
- 0 0 1 0 0

o 0 0 1 0

such that

where the Grammiam, W, is invertible and positive definite
due to the controllability of the system. Plugging Uopt (XT )

back into the cost gives
J(Uopt(XT)) =

= (eAT Xo - XT)'e-A'TW-le-AT(eAT Xo - XT). (8)

Since XT is not unique, the goal now is to find the XT

that minimizes (8), which can be formulated as a quadratic
programming problem

. 1 , Q RmIn -XT XT + XT
XT 2

such that CXT = k, where

Q 2e- A'TW- 1e-AT

R 2 'W-l -AT- Xo e .

The unique solution,

XTopt = Q-l(-R' + C'(CQ-1C,)-1(k + CQ-lR'), (12)

gives the control,

Uopt(XTopt) = B'eA'(T-t)W-l(XTopt - eATXo). (13)

It should be noted that the pendula converge to a set
distance d apart and have equal angles and angular velocities.
They also have equal cart velocities; however, these velocities
are not guaranteed to be zero. The following proposition
states that they converge to an average of the initial veloci­
ties.

Proposition 1: The final velocity of a linearized two
pendulum-cart system (A, B), using point-to-point transfer
optimal control with a terminal linear constraint CXT = k,

is the average of the initial velocities.
Proof· Recall that for a two pendulum system,

A= [~1 12] ,B= [~1 ;2]'

B. N Pendula Control with Consensus

As a consequence of the previous section, XTopt needs
to be specified in order to be able to compute the control
law. But, what if this (global) terminal state is only partially
known to the agents through a local estimate? The challenge,
then, is agreeing on a global terminal state using these local
estimates in a way such that the constraints are satisfied. To
begin with, we will let each agent solve the constrained point­
to-point transfer problem defined only over the adjacent
agents. As a result, agent i will have obtained what it believes
to be the best final states for itself as well as for its neighbors
(i -1 and i + 1 if i = (2, ... , N -1),2 if i = 1, and N -1
if i = N). In fact, we will denote by Xi,j, the terminal state
value that agent i thinks the agent j should have, as the
outcome of the optimal control problem. And, for the two
pendula case, we observe that we can rewrite the constraint
matrix C as C = [I - IJ, which implies that Xi,j has to
satisfy
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[1 -1] [i~:~] = k,

[1 -1J [XN,N-l] = k,
XN,N

for i = 2, ... , N,

Here, Ji E lR is a constant that needs to be determined.
(19) In other words, the final state estimates for agents not

adjacent to a boundary pendulum are initialized to the
adjacent agent's final state estimate. Final state estimates for
agents not adjacent to non-boundary agents are initialized to

(20) the same final state estimate as the adjacent agent closest to
it. The following notation will be used to denote all agents
estimate of agent i.

(Non-Boundary Pendulum) for i = 2, ... , N - 1

(36)

(35)

(1]1i (0) - 1]1,i+1(0)) + ...
+(1]i-l,i (0) - 1]i-l,i+l (0))+

1 +Jik + Jik+
N + (1]i+2,i (0) - 1]i+2,i+1(0) )+

... + (1]N,i (0) - 1]N,i+l (0))

(1]I,N-l(O) -1]I,N(O)) + ...
+(1]N-2,N-l(0) -1]N-2,N(0))+

Jik + Jik

(1'1]N-l(0)) - (1'1]N(0))

Jik + Jik + (1]3,1 (0) - 1]3,2(0))+
... + (1]N,I(O) -1]N,2(0))

1

N

[1 - 1J [1'1]N -1 (0)]
1'1]N(0)

(1'1]1 (0)) - (1'1]2 (0))

1

N

_ ~ [ll"7~(O)]
1]e - .,N .

1'1]N(0)

M1]e =

It is well known that (23) is globally asymptotically stable
for connected graphs (e.g. [14]) and that the agreement state,
1]e is

where 1 represents a vector with l's in each position. Since
1]e E lRN, the plan now is to use it as the terminal state in
the point-to-point transfer problem.

To verify that 1]e does in fact satisfy the global constraint
and to determine Ji, plug 1]e into the constraint (22) for Xi,j,

(24)

(25)

(26)

(21)

JiX1,1,

JiX1,2,

1]1,Z-1 (0) for l = 3, ... ,N,

JiXN,N, (27)

JiXN,N-l, (28)

1]N,Z+1 (0) for l = 1, ... ,N - 2, (29)

JiXi,i-l, (30)

JiXi,i, (31)

JiXi,i+l, (32)

1]i,h +1 (0), for II = 1, ... , i - 2, (33)

1]i,Z2- 1(0), for l2 = i + 2, ... ,N. (34)

[
1 -1
o 1

1]1,1 (0)

1]1,2(0)

1]1,Z(O)

1]N,N(O)

1]N,N-l(O)

1]N,Z(O)

M [ X~,l ] _ (22): - b,

XN,N

1 -1 0 0

, b = [~] .

0 1 -1 0 0
M

0 0 1 -1

1]i,i-l (0)

1]i,i(O)

1]i,i+l (0)

1]i,h(O)

1]i,Z2 (0)

iJij(t) = - L (1]ij(t) -1]kj(t)) for i = 1, ... , N. (23)
keNi

Note that these constraints are only enforced locally, i.e. there
is no reason to believe that Xi,j = Xj,i or that they are
globally satisfied, e.g through

The enabling observation now is that we can use the
consensus equation to update each pendulum's estimates of
the global final state. This way, a final state may be found
that satisfies the constraint for the entire network. We use
1]i,j (t) to denote agent i's estimate of what agent j's terminal
state should be, at time t. If we let N i represent the set of
neighbors to agent i, the consensus equation becomes

The question now is what initial conditions to use? Since
agent i only has access to X i,i-l,Xi,i, and X i,i+l (provided
i = 2, ... ,N - 1), it seems clear (but not actually correct as
we will see) that 1]i,j(O) = Xi,j for j = i-I, i, i + 1. But
what about the other values? In fact, what we propose is to
let the initial conditions be given by
(Boundary Pendulum: end of line topology)
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We now note that for agent j not adjacent to agent i,
1]j,i was chosen in (24)-(34) to equal 1]j,i+l, so the terms
(1]j,i - 1]j,i+l) above equal zero. Also note that for agent j
adjacent to agent i, the terms (1]j,i -1]j,i+l) above equal Jik.
Hence,

k

control law is needed without the consensus equation. The
results of this case are shown in Figure 4.

It can be seen for both cases that at 20 seconds, the
distance between adjacent pendula is close to 1 m, as pre­
scribed, while the velocities, angles, and angular velocities
are identical for all the pendula. The animations of these
scenarios are given in Figure 5.
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Fig. 3. 5 Distributed Pendula Result.
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V. CONCLUSIONS

This paper demonstrates how the initial conditions in the
agreement protocol can be manipulated to produce results
that satisfy linear constraints. This technique was applied to
the control of a distributed network of linearized pendula on
a line graph topology. We found that this algorithm, together
with point-to-point transfer optimal control, was able to drive
these linear systems to a terminal manifold. This manifold

(37)

(38)

(39)

(40)

k = b,

k

[

1]i'i-l (t)]
Xi = 1]i,i(t) .

1]i,i+l (t)

Now, each agent n can calculate its control at time t, for
n= 1, ... ,N,

Here, An and Bn are the corresponding two or three
pendula state space models, depending if it is a boundary
pendulum or not. Wn(t) is the Grammian for the pair
(An, Bn) from time t to T. xn(t) is the current state of
the agent n and its adjacent agents. We now have a control
that drives the entire network to a terminal state that satisfies
the terminal constraint.

(Boundary Pendulum: end of line topology)

Xl [~~~ ~~ ~] ,

[
1]N, N -1 (t )]

XN 1]N,N(t)'

(Non-Boundary Pendulum) for i = 2, ... , N - 1

by setting Ji = ~.
Therefore, all the pendula meet the global terminal

constraint for the entire network. The consensus equation
updates the global terminal state estimate for each pendulum,
which then can extract the terminal state estimates of itself
and the adjacent agents, Xi, by letting

IV. SIMULATION RESULTS

The stated control laws are implemented in a MATLAB
simulation of the presented pendulum dynamics. Simulations
are run with the following parameters: g = 9.8 mjs, l =
0.30 m, M = 1 kg, m = 0.2 kg, and d = 1.0 m for
the pendulum model. It should be noted that in order for
this distributed control strategy to be effective, the consensus
algorithm must converge to the agreement value before the
specified final time in the optimal control law, which in this
case is 20 seconds.

In Figure 3, the results are shown for a five pendula
scenario using the optimal control law and the consensus
equation. As a comparision, the same initial conditions
are run for the centralized case, where full network state
information is known to all agents, i.e. only the optimal
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synchronizes the pendula oscillations and maintains a desired
cart formation.
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