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Abstract-Modular robot configurations typically feature
many kinematically redundant loops. We believe that the in
formation in these loops can be utilized in order to increase the
accuracy of localization, in particular, at an end effector. We
hope it will be possible to design an algorithm that can design
configurations able to manipulate to a user specified level of
accuracy. In order to do so, it would be necessary to predict the
level of accuracy of a configuration from a priori information.

In this work we provide experimental evidence that increased
accuracy is easily achieved through redundancy. We then formu
late a representation of accuracy as a distribution of location
across space. We use Bayesian statistics to prototype three
different models of the experimental system and test their ability
to predict the increase in accuracy observed. We find that all
three of the statistics prototyped were conservative estimators,
leading us to the conclusion that our kinematic model of the
system was too constrained.

I. INTRODUCTION

Modular robotics offers many advantageous over monolithic
robotic solutions including flexibility, robustness etc. [1] One
advantage is that redundant spatial information caused by
redundant kinematic pathways can be fused to increase the
overall accuracy of localization. This effect has been well
utilized in monolithic parallel robotic architectures such as
the Stewart platform [2], [3] to greatly improve accuracy over
their serial counterparts. We believe that redundant kinematic
pathways found commonly in modular robots can be used
similarly to increase the accuracy of tool manipulation.

Accuracy is the ability of a forward model model to
predict the position of a robot from its motor commands or
proprioceptive sensors. Work on monolithic parallel actua
tion concentrated on calibrating forward models in order to
increase the precision of a forward model [4] or analyzing
the error workspace with respect to design parameter vectors
[5]. Modular robots [6], [7], [1] offer a different challenge
because the topology of the robot may not be known in
advance. Therefore, any calibration step can only be applied
to individual modular components rather than an assembled
whole. The problem then for modular robots is predicting
the accuracy of arbitrary robot configurations from a priori
information.

Accuracy is related to localization. Substantial work has
been carried out on localization of wireless sensor networks,
driven by the desire for low cost spatially aware services [8].
In sensing networks it is usually assumed that a number of
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units have been distributed around an environment. They are
capable of estimating the distance to a few of their nearest
neighbors, and possibly the direction of their neighbors. The
problem is then to determine the absolute locations of the units
given the noisy relative sensor readings. Most work to date
has concentrated on algorithms that can determining a point
estimate of the positions of units when sensor noise is large. A
point estimate of positions, however, is not useful as a measure
of accuracy. Accuracy is the probability distribution of position
across space. Nevertheless, these methodologies highlight the
difficulty of inference across cyclic graphs [9], a technical
issue that is preserved across the two problem domains.

Our long term aim is to develop a modular robot de
signer algorithm that utilizes kinematic redundancy in order to
achieve a user specified level of accuracy. We expect to build
on existing localization algorithms in order to achieve this.
However, as the problem of inference on general graphs for
localization is difficult, this preliminary work utilizes a very
basic configuration of robotic components. This is so we can
check the accuracy of different statistics against a real robot,
without becoming bogged down in technical issues regarding
calculation of those statistics.

We use a Bayesian statistical formulation for representing
accuracy as a probability distribution of location. The Bayesian
approach is particularly useful in this domain because it is
itself modular. In section II we present experiments on a
mock modular robot that demonstrate that accuracy is indeed
increased through kinematic redundancy. Section III describes
the non-parametric methodologies that we utilize in order to
estimate probability densities from data gathered in section
II. These general methodologies are applied to construct three
different statistical models for predicting accuracy in section
IV. We apply those statistical models and compare with
experimental behavior in section V. Finally, general conclu
sions about utilizing redundancy in order to achieve increased
accuracy, and the issues regarding predicting increases in
accuracy, are presented in section VI.

II. EXPERIMENTAL SETUP

Our experimental setup attempts to reproduce the most
salient features of a modular reconfigurable robot. It is com
prised of two planar robots, whose end effector accuracy can
be measured. They can be mechanically linked together to
create an end effector that is controlled redundantly by the two
robots. With this setup we can study the effect of kinematic
redundancy on accuracy. The planar robots are mounted such
that their workspaces are affected by gravity, an important
source of inaccuracies in most robot installations.
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Figure 2. Kinematic schematic

y

A basic hill climbing algorithm was used to improve an
initial guess of the kinematic parameters on the training set.
Overfitting was prevented by halting the algorithm when the
cost function rose when applied to the validation set. The
initial ~uesses for the parameters were determined by simply
measurIng the lengths of the links and base positions, and
reading the servo technical specification.

Once the forward parameters were learned, it was possible
to compare the agreement between the forward model and the
observed behavior. Figure 3 top left and top middle shows
the difference between the arms commanded position and the
actual location reached. The forward models have an average
error of roughly zero, demonstrated by the fact that the errors
point in all directions, but are systematically biased across
the workspace. This systematic bias manifests itself on the
workspace error diagrams non-random patterning. For the top
arm, the biases appear as a smooth swirl of the error arrows.
For the bottom arm, the majority of the errors form a swirling
pattern, but the lower and upper datapoints on the leftmost
column break from the continuum. This indicates a significant
change in the kinematics which we attribute to the center of
mass, which is concentrated in the servo of the elbow joint,
acting in a different torque direction at the base joint when the
arm stretches to reach the far away positions in the workspace.
~en. the center of mass is resolved to an opposite torque
dIrectIon, backlash in the base joint acts in a different direction
and so the distal end point moves significantly for a small
displacement in joint space.

After training the kinematic models we linked the arms and
commanded both arms redundantly to reach each of the 16
desired distal workspace locations. To determine the correct
motor commands to send to each arm, the forward model
functions were inverted, denoted f-Iand g-I. An analytical
solution for f- I was determined using the law of cosines.
There was an ambiguity that arose in the derivation caused by
the fact that two angular solutions exist for a single given distal
point. The correct solution is easily determined by picking the
solution that lies closest to a training example.

With inverse kinematics defined we commanded both arms
to each of the 16 test locations and recorded the actual
locations reached. This formed our combined arm data set
(Figure 3 top right).

We estimated the parameters of the forward models f and
9 ~rom training data. We moved each arm approximately to
pOInts on a 4x4 grid in distal space (Figure 1 left). We recorded
the motor commands sent, and the distal locations reached.
There were 16 training data points in total for each arm. We
also applied the exact same 16 motor commands a second time
to each arm. We reserved the second set of data points as a
validation set.

The quality of a set of training parameters on a data set
of N motor commands u and N observed distal locations d
was defined to be the summed Euclidean distance between the
predicted position and observed position over the set.

N

J = L Ilf(g(ui)) - dill
i=1

x

Figur~ 1. Left: A picture of the two 2DOF arms with the testing workspace
supenmposed (coordinates are in cm). Right: the arms linked with the Yaxis
measuring device attached.

d - bx + llcos((}I) + l2COS ((}1 + (}2)

- by + hsin(81) + 12sin(81 + 82) = f(O)

The angles (}I and (}2 used in the forward model are
calculated from the motor commands. The technical sheet of
the servos states that the angle is proportional to the width
of the pulses sent to the servo. Thus a linear transformation
converts between motor command, u(pulse widths, ms) to
angles, (J (rad):-

Figure 1 shows the experimental setup. Each robot has
two rotational degrees of freedom driven by Hitec HSR
TI5995TG servos. We selected 16 points from a rectangular
area of the workspace for our experiments (Figure 1 left).
Our measurement equipment could locate the distal endpoint
~f each arm to an accuracy of approximately 1mm (Figure 1
rIght). The arm attached to the vertical strut will be referred
to as the top arm, and the arm attached to the base of the
equipment the bottom arm.

.The distal endpoints of each arm could be linked together
wIth a rod to form a combined robotic setup. Kinematically the
rod added an additional passive rotary joint to the combined
kinematics. The combined distal end point thus became a
function of both arms' state. When the equipment is configured
as such it will be referred to as the combined arm.

We modeled each individual arm as two rigid rods con
nected by two rotary joints (Figure 2). In this scheme the distal
end point of an arm was defined by the following forward
model:-
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Figure 4. First column, the mean accuracy of the experiments. Error bars
denote the 95% confidence interval for the estimation of the mean. Middle
and right columns, predictions of accuracy by each of the candidate statistical
models.

Figure 3. Plots of accuracy errors over the workspace for the top arm
(left), bottom arm (middle) and the combined arms (right). The top row is the
discrepancy between the forward models and the experimental validation set.
The lower row is a summary of the expected error over the workspace for
the COND model. The start of each arrow denotes the the prediction of the
trained forward model for the motor commands issued, and the arrow head
points in the direction of the observed location (top row), or expected location
(bottom row). The length of the arrow is proportional to the magnitude of the
observed error (top row), or expected error (bottom row).

To quantify the overall accuracy of the different setups,
we averaged the Euclidean distance between the predicted
distal point for the motor commands against the observed
distal point. The results are summarized in Figure 4 (leftmost
column). We note both arms individually have similar accuracy
performance, but the combined arm setup is significantly more
accurate.

III. PRELIMINARIES

We have modeled accuracy as a probability density function
(PDF) of location across space, which is dependent on the
motor commands sent p(dlu). In section V we will construct
an estimate of this distribution by modeling noise at the
joints of the robots as PDFs and fusing them under different
assumptions. The underlying PDFs are estimated from data
gathered in section II. We use non-parametric techniques to

D = (xf ...x'Ir)T

/Li = -it Lf Xji , (Ji = .J-it L~ (Xji - /Li)2

D- - (-T -T)T h - .. _ Xji- x1···xN were X J '/; - a::
A spherical Gaussian of width h is then placed at each dat

apoint as an estimation of the PDF. To obtain the value of the
estimated PDF at a (unnormalized) test point x, the test point
first must be normalized, then the spherical Gaussian kernel
functions summed, and then the result adjusted to account for
the change of variable in the normalization process:

SGF(xl/-L, h) = 1 e(-2&(X-/-L)T(X-/-L)V(21rh2 )dirns

pdf(xID, h) = diag(al ...aN) L~ SGF(xlxi, h)

We obtain a good value for h by minimizing a leave-one-out
cross validation cost function. Let D _j denote the D dataset
less row j (i.e. the complete dataset with datapoint j missing).
Then the leave-one-out error is calculated as:-

N N

JLoo(h) = L L(pdf(XiID , h) - pdf(XiID-j, h))2
j

We minimize this quantity to obtain a good value for h.

argmin
hLoo = h JLoo(h)

We will denote the Parzen leave-one-out PDF value at point
x which was learned from a dataset D as pdfLOO(xID).

For estimation of conditional distributions of the form,
p(x Iz), we first estimated the joint distribution p(x, z) using
Parzen leave-one-out estimator as above. To condition a vari
able we converted the Parzen estimate of the joint distribution
into a multivariate histogram. Hyper-rectangular bins were
placed evenly over the region of interest, and assigned a
value taken from the estimated joint distribution based on the
position of the bin's center. The estimate of p(xlz)was then:

( I ) ~ value in bin (x, z)
p x z '" LV'k value in bin (k, z)

estimate the PDF, gathered from data which are less prone
to skewing the data compared to parametric techniques. This
section describes, in brief, the density estimation techniques
used.

For density estimation of PDFs of the form p(d) we have
used Parzen windowing [10] with leave-one-out cross valida
tion (see [11] for a good explanation) using spherical Gaussian
kernel functions (SGF). Spherical Gaussian kernels are bad
estimators when data is spread unevenly across dimensions.
We reduce the impact of this problem by first normalizing
the data into a dataset fJ by dividing by the componentwise
standard deviation. Let Xi denote single training example
encoded as a real valued vector. Then the training set D is:-

IV. STATISTICAL MODELS

For the modular robot accuracy prediction problem, we
need to predict the accuracy of a configuration using data
gathered from the modular components in isolation. In this
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Figure 5. Parzen density estimation of angular noise under the IND
model. Noise is assumed to be generated independently from two uni-variate
distributions.
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work, each arm constitutes a single modular component, and
the combined arm setup the target of our accuracy predictions.
We model distal error in the individual arms as the result
of random variables in the kinematic formulation. The distal
position of the end effector then becomes a random variable
itself, conditioned on the motor commands sent. We used these
distal location distributions under a conditional independence
assumption to form a predicted distal location distribution
when the arms were linked and controlled cooperatively.

We modeled each arms' individual inaccuracies as noise at
the actuated joints. The forward model was adjusted so that
an angular error term alters the resultant position of the distal
point:

d = f(g(u) + Oerr)

By defining a probability density function of the angular
error term we can introduce uncertainty into the kinematic
model. We tried three different noise models (described be
low), one model where sensor noise at individual joints is
assumed independent of the entire system (IND), one where
the two joint sensor noises are assumed independent of the
system but can be correlated (CORR), and one where the
sensor noises are conditioned on the motor commands issued
(COND).

We converted the training data sets in section II that were
of the form (u, dobs) into a set of motor commands u and
a set of angular errors Oerr. Oerrwas calculated by OTrr =
f-1(Oi) - g(Oi).

For the first noise model, IND, each OTrr was assumed to
be generated independently from an unknown density to be
estimated. We estimated the probability density using a Parzen
window technique using leave-one-out cross validation.

pdfINF((}errl, (}err2) ex: pdfLoo((}errll((}~~r (}Nr)T) X

pdfLOO (()err21 ((}~2r (}N2)T)

The Parzen estimation of these variables is shown in Figure
5. Note that in both the top arm and the bottom arm, the
angular noise is greatest for the joint nearest the base, as would
be expected if gravity had a significant effect. For the top arm,
both curves appear quite Gaussian. For the bottom arm data,
distinct non-Gaussian artifacts are seen. The cause of these
we attribute to the fact that most of the mobile mass for the
bottom arm is concentrated at the servo controlling the elbow
joint. This mass is over the opposite side of the base joint w.r.t
gravity for movements to a distal location at the lower left of
the test workspace, evident in experimentation (Figure 3 top
middle, note the distinct lack of continuity at the lower left of
the diagram).

For the second noise model, CORR, the angular noises
are permitted to be correlated. We compute the correlation
between the angular error variables by estimating a joint
distribution using a multivariate Parzen estimator.

pdfCORR(Oerr) = pdfLOO(OerrIOerr )

The estimated joint distribution is shown in Figure 6. Note
that correlation between the variables is strongest for the
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Figure 6. The multivariate estimated PDF function of sensor noise for the
CORR model. The bottom arm data suggests a negative correlation is present
between the angular error variables.

bottom arm. This is probably also because of the effect of the
center of mass switching sides. When the dynamics change
slightly, the kinematic model attributes some error to both
joints, thus some form of correlation becomes apparent when
viewed as joint error.

Finally for the third model, noise is conditioned on the state
of the motor commands. We first construct an estimate of
a joint distribution for all the variables using a multivariate
Parzen window estimator.

pdfJ(Oerr, uc) = pdfLOO(Oerr, uclOerr , u)

The use of the Parzen window allows us to obtain a smooth
estimate of the probability density function over the entire
range of motor commands and sensor errors. For predicting
the expected angular error when an arm is controlled, we need
to convert the joint distribution into a conditional density of
the sensor noise given the motor commands. We converted the
Parzen estimate of the joint into a histogram of the joint, see
section III, with 10 bins across each of the four dimensions.
Each bin hyper-rectangle was .01 rads by 0.1 rads by 50 ms
by 50 ms.

pdfCOND (0err lu) = histCond(0err lu, pdfJ)

We avoid displaying the estimated pdfcOND in the form
of angular error and motor commands, because it is more
naturally displayed as the resultant distal error conditioned on
the desired target location, as in Figure 7. Will look at this
specifically in section V.

All the models make assumptions about how the forward
model can be inaccurate. The first model, IND, is extremely

Digital Object Identifier: 10.4108/ICST.ROBOCOMM2009.5819

http://dx.doi.org/10.4108/1CST.ROBOCOMM2009.5819



simplistic, while the third model, COND, is capable of learn
ing that the noise profiles change over the workspace. The third
model has more scope for predicting forward model errors
caused by dynamic effects such as gravity. However, it must
be noted that the effects of gravity can only be expressed in the
equations as angular noise, whereas in the real situation gravity
effects will probably alter the whole geometry of the arms.
The second model lies somewhere between the first model
and third model in terms of being able to express dynamic
effects.

V. PREDICTIONS

With the models defined we can make predictions about
the accuracy of the arms individually and when combined
over the workspace. For a given target distal location dtarg
we computed the motor command u using the inverse models
u = g-l(f-l(dtarg )).We then compute the probability of the
end point actually being at another location dtst by computing
the angular difference, ()err between the kinematic models of
dtarg and dtst by Oerr = f-l(dtarg )- f-l(dtst ) and consult
ing the relevant probability distribution, pdfMODEL(0err Iu)
(u has no effect for the first two models, so this simplifies to
pdfMODEL (0err)).

To predict the distal behavior of the combined arm setup,
we made the assumption that each arms' angular errors are
independent. This implies the probability of the combined end
effector being at a position dtst when the motor commands
were aiming for dtarg as:-

pdf(dtstldtarg) ex pdfMODEL(O~r~PlgTbpfT8p(dtst)) X

pdfMODEL (O~~T IgBbTfBbT(dtst ))

Each arms' sensor noise profiles are, of course, not indepen
dent. If the two arms were given motor commands to reach
two different distal locations, the mechanically linked distal
end effector would prevent separation and the actual location
reached would be determined by a tug-of-war between the
arms. So the final set of angular errors is very much a function
of both arms' commands. In experimentation however, we
always gave commands that aimed to move both arms to the
same distal location. We note though, that the forward models
were biased over the workspace (Figure 3 top left, middle), so
the validity of this assumption is compromised by the accuracy
of the forward models.

For all the models and setups, a test point d far away
from dtargwill have a near zero value in the PDF. So by
histogramming over a reasonable bounds around dtargwe can
normalize once in binned histogram form. For all graphics
presented in this article, the histogrammed region was a
rectangle ±3cm around the dtarg with 100xl00 bins. The
expected position of the end effector for a motor command
u is d~xp = L\:Id

tst
dtstpdf(Oerrldtarg)

We will only show the PDF variation for different target
location for the COND model, as it is the only model that is
capable of interesting variation. Figure 7 shows the probability
of the end effector being in a location given the desired
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location for all 16 different target test points for the COND
model on all three setups.

We used this data to generate the expected location of the
end point given a motor command and compared it with the
actual target locations predicted by the forward model. This
provides us with a method for predicting the expected errors
in the forward model for the experiments in section II, and is
the basis for Figure 3.

To assess the general accuracy we summed and normalized
the relative distal error histograms over the 16 test locations.
This provides us with an expected distal error over the entire
test workspace. We can compare this with data from the
experiments in section II. Figure 8 shows the resultant distal
error probability densities for each of the three models along
side the experimental data. Only the COND model displays
contour variation that agrees well with the observed data for
the individual arms. All the models predict an increase in
accuracy for the combined arm setup, evident by the reduced
spread around the zero distal error location.

We can further summarize the results by computing the
expected Euclidean distal error distance over all 16 workspace
locations, to give us a single numerical value for the accuracy.
These overall results are shown in Figure 4. All three models
predict an increase in accuracy when the arms are combined.
All of the statistical models appear to underestimate the
accuracy in all cases. It is interesting that all the models
predict the bottom arm as less accurate than the top arm, even
though the experiments suggest the opposite. We attribute this
to the fact that the bottom arms' dynamics are more complex
due to backlash. The statistical models cannot account for
the discontinuities caused, and so integrate it erroneously as
increased noise over the system. Overall the COND model is
the better predictor of accuracy.

VI. CONCLUSION

Despite the forward models ignoring a large source of bias
from gravity, we observed an increase in accuracy of the
forward models when the arms were physically linked. This
encourages us that modular robots could utilize redundancy
quite simply in order to become more accurate.

As none of our models performed well at predicting the
accuracy of the individual arms, we conclude that the use of a
kinematic model as a forward model introduced significant er
ror. The increased accuracy of the COND model suggests that
some of the forward model inaccuracies could be corrected
for. However, its predictive power was limited by the fact that
corrections could only be expressed through angular noise.

For predicting the accuracy of the combined arm setup
we fused the individual arm models under an independence
assumption. Because the individual arm models did not fit the
experimental data well it is difficult to evaluate the validity of
this assumption. That said, the relative increase accuracy as
shown in Figure 4 appears to be about right, so this assumption
may be a pragmatic approximation for later works.

For our future work we will add dynamics and backlash into
the forward models and obtain data from a complex modular
robot. A modular system with a variety of possible kinematic
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Figure 7. The resultant PDF of p(dlu) for the COND model over the 16
test workspace locations, for the top arm (top), bottom arm (middle) and the
combined arms (bottom). Blue squares denote the zero distal error location
in the plot, and the red square denotes the expected error (the vector between
the squares is the same quantity as in Figure 3).

Digital Object Identifier: 10.4108/ICST.ROBOCOMM2009.5819

http://dx.doi.org/10.4108/1CST.ROBOCOMM2009.5819

8 t
-2
-3

-3 -2 -1 0 1 2 3
distal error X (em)

Figure 8. Top, distal error between validation set data and forward model
prediction on the top arm (top left), bottom arm (top middle) and combined
arm (top right). Remaining rows, expected distal error integrated over the 16
test points for each of the statistical models.

configurations will allow us to properly estimate the dynamics
parameters and verify general purpose accuracy prediction
methods. We hope this will enable us to design modular robot
configurations autonomously that could manipulate tools to a
user defined level of accuracy.
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