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Abstract—This paper presents a new methodology for the
control and design of distributed service architectures in an
open environment. A domotic service illustrates and introduces
the modelling keypoints. In particular, an explicit modelling of
the attentional mechanism is used to overcome the lack of a
global state in distributed systems and the relative impossibility
to explicitly model all external events.

Index Terms—distributed architecture, design, control, open
environment, attention

INTRODUCTION

Distributed architectures are playing an increasing role in computer
sciences to support open environment appliances, and especially in
ambiant systems. But their complexity induces large design and
validation costs, which justify the use of formal methods. Among
these, the process flow modelling is a very sensitive topic. It
guarantees the system nominal functionning and enables a good
understanding of the supervised system. Moreover, the good design
of such distributed systems is deeply rooted in their organic and
processing flow structures, and should therefore rely on carefull
design principles.

The traditional process modellings used in more commonly de-
signed closed systems are based on state diagrams. However, none
of them can properly address the open environment system needs, as
they are all faced with a common major weakness: they all make the
hypothesis of an explicit knowledge of a system global state and of
the complete set of all possible system transitions.

Moreover, proposing a formal model for dynamic and distributed
service architectures remains a daunting task. In particular, even
though a must in open systems, mixing goal and data-driven ap-
proaches remains difficult with traditional modellings.

This situation has been concretised into a sample application,
which illustrates the theoretical model we propose to overcome these
issues.

Section I introduces the current state and directions regarding the
design and control of a distributed system, as well as the major issue
of global state. Section II details the additionnal difficulties faced
when dealing with an open distributed system. Section III presents a
sample application which illustrates all the major kinds of interactions
present in a domotic system. Section IV lays a theoretical frame to
address the mixing issue. Section V reveals how we propose to solve
the control problem by explicitly modelling the attentional focus, and
language concepts introduced to operate with our modelling.

I. TRADITIONAL APPROACHES AND MAJOR ISSUE

Traditional process modelling methods were designed to handle
closed-environnment systems. Their common principle lies in rep-
resenting all the states a system may be in, and all the possible
transitions from a state to another, with their associated transition
conditions. Well-known methods are Petri nets [1], the GRAFCET
method [2], Hoare CSP [3] and Harel state diagrams [4]. Since,
multiple variants have emerged for each of the cited methods, but
they are all based on a common assumption that the system can
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be programmed in an imperative mode. The imperative paradigm
postulates that a program can be described in terms of a sequence of
actions.

However, in a distributed environment, there is no direct notion
of global time, and a system cannot therefore be explicitly modelled
by sequences of facts based on this global time. One can only define
at best local informationally-consistent zones, and thus logical times
[5] [6] and local sequences. However, the consistence of such logical
times is dependent on the existence and reliability of communication
channels between each part of the system, and their existence is
possible only in a system where all participating parts are known by
advance, which is unfortunately not the case in open environment.
One must accept that sequentiality is now not the rule it was in
monolithic systems, but rather an exception, or better an ad-hoc and
crafted construct.

On an industrial point of view, current modelling approaches
follow two different major directions, dependent on the research
communities carrying them. The first approach is supported by the
multi-agent community, which focuses on building communication
protocols to enable transactions [7], but have neglected the more
macroscopic design aspects of a large system. The second approach is
supported by the robotics community, which focuses on implementing
a reflex control based on a proprioceptive loop [8] [9], unfortunately
inadequate for planning interactions.

The designer of a complex open system is finally left missing a
methodology which would both enable macroscopic organisation and
planning capabilities. In addition to the major show-stopper issue
raised in the previous section, distributed open dynamic systems are
also hard to comprehend due to their less well-defined forms. Nearly
each of their aspects carry their lot of design problems.

II. ADDITIONAL DIFFICULTIES

While monolithic architectures are built upon a processor and a
memory working together to run programs, distributed architectures
multiply these materials in several distinct processing and data storage
spaces, working autonomously, and which need to communicate with
each other to run the programs through communication networks.

The communications are a potentially important point of failure of
our distributed systems, as one cannot guarantee that a message sent
by a device (i.e. a system part) will be instantaneously and correctly
propagated and processed to another device of the system. Moreover,
each device of the system may need to access the same data space
or modify its content. One need to be very carefull when designing
access control mechanisms. The control mechanisms is only a part of
a more global problem of our distributed system, the synchronisation
problem. Our devices need signalling protocols between processing
spaces to enable the planning of more complex services. For more
details on classical problems encountered by distributed systems, one
can refer to [10].

As if distributed systems were not complicated enough, we also
require our system to be dynamic and open, which means that some
parts of the systems can be added or removed over the lifetime of
the service. The transient nature of processing, data storage and
communication spaces hinders the designer to anticipate all the
possible configurations the system will take during its lifetime. Such
condition make the communication capability very unreliable, since
a message from a processing space might never be delivered to its
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Demonstration application: a graphical avatar presents the mailbox

target, as both the target processing space and the communication
space could disappear during the message transport time.

The low-level system aspects left apart, our service architectures
are also faced with logical hurdles: we would like to build collab-
orative services by composition of elementary services offered by
all the devices present at a given time in the system, and be able
to dynamically add or remove new services in the system. In such
conditions, a dynamic service cannot assume the set of services
available on the system, nor how it will have to handle all the
concurrency issues.

The previously raised issues highlight that the system has to
manage two main sources of uncertainty: on a low-level layer, where
the devices may appear and disappear, and where the communication
between the devices cannot be properly guaranteed ; on a higher-level
layer, where the services have to coexist and collaborate inside the
system.

III. APPLICATION

We describe in this section a sample application developped which
illustrates the modelling we propose to tackle the reviously raised
issues. The system consists of a domestic simulation, composed
of two vocal dialogue tasks (mailbox and address book) and two
monitoring tasks (entrance captor and fire alarm), mediated by a
graphical and vocal avatar.

The tasks implemented in the system have been chosen to illustrate

the different strategies commonly used in dialogue:
- a user-directed task (vocal mail and address book),
- a non-prioritary interrupting task (the entrance detection),
- a prioritary interrupting task (the fire alarm).

The user-directed vocal mail task exhibits a good behaviour exam-
ple where local sequentiality is needed: the user is guided through a
set of phases to specify which mail she would like to consult. In a
first time, the mails are sorted by their sender’s name, and she user
can ask for the mail of a specific user. If several users matches the
request, an additional phase of dialogue is used to select the wished
mail. The address book is organised similarly. Both dialogue tasks
can be interrupted at any moment by a prioritary task like the fire
alarm, which displays its own sequentiality. The dialogue tasks can
also be disturbed by the non prioritary interrupting task from the
entrance bell, which can intertwin a dialogue request in the middle
of the current dialogue task.

The existence of interrupting tasks implies that a good design
for such a multi-service system should not expect a sequence of
behaviours to be atomically executed. On the contrary, the designer
should try to limit the sequences of actions to the minimum as they
are more than likely to be broken by unexpected events.
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Fig. 2. Physical and functional layers: The physical layer represents the
computer, the mobile phone and their applications. The functional layer
represents how each abstract function (a module) sees each other.

IV. LAYERS OF OUR MODELLING

This section details how we have modelled and organised our
application. We propose a modelling of the distributed system into
three layers to facilitate the design of services. The first layer
describes the hardware components and their physical organisation.
The second layer is an abstraction layer which structures the system
functions and helps to define the action range of a service. Last, the
third layer is the service design layer, which we use to model the
service logic.

The figure 2 presents the first two layers. The third layer will be
detailled in the section V.

A. The physical layer

Several views are relevant when considering a distributed system.
One can naturally view the system as a set of physical devices. But
one could focus on which parts of a device are able to work together,
which defines an execution space. One could also consider the set of
device parts able to work together across network connections, which
defines a communication space.

Note that an execution space contains at least one processor, and
a communication space contains at least two network interfaces or a
shared memory.

In our application, the system is composed of two main devices:
a mobile phone responsible for speech capture, and a computer
which does the speech recognition, and manage the graphical user
interaction. A wifi network binds both devices. The system also
contains a presence detector and a fire detector.

B. The functional layer

In a distributed system, devices may appear and disappear at any
time. A service should not rely on the existence of a specific device
for all its life cycle. We introduce a loose binding between service
functional needs and devices with a first abstraction called a module.

A module is an abstract entity that renders a set of functions. We
see our whole distributed system as a structured network of modules,
which changes over time.

All modules on a same execution space are able to work together,
as are all modules on a same communication space. But there is more:
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Fig. 3. Functional and service layers: even if each module are in reality
linked to the bus, the service layer offers a hierarchical view to structure the
service.

one can use overlap between an execution space and a communication
space to define a larger space where all modules can cooperate. We
define thus a collaborative space.

The collaborative space is the only informationally-consistent zone
in a distributed system. In a collaborative space, one can properly
define a coherent time, and solve synchronisation and concurrent data
access issues. The collaborative space also defines the context each of
its modules can leverage. It offers a consistent view on a functional
part of a distributed system, and the problems of data sharing and
synchronisation between modules can be well described in its scope.

In a collaborative space, there are two kinds of modules of
particular interest: the bus message and the dialogue manager. The
bus message is the functional module which enables the merge of an
execution space and a communication space. It renders the message
passing function for all modules inside the collaborative space. The
dialogue manager is a module used to control the processing flow,
and is the main topic of section V.

In our application, the functional layer consists of a lot of modules:
it includes a sound capture module, a mobile phone front-end to
enable the sound capture, a sound recogniser module, a semantic
analiser module, some domestic interface modules (an OSGI gate-
way), a graphical avatar module, a text to speech module, a mailbox
module, an address book module, a presence detector module, and a
fire alarm module. . . as well as some logic controllers named Dialogue
Managers.

C. The service layer

Inside a collaborative zone, a set of modules cooperate to realise
a service by exchanging event message flows. The dialogue manager
renders the processing flow control for a service. In figure 3, the
functional layer represents how modules are really linked together,
and the service layer represents how a service see the module
organisation. All messages are routed through the Dialogue Manager
module, which will maintain the service state consistency and realise
its execution logic.

We describe in figure 3 a part of the controler embedded in our
mobile phone: the UI control and the Speech Recogniser modules
are subordinated to a Dialogue Manager, which manages the local
dialogue logic to activate the sound capture.

V. DIALOGUE LOGIC

We propose an original approach to define the control logic needed
to organise the message flows, called thereafter the dialogue logic.
The dialogue logic is a control logic that explicitly models the
attention mechanism, which enables one to mix both goal and data-
driven approaches inside the same representation.
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Fig. 4. A partial activation diagram: initialisation of some server modules
on the computer on the left, and the feedback loop on the right.

A. States, attention and events

Traditional approaches are grounded on modelling containing
states, transitions and guards.

In an open environment, any kind of event might occur, and no
one can reasonably predict and design a complete state diagram. The
asynchronous nature of the system prevents a good prediction of the
next sequence of events, and makes an exhaustive data-driven state
diagram unsuitable. We are however used to planning our actions
step-by-step to fullfil a goal. We need a means to combine data-
driven reaction and sequential goal-driven actions.

A way to successfully accomplish this is to understand that
causality is not a prime phenomenon. It is rather a high-level construct
which helps us to predict the events occuring in our environnment,
after they have been processed by lower-level cognitive functions,
as proposed by Broadbent in [11]. Those functions act as attention
filters which sort out the relevant inputs from the large data event
flow according to our current goal-driven expectations. Expectation
is indeed the key to structure a data flow, and is explicitly model in
our dialogue logic.

Our dialogue logic therefore models two kinds of objects: the goal-
driven expectation state for given action plans, and the data-driven
activation state for each expected state.

B. Distributed expectation state

Our modelling does not represent directly the current state of the
system, but a set of “expected” future states. This modelling enables
a more dynamic apporach. One can compare our system modelling
to the attention handling phenomenon: we model the potentially
interesting situations that our system expect to meet, as well as the
behaviours it should adopt if it really meets these situations.

We define a state as a triplet of activation/situation/behaviour.

A state is said activable when it can match an expected situation ;
it is said inactive when it does not. A state is said active once it has
just matched its associated situation.

To render the sequentiality of a service, we bind the states with
oriented arcs to indicate the expectation transitivity: once a state is
realised, we made the bound states activable, so the system is now
attentive to the situations which would trigger the bound states as
seen in figure 4. In this case, the speech recogniser module and a
VXML module are initialised, then the requests coming from the
mailbox or address book modules will be sent as feedback to the
graphical avatar module.

At any given time, the system’s attention is composed of the states
it has just activated, but also to the states previously activated. This
set of active states models the set of relevant states in the near future.

C. Events, situations and behaviours

Each activable state can be effectively activated when the system or
its environnement have changed, which is carried on by the reception
of an event.

Every time an event is received, the system goes through the
set of activable states and compares the current situation with the
state-associated situation. If it matches, the activable state becomes
activated.



The system then applies all the behaviours corresponding to the
set of active states. A behaviour is defined as a sequence of actions,
where an action is the sending of an event, or a change of activation
of any state.

D. Ilustrative usecase

We now introduce a simple usecase to ease the comprehension
of the situation and action languages and logic algorithm we have
implemented in our sample application.

The user is looking for a phone number in her address book, when
something goes wrong in the kitchen, and a fire alarm is raised. The
system then interrupts the dialogue task with the user to forcefully
inform her that she should try to put out the fire. She tries and
succeeds, and can resume her address book query.

In the system point of view, the user was going to ask for a
contact’s name in her address book. The system was therefore having
its attention focused on recognising the name of the contact which the
user would utter, but was also attentive on the domestic tasks: a part
was attentive to the entrance bell, and a part was attentive to the fire
detector. And the fire detector fused, so the task of sending the contact
details is interrupted by the prioritary alert message. The system is
now only attentive to the fire task, and temporarily disactivate all
other tasks. Once the user has successfully put off the fire, the system
becomes attentive to the paused task, and can present the requested
information.

E. The situation description language

We need a situation description language able to express queries
both on current service states and on event properties. We also need
to be able to make complex requests by composing several simpler
queries with logical operators.

The situation language we have defined is based on a simple object
syntax:

- object: message.source, message.target, message.action, mes-
sage.property(”a_property”),

- context: dialogue.property(”a_property”),

- binary operators: =, >=, <=, >, >,

- logical composition operators: and, or, not

In our usecase, when the fire detector has not yet triggerd, three

action blocks are attentive: the first action block represents the address
book dialogue, the second action block represents the entrance bell
detector, and the last action block represents the fire detector.

fire_detector:
(message.source="fire detector")
and (message.action="fire_begins")

entrance bell:
(message.source="entrance bell")
and (message.action="bell rings")

address book:
(message.source="speech recognition")
and (message.action="contact")

The situation should precise both the context of the event, and
its main topic, as an event might often occur in different context.
For instance, the recogniser module will fire its detection events in
every dialogue situation, both for address book querying and when
acknowledging the fire extinction.

FE. The behaviour description language

We need a language both able to modify the current service state
and to build and send event messages to the other modules used by
the service.

We introduce the following language:
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- service(”module”,’action”) to invoke a module method by
sending an event,

- parameter(”name”,”value”) to create the event context,

- importParameters to copy the context of the received message,

- activate(block_id) and disactivate(block_id) to modify the ser-
vice state activations,

- next to ease the making of behaviour sequences.

In our application, the behaviour called when a fire alarm is
triggered would be:

paramater ("Warning", "Alert! Fire in the kitchen!")

service ("avatar", "displayAlarm")
service("tts", "play_alarm")
disactivate (address_book_task)
disactivate(entrance_bell_ task)
next

The graphical avatar module will be given the order to display its
warning message, the text to speech module will at the same time be
ordered to play a fire alarm, and the other non-prioritary tasks will
be put out of attention.

G. Algorithm

The algorithm 1 presents the three phases used in the dialogue
logic: first determine the attentive active states between all the
attentive states, realise their actions, and finally compute the next
attentive states.

Algorithm 1 Dialogue logic

while E, tivables # 0 do
an event is received
compute active states:
Eqctives < 0
for e = (condition,behaviour) in Egctivabies 0
if event matches condition then
Eictives < Eactives U {e}
end if
end for
realise relevant actions:
for e = (condition, behaviour) in Egctiyes do
Eqctivabies < Eactivables \ {6}
execute behaviour
end for
propagate activabilities:
for e in F,ctives dO
Eqctivabies “ Eactivables U SUCCGSSOT‘S(B)
end for
end while

At the beginning of our usecase, the activable states are the first
state from the address book dialogue, the frst state from the entrance
bell monitoring, and the first state from the fire detection. When the
fire event is received, the first fire detection state matches with the
event and becomes actives. All other states remains activable. Then,
the behaviour for this first fire detection state is realised ; the active set
becomes empty, and the fire detection state behaviour is executed (as
described in the previous subsection). Then the second fire detection
state become activable.

Then, once the fire is extinguished, the “fire off” event is sent by
the fire detector, and the second fire detection state is realised. This
state reactivates the previously paused address book and entrance
bell dialgoues, and reinitialised the first fire detector state, in case a
second fire happens.



CONCLUSION

The control logics are traditionally focusing on closed systems,
where one can anticipate every future occuring events, and model
a complete planning of the system’s behaviour. They lay on the
fundamental assumption that the system can be considered as a whole,
and that every action can be modelled as a clear modification of a
global system state.

Unfortunately, in an open environment, this fundamental assump-
tion does not hold anymore, because the notion of a system global
state does not exist. However, one can define some stable collabora-
tive zones, in which one can define a consistent macroscopic state.

In the colllaborative zone, it remains difficult to anticipate every
kind of events the zone can receive. An indirection level of plan-
ning has therefore been introduced to overcome this problem. This
indirection level of planning is based on the modelling of an explicit
attentional mechanism. Such a system has led to the implementation
of a demonstrator in the field of domestic appliances.

The development of a dedicated middleware and the associated
tools paves the way for new methodologies to structure, design and
control complex systems.
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