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Abstract— Consider the following scenario: a spatio-temporal
stochastic process generates service requests, localized at points
in a bounded region on the plane; these service requests are
fulfilled when one of a team of mobile agents visits the location
of the request. For example, a service request may represent
the detection of an event in a sensor network application, which
needs to be investigated on site. Once a service request has been
generated, it remains active for an amount of time which is itself
a random variable, and then expires. The problem we investigate
is the following: what is the minimum number of mobile agents
needed to ensure that each service request is fulfilled before
expiring, with probability at least 1 − ε? What strategy should
they use to ensure this objective is attained? Formulating the
probability of successfully servicing requests before expiration
as a performance metric, we derive bounds on the minimum
number of agents required to ensure a given performance level,
and present decentralized motion coordination algorithms that
approximate the optimal strategy.

Index Terms— Mobile Robotic Networks, Sensor Networks,
Traveling Salesman Problem.

I. I NTRODUCTION

Imagine the following scenario: a sensor network composed
of a large number of nodes is deployed over a vast field, for
example to study the behaviors of elusive animals, or to detect
suspicious activity in a protected region as, for example, home
burglaries, or insurgents placing Improvised Explosive Devices
(IEDs). Typically, network nodes contain inexpensive sensors,
such as motion detectors, which are susceptible to false alarms.
Suppose that, in addition to the sensor network, a team of
Unmanned Aerial Vehicles (UAVs) is also available, which
are equipped with more sophisticated on-board sensors. Each
time a sensor detects an event, a UAV is sent to the location
to investigate the cause of the alarm, i.e., to track the animal
or the intruders. Timeliness in such applications is of primary
importance: should the UAV take too long to reach the location
of the event, its cause may have already left the premises, and
be hard to track.

This scenario can be formulated as the following problem:
a group of vehicles is charged with servicing stochastically
generated demands in an environment. Each demand appears
at a random location (sampled from a known distribution) and
is serviced when a vehicle moves to that location. In this
paper, we study a novel version of this problem where the
demands expire after a certain amount of time. We assume
that the lifetime of a demand is randomly chosen from a
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known distribution and seek the minimum number of vehicles
(and their control strategies) to maximize the probability that
a demand is serviced before expiration, or equivalently, to
maximize the percentage of successfully serviced demands.

A. Related work

Considerable research effort has been invested in studying
coverage properties of static sensor networks [1]–[5].

More recently, there has been growing interest in under-
standing how the coverage properties of a sensor network may
be improved by introducing mobility to the sensor devices. The
problem of relocating sensors to improve coverage has been
studied in [6]. In this formulation, the sensors can individually
estimate the positions of the targets. However, the quality of
coverage decreases with increasing distance. In [7] and [8],
the authors propose virtual force based algorithms in order
to guide sensor movements for improving the coverage prop-
erties after random deployment. In [9], the authors propose
algorithms to detect the vacancies in a sensor field and use
them to guide sensor motion in order to increase coverage.
The average area covered by mobile sensors over a period
of time has been characterized in [10]. It is shown that for
a mobile sensor network with densityλ, with each sensor
moving according to a mobility model similar to random walk
with expected velocityE[Vs], the expected area covered in
time interval(0, t) is given by1−exp (−λ(πr2 + 2rE[Vs]t)).

A closely related dynamic vehicle routing problem is con-
sidered in [11]–[13]. In the dynamic vehicle routing problem,
mobile agents are required to visit target points generated
dynamically by a stochastic process. In [13], it is shown that
the lack of communication between the mobile agents does
not effect the performance of the system; however, the lack
of communication slows the rate of convergence to the steady
state. Bisniket al. studied a similar vehicle routing problem
where demands disappear [14]. They presented approximation
algorithms for the case where the vehicles motion is restricted
to a planar curve.

The problem of site visitation using multiple robots has also
been studied in context of sweeping, covering, or exploration
planar regions [15]–[18]. An offline algorithm for sweeping a
known area by multiple mobile robots is proposed in [17].

B. Statement of Contributions

We study the version of this problem where the event
location is chosen uniformly at random in the environment and
the event lifetimes are independent and identically distributed
according to an arbitrary distribution, thus extending our
complementary previous results, e.g., from [12] and [14]. We
present a constant factor approximation algorithm to compute

peri
Typewriter
ROBOCOMM 2007, 14th–16th Oct 2007, Athens, Greece.

Copyright © 2011–2012 ICST 

ISBN 978-963-9799-08-0

DOI 10.4108/ICST.ROBOCOMM2007.2220

peri
Typewriter

peri
Typewriter



2

the minimum number of vehicles required to guarantee that
each event is serviced with probability at least1−ε whereε is
an “accuracy” parameter input to the problem. We also present
a distributed strategy for assigning events to the vehicles, and
to route them in an efficient way. Aside from applications
in monitoring and surveillance, we believe that our results
and techniques will be of independent interest due to their
relation to the fundamental Traveling Salesperson Problem
(TSP), and its stochastic and dynamic versions, such as the
Dynamic Traveling Repairperson Problem (DTRP).

C. Paper organization

The paper is structured as follows. In Section II we intro-
duce some background on convergence of random variables,
the Euclidean Traveling Salesperson Problem, and Voronoi Di-
agrams. In Section III we present the problem formulation. In
Section IV and V we compute a lower bound on the minimum
number of agents needed to meet the objective as stated in
Section III, and developcentralizedrouting algorithms pro-
viding a constant-factor approximation to the optimal strategy.
In Section VI we present results from numerical experiments,
and in Section VII we modify the previous centralized routing
algorithms to make themdecentralized. Finally, in Section VIII
we draw some conclusions and discuss some directions for
future work.

II. PRELIMINARIES

In this section, we briefly describe some known concepts
from probability and locational optimization, on which we will
rely extensively later in the paper.

A. Almost Sure Convergence

A sequence of random variables{Xn} converges almost
surely toX (limn→∞Xn

a.s.= X) if limn→∞Xn(ω) = X(ω)
for all sample functionsω ∈ Ω where P [Ω] = 1. (In other
words, P [limn→∞Xn = X]=1.) The sequence of random
variables{Xn} converges almost surely toX if and only if,
for eachε > 0,

lim
n→∞

P [
⋃∞

k=n[|Xk −X| > ε]] = 0.

B. Asymptotic Properties of the Traveling Salesperson Prob-
lem in the Euclidean Plane

The Traveling Salesperson Problem is one of the most
widely known combinatorial and geometric optimization prob-
lems. In this section, we briefly review its Euclidean version
and some results that are relevant to our analysis.

The Euclidean Traveling Salesperson Problem (TSP) is
formulated as follows: given a setD of points in Rd, find
the minimum-length closed path (tour) through all points in
D. Let TSP(D) denote the minimum length of a tour through
all the points inD; by convention,TSP(∅) = 0.

The stochastic version of the Euclidean TSP enjoys some
interesting properties. LetDn be a set ofn independent,
identically distributed random variables, representing points
in Rd. Let each random variable inDn be sampled from a

compact setQ ⊂ Rd, according to a distributionf . In [19] it
is shown that there exists a constantβTSP,d such that

lim
n→+∞

TSP(Dn)
n1−1/d

= βTSP,d

∫
Q

f̄(q)1−1/d dq a.s., (1)

where f̄ is the density of the absolutely continuous part
of the distribution f . In other words, the optimal cost of
stochastic TSP tours approaches a deterministic limit, and
grows as the square root of the number of points inD; the
current best estimate of the constant in the cased = 2 is
βTSP,2 ' 0.7120 [20].

Notice that the bound (1) holds for all compact sets: the
shape of the set only affects the convergence rate to the
limit. According to [21], if Q is a “fairly compact and fairly
convex” set in the plane, then Eq. (1) provides an adequate
estimate of the optimal TSP tour length for values ofn as
low as 15. Remarkably, the asymptotic cost of the stochastic
TSP for uniform point distributions is an upper bound on the
asymptotic cost for general point distributions; this follows
directly from an application of Jensen’s inequality for concave
functions to the right hand side of (1).

C. Voronoi Diagrams

An overview of Voronoi diagrams is presented in [22], [23],
concepts and applications are discussed in [24] and abstract
Voronoi diagrams are discussed in [25]. Let{g1, · · · , gm}
be a collection of points in a convex compact setQ in a
finite dimensional Euclidean spaceRd (it is anyway possible
to generalize the concept of Voronoi diagrams to any metric
space), and let‖ · ‖ denote the Euclidean norm inRd. Let the
Voronoi regionVi = V (gi) be the set of all pointsq ∈ Q such
that‖q−gi‖ 6 ‖q−gj‖ for all i 6= j. The boundary of eachVi

is aconvex polygon. The set of regions{V1, · · · , Vm} is called
the Voronoi diagram for the generators{g1, · · · , gm}. When
the two Voronoi regionsVi and Vj are adjacent,gi is called
a Voronoi neighborof gj (and vice-versa). We also define the
(i, j)-face as∆ij = Vi

⋂
Vj . We will shortly refer to the

vertices of a face∆ij as the set{ul}, without any additional
subscript: the hidden subscripts will be clear from the context.
Voronoi diagrams enjoy the Perpendicular Bisector Property:
the face∆ij bisects the line segment joininggj and gi and
that line segment is perpendicular to the face. With reference
to Fig. 1, we introduce the following notation (for Voronoi
regions in R2): Og

ij = (gj + gi)/2; Ou
ij = (u1 + u2)/2;

γij = ‖gj − gi‖; δij = ‖u2 − u1‖.
Finally, we define an equitable Voronoi diagram as a

Voronoi diagram where all Voronoi cells have same measure.

III. N OTATION AND PROBLEM FORMULATION

In this section, we first describe the problem set-up. Next,
we formulate the main problem studied in this paper.

A. Problem Set-Up

Let the environmentQ ⊆ Rd be a convex, bounded set; for
simplicity, we will mainly consider the planar case, i.e.,d = 2,
with the understanding that extensions to higher dimensions
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Fig. 1

NOTATION. THE POINTSgi AND gj ARE THE GENERATORS OF THE

VORONOI REGIONS, RESPECTIVELY, Vi AND Vj .

are possible. Without loss of generality we will assume that
the measure ofQ (denoted as|Q|) is 1.

Demands are generated according to a homogeneous spatio-
temporal Poisson Point process, with time intensityλ > 0, and
spatial densityf : Q → R+. In other words, the number of
demands generated over time within a regionS ⊆ Q can be
described as a homogeneous Poisson process with rate

λS = λ

∫
S

f(q) dq.

Without loss of generality, we assumef to be normalized such
that

∫
Q

f(q) dq = 1; in such case,f can be interpreted as a
probability density function. In this paper, in particular, we
will consider a uniform distribution for the demand locations,
i.e., f(q) = 1/|Q|.

Let D(t) be the set of locations of demands generated up to
time t. Given a setS ⊆ Q, the expected number of demands
generated inS within the time interval[t, t + ∆t] is

E [card(D(t + ∆t) ∩ S)− card(D(t) ∩ S)] = F (S)λ∆t,

whereF (S) ,
∫

S
f(q) dq. We will label demands in increas-

ing order with respect to time of arrival; for the orderliness
property of Poisson processes, this is a well-defined criterion.

Demands are serviced by a team ofm holonomic vehicles,
modeled as point masses. The vehicles are free to move,
with bounded velocity, within the environmentQ; without loss
of generality, we will assume that the velocity magnitude is
unitary. The vehicles are identical, and have unlimited fuel
and demand servicing capacity. For simplicity, vehicles are
not required to stop or to loiter in proximity of demands:
extension to the case with additional on-site servicing time is
straightforward, but the notation is more cumbersome. Thus,
a demand is serviced as a vehicle visits its location.

Let Lr > 0, r ∈ N be a random variable describing the
impatienceof the r-th demand: in other words, should the
r-th demand not be visited within timeLr from its arrival,
it will expire. We assume that the impatience timesLr are
independent and identically distributed according to a common
densityfL : R+ → R+.

Let Wr, r ∈ N be a random variable expressing the sojourn
time in the system for ther-th demand. The random variable
Wr is the elapsed time between the arrival of demandr and
the time when either one of the servers completes its service
or such demand departs from the system due to impatience.
A demand is considered serviced ifWr < Lr.

Information on outstanding demands (i.e., arrived demands
that have neither been serviced nor impatiently departed) at
time t is summarized as a finite set of demand positions
Do(t) ⊆ D(t). In other words, demands are inserted in bothD
andDo as soon as they are generated; they are removed from
Do either upon servicing—as a vehicle visits the demand’s
location— or upon expiration. We assume that information
contained inDo(t) is available to all vehicles.

B. Problem Formulation

Informally, the objective is to ensure that no more than a
fraction ε (whereε ∈ (0, 1] is a control parameter) out of all
the arrived demands departs impatiently before service. We
will refer to ε as the “accuracy” of the system. In particular,
we want to answer the questions: what is the minimum number
of mobile agents needed to ensure that each service request is
fulfilled before expiring, with probability at least1− ε? What
strategy should they use to ensure this objective is attained?

To state our problem formulation rigorously, we first define
the critical timeTcrit as

Tcrit = max
{

T ∈ R+ :
∫ ∞

T

fL(t)dt = P [L > T ] > 1− ε
}

.

Clearly, if a routing policy is able to ensure thateachdemand
location (regardless of its impatience) is visited within time
Tcrit from its arrival, then this policy ensures that no more
than a fractionε out of all the arrived demands departs
impatiently before service. Through the concept of critical time
we can, therefore, address the problem of servicing demands
with impatience as the problem of visitingall demands’
locations, regardless of their impatience (i.e., even if they
depart impatiently), within a constant time; this approach on
the one hand introduces some degree of conservatism, but
on the other hand it simplifies considerably the mathematical
analysis.

With the above discussion in mind, defineΓ as the set of
all possible policies to visit all demands’ locations regardless
of their impatience. For such policies, definẽWr as a random
variable expressing the elapsed time between the arrival of
demandr and the time its location is visited; we call these
random variables virtual waiting times. The problem becomes
finding policies belonging toΓ that, with the minimum possi-
ble numberm of agents, ensure:limr→∞ W̃r

a.s.
< Tcrit. For

technical reasons, we restrict our analysis to policies that
satisfy the additional requirement thatlimr→∞ E

[
W̃r

]
<

Tcrit; this form of commutativity between limit and expectation
will be crucial in Section IV.

Our problem formulation can, therefore, be stated as fol-
lows:

Definition 3.1 (Problem formulation):Find routing poli-
cies belonging toΓ that, with the minimum possible number
m of agents, ensure:



4

(i) lim
r→∞

W̃r

a.s.
< Tcrit;

(ii) lim
r→∞

E
[
W̃r

]
< Tcrit.

(2)

Let Π be the set of all control policies belonging toΓ able
to guarantee Eq. (2). We proceed as follows: we first find in
Section IV a lower bound on the number of vehicles needed
by each policy belonging to the setΠ. Then, in Section V, we
analyze a policy that provides a constant factor approximation
to the optimal policy.

We mention that a somehow less conservative approach
would be to study the limitlimr→∞ P [Lr = Wr] and require
this limit to be less thanε; this approach is currently subject
of ongoing research by the authors.

IV. L OWER BOUND

When we consider policies belonging toΓ, i.e., policies that
visit all demands’ locations regardless of their impatience, our
problem is identical to the classicalm-vehicle Dynamic Trav-
eling Repairperson Problem (m-DTRP), with the exception
that in our paper we want to enforce an upper bound, equal
to Tcrit, to the virtual waiting times. Them-DTRP problem
has been extensively studied in [26]–[28]; thus, to find a lower
bound on the number of agents we can use some of the known
results about them-DTRP problem. In particular, we make use
of the following theorem [28]:

Theorem 4.1:Let be W = limr→∞ E
[
W̃r

]
, where W̃r

is the waiting time of demandr in the m-DTRP problem
(identical, for policies belonging toΓ, to the virtual waiting
times in our problem), and assume zero on-site service. Then
there exists a constantγ such that:

W > γ2 λ

m2
,

whereγ > 2/(3
√

2π). In the limit λ → ∞, the constantγ
satisfiesγ > 2/(3

√
π).

Considering that for a policyπ belonging toΠ we require
W < Tcrit (here the technical condition (ii) in Def.2 becomes
crucial), we get the following lower bound:

Theorem 4.2:A lower bound on the minimum number of
vehicles needed by any policyπ belonging toΠ is:

m >

√
γ2

λ

Tcrit
.

V. CONSTANT FACTOR APPROXIMATION POLICY

In this section, we propose a policy that provides a constant
factor approximation to the optimal policy in heavy load (i.e.,
for large λ). The light load analysis is much simpler and is
not included in the paper.

Multiple-Vehicle TSP policy: at start-up, the envi-
ronmentQ is partitioned intom service regionsQj

of identical area1/m (recall that|Q| = 1) and each
agent is assigned to a distinct service region. Then,
each agent executes in its own service region:

1) if there are no unvisited demands, move at unit
speed toward the median of the service region;

2) if there are unvisited demands, do the fol-
lowing: (i) compute the TSP tour through all
demands, (ii) service all the demands in such
tour. No shortcuts are allowed if a demand
departs impatiently before service. Repeat from
point 1).

We will refer to the i-th time instant in which an agent
computes a new TSP tour as the epochi of the policy. From
the definition of the policy, epochs evolve independently in
each service region. We analyze this policy in the heavy load
limit, i.e., in the limit λ → ∞. For simplicity, we consider
only countably infinite values ofλ, i.e., we writeλ = kl with
k ∈ N+ and l > 0 an arbitrary constant. Therefore, the heavy
load limit is obtained fork →∞.

Let us study the waiting time of a demand within one of the
m service regionsQj , j = 1, · · · ,m. The arrival rate in each
of these service regions, whose area is1/m, is λ̄ = kl/m. We
introduce the following notation:

• nj
k(i) : number of unvisited demands in service region

j at epochi (i.e., number of demands arrived between
epochi−1 and epochi, i > 1, in service regionj) when
the overall arrival process has intensityλ = kl;

• Cj(i) : length of theTSP tour through the demands
that are unvisited at epochi in service regionj. Since
we are assuming a unitary velocity magnitude,Cj(i)
is also the time length of the time interval between
epochsi andi+1 in service regionj (since we consider
heavy load conditions, we can safely neglect the travel
component between the agent’s current position and the
closest demand in theTSP tour).

In the next lemma we show some preliminary limit results.

Lemma 5.1:The following limits hold with probability one
in each service regionj, at each epochi > 1 and for any
m ∈ N+:

(i) lim
k→∞

nj
k(i) a.s= ∞;

(ii) lim
k→∞

Cj(i)√
nj

k(i)

a.s=
βTSP,2√

m
;

(iii ) lim
k→∞

Cj(i) a.s= ∞;

(iv) lim
k→∞

nj
k(i+1)

Cj(i) kl
m

a.s= 1.

Proof: See Appendix.

We obtain the following asymptotic result:

Theorem 5.2:For anym ∈ N+ we have

lim
r→∞

lim
k→∞

W̃r

kl

a.s.
6 2

β2
TSP,2

m2
.
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Proof: Using Lemma5.1 we can write, fori > 1,

lim
k→∞

Cj(i + 1)
kl/m

= lim
k→∞

Cj(i + 1)m
√

nj
k(i + 1)√

nj
k(i + 1)kl

a.s=

lim
k→∞

βTSP,2
√

m

√
nj

k(i + 1)

kl
=

lim
k→∞

βTSP,2
√

m

kl

√
nj

k(i + 1)kl
mCj(i)

Cj(i)kl
m

a.s.=

lim
k→∞

βTSP,2

√
Cj(i)

kl
.

(3)

Let be Xj(i) , limk→∞ Cj(i)/kl; Equation (3) describes a
nonlinear recurrence relation for the random variablesXj(i)’s:
Xj(i + 1) a.s.= (βTSP,2/m)

√
Xj(i). For any sample function

such thatX(2) > 0 (except for a set of probability zero), this
recurrence relation converges to the stable equilibrium

lim
i→∞

Xj(i) a.s.=
β2

TSP,2

m2
; (4)

if, on the other hand,X(2) = 0, we trivially have
limi→∞Xj(i) a.s.= 0.

Notice that, for demands arriving in between epochsi and
i + 1 in one of them subregions, the virtual waiting time is
at mostCj(i)+Cj(i+1); therefore, for a demand arriving in
between epochsi and i + 1 in service regionj, its maximum
virtual waiting timeW̃ j

max(i) satisfies

lim
i→∞

lim
k→∞

W̃ j
max(i)/kl

a.s.
6 2

β2
TSP,2

m2
.

The claim follows easily from the definition of̃W j
max(i).

We finally have the following result for the convergence of
expectations.

Theorem 5.3 (from [12]):The following limit holds in
heavy load

lim
λ→∞

lim
r→∞

E
[
W̃r

]
λ

=
β2

TSP,2

m2
.

From theorem5.2 and 5.3 we can conclude that, in the
heavy load limit, the virtual waiting time increaseslinearly in
λ and decreasesquadratically in m.

The limit results in theorems5.2 and 5.3 give us a way
to estimate, for finite values ofλ, an upper bound on the
minimum number of agents needed to ensure both condition
(i) and condition (ii) in Def.2. Assumingthat convergence
in theorems5.2 and 5.3 is well behaved, we can write with
increasing accuracy asλ (i.e., kl) → ∞: limr→∞ W̃r 6
2β2

TSP,2λ/m2, and limr→∞ E
[
W̃r

]
6 β2

TSP,2λ/m2. If we let

mTSP =

√
2λβ2

TSP,2

Tcrit
; (5)

then, for any number of vehiclesm ≥ dmTSPe, the Multiple-
Vehicle TSP policy satisfies with arbitrary accuracy both
conditions in Def. (2).

Therefore, in heavy load, the minimum number of vehicles
m∗ satisfies the inequalities√

γ2
λ

Tcrit
< m∗ ≤

√
2β2

TSP,2
λ

Tcrit
.

Thus, in heavy load, the Multiple-Vehicle TSP policy provides
an approximation factor approaching

√
2β2

TSP,2/γ2 ≈ 2.6 on
the minimum number of vehicles needed to ensure the desired
objective.

VI. SIMULATION RESULTS FOR THETSP POLICY

In the previous section, we have studied the TSP policy
in the heavy load limit and we have found a formula that
allows to estimate, for finite values ofλ, the minimum number
of agents needed by the TSP policy to visit all locations
within timeTcrit. In this section, we show, through simulations,
that even for relatively small values ofλ the results of the
previous section are accurate. Notice that the TSP policy
does not perform shortcuts if a demand departs impatiently
before service. Clearly in actual applications we would allow
shortcuts. In all simulations, we consider the worst case
scenario among100 sample paths. We start with an initial
number of demands10 times greater than the foreseen steady
state value. Simulations show that a steady state is reached
after about300 epochs.

We firstly consider a scenario where the demands have an
impatience uniformly ditributed in[0, 90] seconds, i.e.:

fL(t) =
{

1/90 if t ∈ [0, 90];
0 otherwise.

We set an accuracyε = 0.05; thereforeTcrit = 4.5 seconds.
We start by studying the lengthT of the time interval

between two epochs in steady state (specifically, we consider
the time interval between epochs1000 and 1001 in service
region 1). As discussed above, such time interval is half of
the maximum steady state virtual waiting timẽWmax (i.e.,
T = W̃max/2); therefore, we desireT < Tcrit/2. Consider,
in particular, λ = 40; for such load, formula (5) yields as
minimum needed number of agentsmTSP = 4. As shown
in Fig. (2), m = 4 is exactly the minimum value capable of
ensuring that, in steady state,T < Tcrit/2. We next investigate
the behavior ofT for various values ofλ; for eachλ, we
always consider the number of agents dictated by formula (5).
From Fig. (3), we see that the simulation results are in good
agreement with the analysis carried out in the previous section.
Finally, we investigate the performance of theTSP policy for
various values ofλ; as before, for eachλ, we always consider
the number of agents dictated by formula (5). From Fig. (4),
we notice that the TSP policy always satisfies the requirement
that no more thanε = 5% of demands depart impatiently.
Moreover, we notice some conservatism, as expected from our
problem formulation.

Then, we consider an impatience that follows an exponential
distribution with the same mean of the previous uniform
distribution, i.e.:

fL(t) =
{

δe−δt if t ≥ 0;
0 otherwise.
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where δ = 1/45 seconds. From Fig. (5), we notice that the
TSP policy, also in this case, always satisfies the requirement,
with a considerable safety margin.
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THE IMPATIENCE TIME FOLLOWS AN EXPONENTIAL DISTRIBUTION.

VII. T HE RECEDING HORIZON POLICY: MULTI AGENT

CASE

The previous policy is centralized, since it requires a cen-
tralized assignment of the service regions. As introduced in
[12], assuming thatQ is convex, m agents can achieve a
configuration with equal service regions in adecentralized
way.

Toward this end, we introduce certain points, that we call
virtual generators, associated to each agent; we denote the
virtual generators asG = (g1, g2, . . . , gm) ∈ R2m. We define
the region of dominance for agenti as the Voronoi cell
Vi = V (gi); we call the partition into regions of dominance
induced byG asV (G). Notice that the virtual generators are
not physical points, but are rather artificial variables.

We shall assume that each vehicle has sufficient infor-
mation available to determine: (1) its Voronoi cell, and (2)
the locations of all outstanding events in its Voronoi cell.
A control policy that relies on information (1) and (2), is
Voronoi-distributed in the sense that the behavior of each
vehicle depends only on the location of the other agents with
contiguous Voronoi cells. Since in a planar Voronoi diagram
there are at most3m − 6 (m is the number of generators)
neighborhood relationships [29, Section 2.3], the number of
Voronoi neighbors of each generator is on average less than
or equal to6. (Recall that generators are Voronoi-neighbors if
they share an edge, not just a vertex.) Accordingly, Voronoi-
distributed policies arespatially distributedand scalable in
the number of agents. A spatially distributed algorithm for
the local computation and maintenance of Voronoi cells is
provided in [6].

The key idea is to enable the virtual generators to move
toward an equitable (i.e., such that regions have the same area)
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partition V (G∗). Consider the following locational optimiza-
tion function

Lm(G) ,
m∑

i=1

|Vi|2.

In [12] it is shown that functionLm(G) is non-convex. In
what follows, letγij , δij , Og

ij andOu
ij be defined as in Section

II.
Theorem 7.1 (see [12]):The partial derivative of the loca-

tional optimization function is:

∂Lm(G)
∂gi

= 2
∑

j∈N(i)

δij

(
|Vi|− |Vj |

)[1
2
nij +

1
γij

(Ou
ij−Og

ij)
]
.

(6)
whereN(i) is the set of indexes of the neighboring regions
of Vi. Notice that the computation of the above gradient is
decentralized in the sense of Voronoi. Assuming that there
exists an equitable Voronoi diagram (henceforth we assume
this condition holds, unless otherwise stated), from the ex-
pression of the gradient ofLm(G) we see that one of the
critical point of Lm(G) will satisfy |Vi| = |Vj | ∀i, j. This
point correspond to a global minimum ofLm(G), as it can be
easily verified by Lagrange multiplier arguments (see [12] for
details). We can now state

Theorem 7.2:Assume the virtual generators obey a first
order dynamical behavior described by

ġi = −∂Lm(G)
∂gi

. (7)

For the closed-loop system induced by equation Eq. (7), the
virtual generators converge asymptotically to the set of critical
points of Lm(G). In particular, the virtual generators will
locally converge to the global minimum ofLm(G), i.e., to
an equitable partition ofQ.

Remark 7.3:some remarks are in order.

(i) In this section we have postulated that there exists an
equitable Voronoi diagram. Although this assumption
is reasonable for most workspace’s shapes, to date it
is not possible to state that for every workspace’s
shape there always exists a corresponding equitable
Voronoi diagram.

(ii) Clearly, the proposed gradient descent law is not
guaranteed to find a global minimum ofLm(G).
Therefore, the virtual generators will only locally
converge to an equitable Voronoi diagram. On the
other hand, local optimality is a common price to
pay in change of decentralization.

(iii) Since the agents travel inside their own regions of
dominance, this policy is inherently safe against
collisions.

We finally present the decentralized version of theMultiple-
Vehicle TSP policy:

Decentralized Multiple-Vehicle TSP policy:
• update own virtual generator according to the

updating rule (7);
• while there are no unvisited demands, move at

unit speed toward the median of the region of
dominance;

• if there are unvisited demands, do the following:
(i) compute the TSP tour through all demands
in the region of dominance, (ii) service all the
demands in such tour. No shortcuts are allowed
if a demand departs impatiently before service.
Repeat.

VIII. C ONCLUSION

In this paper, we have addressed a stochastic, dynamic
multiple-vehicle routing problem, in which demands, asso-
ciated to points on the plane, are generated over time by a
stochastic process, and expire after a random impatience time.
Our objective was to determine the minimum number of mo-
bile agents needed to visit each demand before expiration, with
probability at least1− ε. In order to attain such objective, we
restated the objective in a stronger form, introducing a “critical
time” concept, and ensuring that all demands are visited,
regardless of their impatience, within such time. This allowed
us to compute lower and upper bounds on the minimum
number of agents necessary to meet the specifications, and
develop decentralized routing algorithms providing a constant-
factor approximation to the optimal strategy. Simulations
confirm our theoretical results, showing some conservatism.
We are currently investigating techniques to remove such
conservatism; future work will also include extensions to the
non-uniform spatial density case.
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APPENDIX

In this appendix, we prove Lemma5.1.
Proof:

Let be l̄ , l/m. Consider an arbitrary deterministic time
interval c and letnk(c) be the number of Poisson (with rate
kl̄) arrivals in a time interval of lengthc; we start by proving
that limk→∞ nk(c) a.s.= ∞. From Section II, we have

lim
k→∞

nk(c) a.s.= ∞⇔ ∀N > 0 lim
k→∞

P
[⋃∞

p=k[np(c) < N ]
]

= 0.

Therefore, we want to show that

∀ ε > 0 ∃ k̄ : ∀k > k̄ P
[⋃∞

p=k[np(c) < N ]
]

< ε. (8)

Now, by using the union bound and assumingk > k1 ,
d1/l̄ce, we have

P
[⋃∞

p=k[np(c) < N ]
]

6
∞∑

p=k

P [np(c) < N ]

=
∞∑

p=k

N−1∑
n=0

e−pl̄c (pl̄c)n

n!
6 N

∞∑
p=k

e−pl̄c(pl̄c)N−1.
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The series
∑∞

p=0 e−pl̄c(pl̄c)N−1 is convergent (as it
can be easily verified with the ratio test); therefore,
limk→∞

∑∞
p=k e−pl̄c(pl̄c)N−1 = 0. Let k2 be the smallest

integer such that, for allk > k2,
∑∞

p=k e−pl̄c(pl̄c)N−1 < ε/N .
Then, by lettingk̄ = max(k1, k2), we prove (8).

Now, the time interval between epochi and epochi + 1
in service regionj (call it τ j

i ) is greater than zero almost
surely (the only case whenτ j

i = 0 is when all the demands
are in the same location of the agent - but this is an event
of probability zero). Thus, ifΩ is the set of sample functions
ω for which bothτ j

i > 0 and limk→∞ nk(c) = ∞, we have
limk→∞ nk(τ j

i ) = ∞ for all ω in Ω. SinceP [Ω] = 1 (and
nk(τ j

i ) = nj
k(i + 1) by definition), part (i) is proven.

We now prove part (ii). By (1) we have
limn→∞ Cj(i)/

√
n

a.s.= βTSP,2
∫

Qj

√
f̄(q) dq; since in our set-

up the spatial density for demands’ locations is uniform, the
integral

∫
Qj

√
f̄(q) dq equals1/

√
m. For any sample function

(except possibly for a set of probability zero),Cj(i)/
√

nj
k(i)

runs through the same sequence of values with increasing
k (i.e., λ) as Cj(i)/

√
n runs through with increasingn.

Thus if Ω is the set of sample functionsω for which both
limn→∞ Cj(i)/

√
n = βTSP,2/

√
m and limk→∞ nj

k(i) = ∞,

we havelimk→∞ Cj(i)/
√

nj
k(i) = βTSP,2/

√
m. By (1) and

part (i) of the lemma we haveP [Ω] = 1, and therefore part
(ii) is proven. Part (iii) is an immediate consequence of part
(i) and part (ii).

Finally, the number of arrivals in service regionj in the time
interval between iterationi and i + 1 is Nk(Cj(i)), where
{Nk(t); t > 0} is the counting process associated with the
Poisson arrival process with intensitykl̄. By the strong law of
large numbers for renewal processes (see, for example, [30])
we have

lim
t→∞

Nk(t)/t
a.s.= 1/kl̄.

Since limk→∞ Cj(i) a.s.= ∞, and with similar arguments as
before, we have

lim
k→∞

Nk(Cj(i))
Cj(i)kl

m

a.s.= 1.

Since by definition of the policynj
k(i + 1) = Nk(Cj(i)), we

get part (iv).
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