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Abstract— Consider the following scenario: a spatio-temporal known distribution and seek the minimum number of vehicles
stochastic process generates service requests, localized at pointgand their control strategies) to maximize the probability that
in a bounded region on the plane; these service requests are5 demand is serviced before expiration, or equivalently, to

fulfilled when one of a team of mobile agents visits the location imize th t f full iced d d
of the request. For example, a service request may represent maximize the percentage or successiully serviced demands.

the detection of an event in a sensor network application, which
needs to be investigated on site. Once a service request has beep  Related work

generated, it remains active for an amount of time which is itself . . ) .
a random variable, and then expires. The problem we investigate ~ Considerable research effort has been invested in studying

is the following: what is the minimum number of mobile agents coverage properties of static sensor networks [1]—[5].
needed to ensure that each service request is fulfilled before More recently, there has been growing interest in under-
expiring, with probability at least 1 —<? What strategy should  gi54ing how the coverage properties of a sensor network may
they use to ensure this objective is attained? Formulating the . . . . .
probability of successfully servicing requests before expiration be improved bymtr_oducmg mob|l|t)_/ to the sensor devices. The
as a performance metric, we derive bounds on the minimum problem of relocating sensors to improve coverage has been
number of agents required to ensure a given performance level, studied in [6]. In this formulation, the sensors can individually
and present decent(alized motion coordination algorithms that estimate the positions of the targets. However, the quality of
approximate the optimal strategy. coverage decreases with increasing distance. In [7] and [8],
Index Terms—Mobile Robotic Networks, Sensor Networks, the authors propose virtual force based algorithms in order

Traveling Salesman Problem. to guide sensor movements for improving the coverage prop-
erties after random deployment. In [9], the authors propose
. INTRODUCTION algorithms to detect the vacancies in a sensor field and use

m to guide sensor motion in order to increase coverage.

Imagine the following scenario: a sensor network compos . .
e average area covered by mobile sensors over a period

of a large number of nodes is deployed over a vast field, fg i . . ;

example to study the behaviors of elusive animals, or to det@ttime has been characten;ed n [%0]' lt. is shown that for
suspicious activity in a protected region as, for example, hone}em.Oblle sensor network ‘.A."th denswy, V.V'th each sensor
burglaries, or insurgents placing Improvised Explosive Devic8&VINg according to a mobility model similar to random quk
(IEDs). Typically, network nodes contain inexpensive senso ',th gxpected velloc[tyE [Vi], the expected2 area covered in
such as motion detectors, which are susceptible to false alarfige interval(0, #) is given b_yl — P (_A(T.T * QTE[VS]?))'
Suppose that, in addition to the sensor network, a team ofA clos_ely related dynamic veh|g|e roupng pro_blem 'S con-
Unmanned Aerial Vehicles (UAVs) is also available, whicﬁ'dered in [11]H13]. In the dynam.|c. vehicle rouFmg problem,
are equipped with more sophisticated on-board sensors. E |Ie' agents are reqwrgd to visit target pplnts generated
time a sensor detects an event, a UAV is sent to the locati namically by a StO_Cha_St'C process. In [13], Itis shown that
to investigate the cause of the alarm, i.e., to track the animidf 1ack of communication between the mobile agents does
or the intruders. Timeliness in such applications is of primarn b effect t_he performance of the system; however, the lack
importance: should the UAV take too long to reach the locati communication slows the rate of convergence to the steady

of the event, its cause may have already left the premises, afe Bisniket al. ,SIUd'ed a similar vehicle routing proplem.
be hard to track. where demands disappear [14]. They presented approximation

This scenario can be formulated as the following promerﬁllgorithms for the case where the vehicles motion is restricted

a group of vehicles is charged with servicing stochasticalﬁ? a planatr)lcurvef. o . ltiol bots h |
generated demands in an environment. Each demand app a-r@e problem o site visitation using mutlp_e robots has aiso
en studied in context of sweeping, covering, or exploration

at a random location (sampled from a known distribution) a . : ; .
is serviced when a vehicle moves to that location. In th[§2nar regions [151-[18]. An offline algorithm for sweeping a

paper, we study a novel version of this problem where t own area by multiple mobile robots is proposed in [17].
demands expire after a certain amount of time. We assume
that the lifetime of a demand is randomly chosen from B. Statement of Contributions
. . _ We study the version of this problem where the event
M. Pavone and E. Frazzoli are with the Laboratory for Information an

Decision Systems, and the Aeronautics and Astronautics Department, of ﬁq@auon 1S 'Cho_sen unlfo.rmly at random m.the e_nwronmer_]t and
Massachusetts Institute of Technology, Cambridge, MA 02139, USA; emdihe event lifetimes are independent and identically distributed

{pavonefrazzoli ~ }@mitedu . , according to an arbitrary distribution, thus extending our
N. Bisnik and V. Isler are with the Department of Computer Science of the | . | f 12 d 1141, Wi
Rensselaer Polytechnic Institute, Troy, NY 12180, USA; emfilsnin, complementary previous results, e.g., from [ _ ] and [14]. We
isler }@cs.rpi.edu. present a constant factor approximation algorithm to compute

ROBOCOMM 2007, 14th— 16th Oct 2007, Athens, Greece.
Copyright © 2011~ 2012 ICST

ISBN 978-963-9799-08-0

DOI 10.4108/ICST.ROBOCOMM2007.2220


peri
Typewriter
ROBOCOMM 2007, 14th–16th Oct 2007, Athens, Greece.

Copyright © 2011–2012 ICST 

ISBN 978-963-9799-08-0

DOI 10.4108/ICST.ROBOCOMM2007.2220

peri
Typewriter

peri
Typewriter


the minimum number of vehicles required to guarantee theampact sety C R?, according to a distributiorf. In [19] it
each event is serviced with probability at ledste wherec is  is shown that there exists a constghtsp 4 such that

an “accuracy” parameter input to the problem. We also present TSP(D,)

a distributed strategy for assigning events to the vehicles, and lim 1771/;
to route them in an efficient way. Aside from applicatons "~ "

in monitoring and surveillance, we believe that our rESU|Where f is the density of the abso|ute|y continuous part
and techniques will be of independent interest due to thejf the distribution f. In other words, the optimal cost of
relation to the fundamental Traveling Salesperson Probleffhchastic TSP tours approaches a deterministic limit, and
(TSP), and its stochastic and dynamic versions, such as §igws as the square root of the number of pointsinthe

— Brep /Q flo Vi dg as, (1)

Dynamic Traveling Repairperson Problem (DTRP). current best estimate of the constant in the cdse 2 is
Brsp,2 =~ 0.7120 [20].
C. Paper organization Notice that the bound1j holds for all compact sets: the

The paper is structured as follows. In Section Il we intro‘i’hape of the set only affects the convergence rate to the

duce some background on convergence of random variabllgg,it' According to [21], if @ is a “fairly compact and fairly

the Euclidean Traveling Salesperson Problem, and Voronoi I5|anex” set in the plane, then Eql)(provides an adequate

agrams. In Section Il we present the problem formulation. ptimate of the optimal TSP tour Ien.gth for valuesrofs .
Section IV and V we compute a lower bound on the minimu w as 15. Remarkably, the asymptotic cost of the stochastic

number of agents needed to meet the objective as stated for gniform point distributio'ns i; an upper bou.nd on the
Section III, and develogentralizedrouting algorithms pro- asymptotic cost for general point distributions; this follows

viding a constant-factor approximation to the optimal strategr%re?ly fr(?[m tﬁn ap ﬂtlcr? tlog O.f dJenien s inequality for concave
In Section VI we present results from numerical experimen ,nc lons to the right hand side of)

and in Section VII we modify the previous centralized routing
algorithms to make themtecentralizedFinally, in Section VIl C. Voronoi Diagrams

we draw some conclusions and discuss some directions folnn gverview of Voronoi diagrams is presented in [22], [23],
future work. concepts and applications are discussed in [24] and abstract
Voronoi diagrams are discussed in [25]. L@, -, gm}
Il. PRELIMINARIES be a collection of points in a convex compact s2tin a

In this section, we briefly describe some known concepfigite dimensional Euclidean spad (it is anyway possible

from probability and locational optimization, on which we willto generalize the concept of Voronoi diagrams to any metric
rely extensively later in the paper. space), and left - || denote the Euclidean norm R?. Let the

Voronoi regionV; = V(g;) be the set of all pointg € @ such
A. Almost Sure Convergence .thath—gill < ||lg—g,|| for all i # J- The boundary qf each;
is aconvex polygonThe set of regiongVi, - -- , V,,, } is called
A sequence of random variablgsX, } converges almost the Voronoi diagram for the generato{gl’ e 7gm}- When
surely t0.X (limy,—.oo X;, =" X) if limy, 0o Xo(w) = X(w)  the two Voronoi regions/; and V; are adjacentg; is called
for all sample functionso € 2 whereP [2] = 1. (In other g \oronoi neighborof g; (and vice-versa). We also define the
words, P [lim, .. X, = X]|=1.) The sequence of random(; j)-face asA;; = V;(\V;. We will shortly refer to the
variables{ X, } converges almost surely & if and only if, vertices of a face\,; as the se{w;}, without any additional
for eache > 0, subscript: the hidden subscripts will be clear from the context.
lim PIUS, [ X5 — X| > €] = 0. \Voronoi diagrgms enjoy the Perpendic_ul_ar_ Bisector Property:
n—00 the faceA;; bisects the line segment joining and g; and
that line segment is perpendicular to the face. With reference
B. Asymptotic Properties of the Traveling Salesperson Proly Fig. 1, we introduce the following notation (for Voronoi
lem in the Euclidean Plane regions inRR?): Of; = (95 +9:)/2 O = (w1 + u2)/2;
The Traveling Salesperson Problem is one of the maost = llg; — gill dij = [Jua — w1l
widely known combinatorial and geometric optimization prob- Finally, we define an equitable Voronoi diagram as a
lems. In this section, we briefly review its Euclidean versioMoronoi diagram where all Voronoi cells have same measure.
and some results that are relevant to our analysis.
The Euclidean Traveling Salesperson Problem (TSP) is [11. N OTATION AND PROBLEM FORMULATION

o AP
formulated as follows: given a sdb of points INRY, find |, this section, we first describe the problem set-up. Next,
the minimum-length closed path (tour) through all points i« formulate the main problem studied in this paper.

D. Let TSP(D) denote the minimum length of a tour through

all the points inD; by convention,TSP(()) = 0.
The stochastic version of the Euclidean TSP enjoys sorfie Problem Set-Up
interesting properties. LeD,, be a set ofn independent, Let the environmeng C R? be a convex, bounded set; for
identically distributed random variables, representing poinsgmplicity, we will mainly consider the planar case, i@+ 2,
in R?. Let each random variable iP,, be sampled from a with the understanding that extensions to higher dimensions



Let W,, r € N be a random variable expressing the sojourn
time in the system for the-th demand. The random variable
W, is the elapsed time between the arrival of demarehd
the time when either one of the servers completes its service
or such demand departs from the system due to impatience.
A demand is considered servicedlif, < L,.

Information on outstanding demands (i.e., arrived demands
that have neither been serviced nor impatiently departed) at
time ¢t is summarized as a finite set of demand positions
D,(t) C D(t). In other words, demands are inserted in hbth
and D, as soon as they are generated; they are removed from
D, either upon servicing—as a vehicle visits the demand’s
location— or upon expiration. We assume that information
contained inD,(t) is available to all vehicles.

Fig. 1
NOTATION. THE POINTSg; AND g; ARE THE GENERATORS OF THE B. Problem Formulation
VORONOI REGIONS RESPECTIVELY V; AND V.

Informally, the objective is to ensure that no more than a
fractione (wheree € (0, 1] is a control parameter) out of all
the arrived demands departs impatiently before service. We
are possible. Without loss of generality we will assume th4flll refer to e as the “accuracy” of the system. In particular,
the measure of) (denoted agq)|) is 1. we Wan_t to answer the questions: what is the minimum number_

Demands are generated according to a homogeneous Spé}ﬁ({noblle agents n_e_eded Fo ensure f[hat each service request is
temporal Poisson Point process, with time intenaity 0, and  fulfilled before expiring, with probability at least— 2 What
spatial densityf : Q — R.. In other words, the number of Strategy should they use to ensure this objective is attained?
demands generated over time within a regr Q can be To state our problem formulation rigorously, we first define

described as a homogeneous Poisson process with rate  the critical timeTe; as
_ T-t:max{Te]R :/ fu)dt =P[L>T >1—g}.
As = A /S f(g) da. v [L>1T]

Without loss of generality, we assunfigo be normalized such Clearly, if a routing policy is able to ensure thedchdemand
that [, f(q) dg = 1; in such casef can be interpreted as glocation (regardless of its impatience) is visited within time

proba%ility density function. In this paper, in particular, we-erit from its arrival, then this policy ensures that no more

will consider a uniform distribution for the demand Iocations,t,haln a fractione out of all the arrived demands departs

ie., f(q) = 1/|Q). impatiently before service. Through the concept of critical time

Let D(¢) be the set of locations of demands generated up‘ﬁ? can, therefore, address the problem of servicing demands

time ¢t. Given a setS C @, the expected number of demandg\’ith _impatience as the pro_blgm Of visitin_gll deman_ds’
generated in within the time intervallt, ¢ + At] is Iocatlon_s, regardless _of_ their |mpat|en_ce (|.e_., even if they
depart impatiently), within a constant time; this approach on

E [card(D(t + At) N S) — card(D(t) N S)] = F(S)AAt,  the one hand introduces some degree of conservatism, but

where F(S) 2 [, f(g) dg. We will label demands in increas-ON the other hand it simplifies considerably the mathematical
S ' ;
analysis.

ing order with respect to time of arrival; for the orderlines _ . L _
property of Poisson processes, this is a well-defined criterion,Vith the above discussion in mind, defiieas the set of
Demands are serviced by a teamrofholonomic vehicles all possible policies to visit all demands’ locations regardless

modeled as point masses. The vehicles are free to mo%,t_heir impatienqe. For such poIicigs, defifié. as a fa”df?m
with bounded velocity, within the environme@t without loss variable expressing the elapsed time between the arrival of
of generality, we will assume that the velocity magnitude f&€mandr and the time its location is visited; we call these
unitary. The vehicles are identical, and have unlimited fué‘?‘”‘_jom Va_”f"‘bles V'””?" waiting times. The prqblem beco_mes
and demand servicing capacity. For simplicity, vehicles afding policies belonging t@ that, with the minimum possi-
not required to stop or to loiter in proximity of demandsPle numberm of agents, ensurdim, .o W, < Terir. For
extension to the case with additional on-site servicing time §@chnical reasons, we restrict our analysis to policies that
straightforward, but the notation is more cumbersome. Thutisfy the additional requirement théin, .. E |[W,| <
a demand is serviced as a vehicle visits its location. Terit; this form of commutativity between limit and expectation
Let L, > 0, r € N be a random variable describing thewill be crucial in Section IV.
impatienceof the r-th demand: in other words, should the Our problem formulation can, therefore, be stated as fol-
r-th demand not be visited within timé&, from its arrival, lows:
it will expire. We assume that the impatience times are Definition 3.1 (Problem formulation)Find routing poli-
independent and identically distributed according to a commaeries belonging td" that, with the minimum possible humber
density fr : R, — Ry. m of agents, ensure;



() lim W, < Tog 2) if there are unvisited demands, do the fol-

r—00
@) lowing: (i
. . - _ g: (i) compute the TSP tour through all
(i) TIEECE {W’“} < T demands, (ii) service all the demands in such
Let IT be the set of all control policies belonging Foable tour. No shortcuts are allowed if a demand
to guarantee Eq.2J. We proceed as follows: we first find in deParts impatiently before service. Repeat from
Section IV a lower bound on the number of vehicles needed point 1).

by each poIicy belonging .to the sBit Then, in Section V’.We.We will refer to thei-th time instant in which an agent
analyze a policy that provides a constant factor approxmau%mputes a new TSP tour as the epadf the policy. From

to the optimal policy. the definition of the policy, epochs evolve independently in

le [)ne?tlortw ;hattha l_so_rtrjehow ]IP?S];S (i)r;/‘s/ervatgle appProaciih service region. We analyze this policy in the heavy load
would be to study the limitim, o IP[L, = W] and require ;i o “in the limit A — oo. For simplicity, we consider

this limit to be less tham; this approach is currently subjectonly countably infinite values of, i.e., we write\ — &l with

of ongoing research by the authors. k € NT andl > 0 an arbitrary constant. Therefore, the heavy

load limit is obtained fork — oco.
IV. LOWERBOUND e I
. L ) ) . Let us study the waiting time of a demand within one of the
When we consider policies belonginglioi.e., policies that . service regions);, j = 1,--- ,m. The arrival rate in each

visit all demands’ locations regardless of their impatience, ogf these service regions, whose area/is:, is A = ki/m. We
problem is identical to the classical-vehicle Dynamic Trav- hiroduce the following notation:

eling Repairperson Problem (m-DTRP), with the exception
that in our paper we want to enforce an upper bound, equal ;. - . . .
to Terit, to the virtual waiting times. Then-DTRP problem  * " (i) : numbgr of unvisited demands in SErvice region
has been extensively studied in [26]—[28]; thus, to find a lower 7 at ePOChZ (ie., “‘”,”t?er of .demar)ds arr!veq between
bound on the number of agents we can use some of the known epochi —1 and epoch, ¢ > 1, in service regiory) when

results about the:-DTRP problem. In particular, we make use tChJe _ov<.arlall arrr]iva1lt ‘:;OCTGSISD f][as intﬁns}tyh: khl ; q q
of the following theorem [28]: * (i) : length of the our through the demands

— ~ - that are unvisited at epochin service region;j. Since
Theorem 4.1:Let be W = lim,_ o E [Wr}r, where W, P glory

, - , k we are assuming a unitary velocity magnitude’ (i)
is the waiting time of demand in the m-DTRP problem is also the time length of the time interval between
(identical, for policies belonging t&, to the virtual waiting

! ; , ' epochsi andi + 1 in service regiory (since we consider
times in our problem), and assume zero on-site service. Then heavy load conditions, we can safely neglect the travel
there exists a constantsuch that:

component between the agent’s current position and the

_ 5 A closest demand in th&SP tour).
w 2 v R
m
wherey > 2/(3v/2x). In the limit A — oo, the constanty In the next lemma we show some preliminary limit results.
satisfiesy > 2/(3/x). Lemma 5.1:The following limits hold with probability one

Considering that for a policyr belonging toIl we require in each service regior, at each epocti > 1 and for any
W < Teie (here the technical condition (ii) in De2.becomes m € N*:
crucial), we get the following lower bound:
Theorem 4.2:A lower bound on the minimum number of
vehicles needed by any poliey belonging toll is: }
(i) lLm nl()E oo

\W Jim.
m > : N
" T (i) lim Gl e Prsez

k—oo \/712(1) \/m ’

V. CONSTANT FACTOR APPROXIMATION POLICY (iii ) klim Ci(i) ¥ oo;
In this section, we propose a policy that provides a constant (V) lim nd (i+1) a.s 1
factor approximation to the optimal policy in heavy load (i.e., koo CiDE T 7
for large A). The light load analysis is much simpler and is  proof: See Appendix. u

not included in the paper.
Multiple-Vehicle TSP policy: at start-up, the envi-
ronmentq is partitioned intom service regions); Theorem 5.2:For anym € N* we have
of identical areal /m (recall that|@Q| = 1) and each
agent is assigned to a distinct service region. Then,
each agent executes in its own service region:

1) if there are no unvisited demands, move at unit
speed toward the median of the service region; r—oo k—oo kil

We obtain the following asymptotic result:




Proof: Using Lemmab.1 we can write, fori > 1, Therefore, in heavy load, the minimum number of vehicles

} _ m* satisfies the inequalities
Ci(i+1) C7(i+ 1)my/n.(i + 1)

lim —— > = lim ’ L , A e s A
g kl/m g ni (Z + 1)kl 7 Tcrit s=m o 2ﬁTSP72 Tcrit

Thus, in heavy load, the Multiple-Vehicle TSP policy provides

khf;o BTSRQ\/ET = an ap'proximation factor app.roachiqgw%sm/y2 ~ 2.6 on .
— o the minimum number of vehicles needed to ensure the desired
lim ﬂTSP,Q\/TTL\/nk(Z"_ 1)@ (@) as.  objective.
k—oo Kkl Ci (i) K
. Ci (i) VI. SIMULATION RESULTS FOR THETSP RoLicy
am Prspa\f == In the previous section, we have studied the TSP policy

(3) in the heavy load limit and we have found a formula that
4 4 . . allows to estimate, for finite values af the minimum number
Let be X7 (i) £ limy,_., C?(i)/kl; Equation 8) describes a f

i lation for th d ABlEsi)s: of agents needed by the TSP policy to visit all locations
non Pnear rsgyrrence relation .O,r e random variable:) S within time T¢i;. In this section, we show, through simulations,
X7(i 4+ 1) = (Brsp2/m)/X7(i). For any sample function

h thatX'(2) > 0 't t of probabilit thi that even for relatively small values of the results of the
such thatx ( )>. (except for a set of proba ||3_/.ze.ro), ISprevious section are accurate. Notice that the TSP policy
recurrence relation converges to the stable equilibrium

does not perform shortcuts if a demand departs impatiently
a.s. Pispa before service. Clearly in actual applications we would allow

}H&Xﬂ(i) m2 (4) shortcuts. In all simulations, we consider the worst case
if, on the other hand,X(2) — 0, we trivially have scenario amondg 00 sample paths. We start with an initial

number of demands$0 times greater than the foreseen steady

lim; oo X7 (i) 0. , : )
10 state value. Simulations show that a steady state is reached

Notice that, for demands arriving in between epocland
) . . . - : ._after about300 epochs.
i+ 1 in one of them subregions, the virtual waiting time is ; . .
i o . . " We firstly consider a scenario where the demands have an
at mostC (i) + C7 (i +1); therefore, for a demand arriving in. . ' o . o
X ) . : o . impatience uniformly ditributed in0, 90] seconds, i.e.:
between epochsandi + 1 in service regiory, its maximum
virtual waiting time Wiax(i) satisfies fult) = 1/90 if t €[0,90];
Y770 otherwise.
lim lim Wi, (i)/kl < 2

1—00 k—00

a.s. /62
LSQ' We set an accuracy = 0.05; thereforeT,,;; = 4.5 seconds.
) . o y We start by studying the lengti’ of the time interval
The claim follows easily from the definition d¥/iax(i). B petween two epochs in steady state (specifically, we consider
We finally have the following result for the convergence ofe time interval between epoch00 and 1001 in service

expectations. region 1). As discussed above, such time interval is half of
Theorem 5.3 (from [12]):The following limit holds in {he maximum steady state virtual waiting tim&may (i.e.,
heavy load i T = Wmnad2); therefore, we desir§ < T.;/2. Consider,
. E |:Wri| Biepy in particular, \ = 40; for such load, formulag) yields as
lim  lim = = minimum needed number of agentsysp = 4. As shown

A—00 Ir—00 m2

in Fig. (2), m = 4 is exactly the minimum value capable of
ensuring that, in steady staE,< Tcit/2. We next investigate
the behavior ofT" for various values of\; for each A\, we
always consider the number of agents dictated by formi)la (
From Fig. @), we see that the simulation results are in good
to estimate, for finite values of, an upper bound on the agreement yvith the analysis carried out in the previeus section.
minimum number of agents needed to ensure both conditigw_a”y’ we investigate the performance of ti€P policy fer

() and condition (ii) in Def.2. Assumingthat convergence Various values of; as before, for each, we always consider

in theorems5.2 and 5.3 is well behaved, we can write with & number of agents dictated by formuf. (From Fig. @),
increasing accuracy aa (i.e., kl) — oo lim, .o W, < we notice that the TSP policy always satisfies the requirement

. = that no more thare = 5% of demands depart impatiently.
2 2 . | < 2 2. - )
2Btspa/m®, andlim, oo [W’] S Brspa/m?. If we let Moreover, we notice some conservatism, as expected from our

> problem formulation.
S /2)\5TSP,2, (5) Then, we consider an impatience that follows an exponential
Tcrit

' distribution with the same mean of the previous uniform
distribution, i.e.:

From theorem5.2 and 5.3 we can conclude that, in the
heavy load limit, the virtual waiting time increasksearly in
A and decreaseguadraticallyin m.

The limit results in theorem$.2 and 5.3 give us a way

then, for any number of vehicles > [mrgp], the Multiple-
Vehicle TSP policy satisfies with arbitrary accuracy both - se=% if t > 0;
conditions in Def. 2). fi(t) = 0 otherwise.
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whered = 1/45 seconds. From Fig.5f, we notice that the
TSP policy, also in this case, always satisfies the requirement,
with a considerable safety margin.
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THE IMPATIENCE TIME FOLLOWS AN EXPONENTIAL DISTRIBUTION

VIl. THE RECEDINGHORIZON PoLICY: MULTI AGENT
CASE

The previous policy is centralized, since it requires a cen-
tralized assignment of the service regions. As introduced in
[12], assuming that) is convex,m agents can achieve a
configuration with equal service regions indecentralized
way.

Toward this end, we introduce certain points, that we call
virtual generators associated to each agent; we denote the
virtual generators a&' = (g1, g2, - - -, gm) € R?™. We define
the region of dominance for agerit as the Voronoi cell
Vi = V(g:); we call the partition into regions of dominance
induced byG asV(G). Notice that the virtual generators are
not physical points, but are rather artificial variables.

We shall assume that each vehicle has sufficient infor-
mation available to determine: (1) its Voronoi cell, and (2)
the locations of all outstanding events in its Voronoi cell.
A control policy that relies on information (1) and (2), is
Voronoi-distributedin the sense that the behavior of each
vehicle depends only on the location of the other agents with
contiguous Voronoi cells. Since in a planar Voronoi diagram
there are at mos3m — 6 (m is the number of generators)
neighborhood relationships [29, Section 2.3], the number of
\Voronoi neighbors of each generator is on average less than
or equal to6. (Recall that generators are Voronoi-neighbors if
they share an edge, not just a vertex.) Accordingly, Voronoi-
distributed policies arespatially distributedand scalablein
the number of agents. A spatially distributed algorithm for
the local computation and maintenance of Voronoi cells is
provided in [6].

The key idea is to enable the virtual generators to move
toward an equitable (i.e., such that regions have the same area)



partition V(G*). Consider the following locational optimiza- « if there are unvisited demands, do the following:

tion function . (i) compute the TSP tour through all demands
La(G) 2 Z V2. in the region of dominance, (ii) service all the
P demands in such tour. No shortcuts are allowed

o ) _ if a demand departs impatiently before service.
In [12] it is shown that functionl,, (G) is non-convex. In Repeat.

what follows, lety;;, d;;, ij andOyj be defined as in Section
I. _ o VIII. CONCLUSION
Theorem 7.1 (see [12])The partial derivative of the loca- In this paper, we have addressed a stochastic, dynamic

tional optimization function is: multiple-vehicle routing problem, in which demands, asso-
0L, (G) 1 1 . g ciated to points on the plane, are generated over time by a
T g 2 Z 5ij(|Vi| - |Vj|) [gnij + %(Oij _Oij)}' stochastic process, and expire after a random impatience time.
JEN(®) ( Our objective was to determine the minimum number of mo-
where N (i) is the set of indexes of the neighboring regiongile agents needed to visit each demand before expiration, with
grobability at least —¢. In order to attain such objective, we

of V;. Notice that the computation of the above gradient SR . : A
decentralized in the sense of Voronoi. Assuming that therr_%Stated the objective in a stronger form, introducing a “critical

exists an equitable Voronoi diagram (henceforth we assurw@e concept, a_n(_j ensuring th.at.all dem.ands are visited,
this condition holds, unless otherwise stated), from the egg—:;gardless of their impatience, within such time. This allowed

pression of the gradient of,,(G) we see that one of the Us to compute lower and upper bounds on th? ”?i”‘m”m
critical point of L, (G) will satisfy |V| = |V,| Vi, j. This number of agents necessary to meet the specifications, and

point correspond to a global minimum &, (G3), as it can be develop decentralized routing algorithms providing a constant-

easily verified by Lagrange multiplier arguments (see [12] fg?Ct]?.r approtﬂmatl?.n lto th?t Opt;]mal. strategy. S|mulat|§)ns
details). We can now state confirm our theoretical results, showing some conservatism.

Theorem 7.2:Assume the virtual generators obey a firsze are qurrently mvestlgat!ng techmques to remove such
order dynamical behavior described by conservatism; future work will also include extensions to the
non-uniform spatial density case.
OL,,(G)

= m )
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is reasonable for most workspace’s shapes, to date it

is not possible to state that for every workspace’s ) )

shape there always exists a corresponding equitabldn this appendix, we prove Lemnfal

Voronoi diagram. Proof: . . o
(i)  Clearly, the proposed gradient descent law is not Let bel = I/m. Consider an arbitrary de.termlmst'lc time

guaranteed to find a global minimum df,, (G). m_tervglc and Iet_nk(c_) be the number of Poisson (W|th_ rate

Therefore, the virtual generators will only Iocallykl) arrivals in a tlrr;es interval of Iength; we start by proving

converge to an equitable Voronoi diagram. On thiatlimg o 12 (c) = occ. From Section Il, we have

other hand, local optimality is a common price to,. as. . oo _

pay in change of decentralization. kli»Hc}o ni () =00 & VN > Okli{lgop {Upzk[n”(c) < Nﬂ =0
(i)  Since the agents travel inside their own regions dfherefore, we want to show that

dominance, this policy is inherently safe against _ _ o

collisions. Ve>0 3k:Vk>k P [Up:k[np(c) < N]] <e (8)
We finally present the decentralized version of Khdtiple-

Vehicle TSP policy

Decentralized Multiple-Vehicle TSP policy.

APPENDIX

Now, by using the union bound and assuming> k; =

[1/Ic], we have

« update own virtual generator according to the P {U(’ik[np(c) < N]} <Y Pny(c) < N
updating rule 7); = =
« Wwhile there are no unvisited demands, move at 0o N-1 (plc)" o0
. . . _pic (plc ples TAN—
unit speed toward the median of the region of =3 N e < N ePe(ple)N 1.
dominance; p=k n=0 ’ p=Fk



The series Y 2 e ?“(plc)N~' is convergent (as it [5]
can be easily verified with the ratio test); therefore,
limy oo Z;O:k e Ple(ple)N=1 = 0. Let ko be the smallest (6]
integer such that, for alt > ka, > e P“(plc)¥~! < ¢/N.
Then, by lettingk = max(ky, k»), we prove 8).
Now, the time interval between epodghand epochi + 1
in service region;j (call it 77) is greater than zero almost
surely (the only case whery = 0 is when all the demands 8
are in the same location of the agent - but this is an event
of probability zero). Thus, if) is the set of sample functions
w for which both7! > 0 andlim_.. nx(c) = oo, we have
limy, oo i (7)) = oo for all w in Q. SinceP[2] = 1 (and
ni (7)) = nl.(i + 1) by definition), part (i) is proven. (10
We now prove part (i) By 1) we have
limy, oo C7(i)/y/n =" Brspa fQ_ \/ f(q) dg; since in our set-
up the spatial density for demands’ locations is uniform, tHé!!
integraIfQj V/ f(q) dq equalsl /\/m. For any sample function

(except possibly for a set of probability zer@)? (i)/ /ni(z‘)
runs through the same sequence of values with increasing
k (i.e., \) as CY(i)/+/n runs through with increasing. [13]
Thus if Q is the set of sample functions for which both
lim,, o CJ(Z)/\/E = ﬁTSRQ/\/TT/L and limy,_, o ni(z) = 00,

we havelimy, ., C7(i)/\/nl(i) = Brsp2/+/m. By (1) and
part (i) of the lemma we hav® [Q?] = 1, and therefore part
o s . . 5]
(i) is proven. Part (iii) is an immediate consequence of pa[r]t
(i) and part (ii).

Finally, the number of arrivals in service regigim the time
interval between iteration and i + 1 is Ni(C7(i)), where [17]
{Ni(t);t > 0} is the counting process associated with the
Poisson arrival process with intensity. By the strong law of
large numbers for renewal processes (see, for example, [Slf)ﬁ
we have

(7]

(12]

(14]

(16]

lim Ny (t)/t = 1/kl. (19]

t—o00

a.s.

Since limy .o, C7 (i)
before, we have

oo, and with similar arguments as[20]

N(CI () as. | [21]
koo Ci(i)EL [22]

Since by definition of the policy.].(i + 1) = Ny (C7(i)), we  [23]
get part (iv). ]
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