Setplays: Achieving Coordination by the
appropriate Use of arbitrary Pre-defined Flexible
Plans and Inter-Robot Communication

Luis Mota*T, Luis Paulo Reis'*
*Instituto Superior de Ciéncias do Trabalho e da Empresa (ISCTE), Lisboa, Portugal
Email: luis.mota@iscte.pt
fLaboratério de Inteligéncia Artificial e Ciéncia de Computadores (LIACC)
{Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal Email: Ipreis@fe.up.pt

Abstract—Multi-agent coordination and strategic planning are
two of the major research topics in the context of RoboCup. How-
ever, innovations in these areas are often developed and applied
to only one domain and a single RoboCup league, without proper
generalization. Also, although the importance of the concept of
Setplay, to structure the team’s behaviour, has been recognized by
many researchers, no general framework for the development and
execution of generic Setplays has been presented in the context
of RoboCup. This paper presents such a framework for high-
level setplay definition and execution, applicable to any RoboCup
cooperative league and similar domains. The framework is based
in a standard, league-independent and flexible language that
defines setplays which may be interpreted and executed at
run-time through the use of inter-robot communication. The
implementation of this framework in the 3D simulation league
is also described with concrete examples of Setplay definition,
management and execution. The first results achieved show the
usefulness of this approach and motivate us to use it as the main
coordination of all our teams participating in the simulation,
small-size, middle-size and legged leagues of RoboCup.

I. INTRODUCTION

RoboCup! [1] is an international initiative to promote
Artificial Intelligence, robotics, and related fields. It fosters
research by providing a standard problem where a wide range
of technologies can be integrated and examined. RoboCup
uses the soccer game as a central topic of research, aiming
at innovations to be applied for socially significant problems
and industries. Research topics include design principles of
autonomous agents, strategy acquisition, real-time reasoning,
robotics, and multi-agent collaboration, which this paper aims
at contributing to.

Robot Soccer needs, as the research in the domain devel-
ops, co-ordination at team scope, which involves planning at
many levels. This paper deals with representing and execut-
ing high level, flexible plans for robots playing in different
RoboCup leagues. A framework for representing, executing
and evaluating such plans is presented, relying on inter-robot
communication.

Setplays are commonly used in many team sports such as
soccer, rugby, handball, basketball and baseball. There are

Uhttp://www.robocup.org

ROBOCOMM 2007, 14th— 16th Oct 2007, Athens, Greece.
Copyright © 2011~ 2012 ICST

ISBN 978-963-9799-08-0

DOI 10.4108/ICST.ROBOCOMM2007.2209

surely several important differences between robot soccer and
human sports, but setplays can nonetheless be a useful tool
for high-level co-ordination and cooperation.

One additional motivation for high level planning has re-
cently been raised in the Middle size league: the Technical
Comittee has decided that some of the teams will have to
join efforts to pairwise create common teams, in order to
decrease the total number of participating teams. This means
that the challenge of building multi-partner teams has to
be dealt with in the near feature, in order to allow these
teams to enter the competition. One possible way to integrate
heterogeneous players would be to present them a list of
Setplays, understandable to all, and simply tell them when
and how each of these setplays should be executed. A full
scenario of such a mixed team integration has already been
presented in [2].

II. MOTIVATION AND REQUIREMENTS

The 5dpo’ mid-size team has its’ collective behaviour
organised around so-called Setplays [3]. Such Setplays are
dynamically used in particular situations during the game.
An example is used for the execution of free-kicks near the
opposite goal: three players are involved. The Initiator is
responsible to start the Setplay by passing the ball to the
Kicker, which is located half a meter to the right of the ball.
A third player, the Supporter, will be located behind the ball,
in order to deal with lost or stray balls. The Setplay starts
when the Initiator passes the ball to the Kicker, which tries to
shoot at goal. This Setplay was fine-tuned and became a very
successful collective move.

The concept of Setplay, as described, is used to structure
the team’s behaviour. But what if this kind of collective
move could be described and shared in a standard, league-
independent and flexible way, which would be interpreted and
executed at run-time? The first benefit would be the possibility
of writing arbitrary Setplays, which would dynamically be
used during the game, opening horizons to new plays which
could, for instance, differ from game to game, to better deal

2URI: http://paginas.fe.up.pt/~robosoc/

peri
Typewriter
ROBOCOMM 2007, 14th–16th Oct 2007, Athens, Greece.

Copyright © 2011–2012 ICST

ISBN 978-963-9799-08-0

DOI 10.4108/ICST.ROBOCOMM2007.2209

peri
Typewriter

with each opponents’ characteristics. In that case, the Setplays
could also be used in different leagues. Furthermore, since
any player could have access to the definition of Setplays and
interpret their content, Setplays could also be a means for the
creation of mixed teams, where heterogeneous robots would
play together: when the Setplays are being executed, players
simply have to follow the steps in the Setplay in order to co-
operate.

To fulfil these requirements, one would need a standard
language, where Setplays could be defined and interpreted
by any player in any league. The basic concepts of soccer
(moves, conditions, actions, skills) would need a clear and
concrete definition. Also, the transitions between intermediary
steps have to be expressed, as well as termination conditions.
Such a language is thus the scientific subject being presented
in this paper.

The framework that models this language is presented in
section III. In section IV, synchronisation and communication
issues are discussed, and a interaction policy is proposed.The
implementation of this framework in the 3D simulation server
[4] is described in section V. A concrete example of a Setplay
and its’ execution is the subject of section VI. Related work
is presented and discussed in section VII. Finally, conclusions
are drawn, and future lines of research are presented in section
VIIL.

III. THE SETPLAY FRAMEWORK

The Setplay framework was designed with the goal of
being general, flexible, parameterizeable and applicable to
any robotic soccer league. Its’ general structure is shown
schematically in Figure 1.

At the top level, a Setplay is identified by a name, and
has parameters, which can be simple data types like integers
and decimals, or more sophisticated concepts as points and
regions. Setplays also have Player References, which identify
players taking part in the Setplay. The Player References can
point to specific players, or be Player Roles, i.e., abstract
representations of a particular role in the Setplay, identified
by a name (e.g., attacker, supporter). Parameters and Player
Roles will be instantiated at run-time, allowing a flexible use
of the Setplay.

Steps are the main building blocks of a Setplay, which
contains an arbitrary number of Steps, gathered in a list. A
Step can be seen as a state in the execution of a Setplay.
By convention, the first Step in a Setplay is always labelled
with O as its” id. The players participating in a Setplay will
follow some, or all, of these Steps in order to accomplish the
successful execution of the Serplay.

A Step has an id, which is a non-negative integer. In order
to control the Step’s execution, the concepts of wait time and
abort time are introduced. Wait time is the amount of time the
player should wait, after entering the Step, before starting the
transition to another Step, or simply finishing the Sefplay. The
abort time is the threshold after which the players will abandon
the Setplay, if it was not possible to progress from this Step
to another one. A Step also has a Condition, which must be

1| PlayerReference |\ 1 «

MarkPlayer

1
Tackle

ActionSequence |\
2. .*

| Position | MarkRegion |
Dribble 1 1 / 1
) | Forward |
1
to to

1 Region 1

Fig. 2. Action definition

satisfied before entering the Step. A list of Player References,
in this scope called participants, identifies the players taking
part in the Step.

There are several possible ways out of a Step, which are
defined as Transitions. All Transitions can have a Condition,
which must be satisfied for the Transition to be followed. An
Abort Transition represents a situation where the Sefplay must
be abandoned, either because it is no longer judged useful, or it
is thought that it will not reach its’ goal. The Finish Transition
represents that the Setplay has reached its’ intended goal and
should stop at this point. The main Transition, that is used
to link between the different Steps is defined as NextStep. It
includes the id of the next Step to be reached, and contains a
list of Directives that will be applied in order to accomplish
the Transition.

Directives include Actions and can be of two kinds: Do and
Don’t, meaning respectively that the contained Actions should,
or should not, be executed. In this context, Actions, depicted
in Figure 2, are high-level concepts that represent skills and

Don't Action

SetPlay
name: Strin

Do
1
Z Directive

N?t:}tiatedéy
\

executor

Parameter Player
name: String team: String
type: Type number: Posint

PlayerRole
roleName: Strin

players

L 1
L Step \

NextStep next id: NonNeglnt 1 participants *—| PlayerReference

1 1 | waitTime: Miliseconds *

abortTime: Miliseconds
4 I - PlayMode \ .
1 .
1 Z:(players
* Condition | from
. 1 players

Transition 1

1 layers

1 Pay CanPassPI
And 1
1
1 PPos 1
Or min:Posint 1
max:PoslInt CanPass
1 -1
1 BOwner
Not
CanShootGoal
1
Abort Finish Region L region 1-CanPassReg |
Fig. 1. Setplay definition

moves, both simple and complex, that can be executed by
a player. Examples of such Actions are passing the ball to
a player or region, shooting at goal, intercepting the ball,
or dribbling. In this Setplay framework, the Action concepts
were inspired by the ones defined by Clang [5], the coaching
language used in the simulation league. There is, however, one
added Action which is absent from this language: the concept
of Action Sequence, where several actions are to be executed
following a particular order.

The concept of Condition, already mentioned while intro-
ducing Steps, plays also a central role. Such Conditions have
a wide field of application, and deal with the whole domain
of robotic soccer. Similarly to the Actions, the majority of
the Conditions in this framework were inspired in Clang.
Examples of such Conditions, partially depicted in Figure
1, are players’ and ball positions, ball ownership and play
mode. In this case, however, several new Conditions had to
be introduced, in order to model complementary situations.
Particularly, some Conditions refer to the possibility of ac-
complishing passes and shots, i.e., modelling the success of

passes to players and regions, and shots at goal. One should
pay special attention to this kind of Conditions: they are not
based on a verifiable state-of-the world, but instead are an
estimation of a success rate. This could be considered as
intrinsically different from Conditions like player position,
which are tangible and verifiable. Even these Conditions are,
in the scope of robotic soccer, also somehow an estimation:
the players do not know the real state-of-the-world, they
simply have their own view, built from own observation and
information shared by other team-mates. Therefore, for the
sake of simplicity and expressiveness, all these concepts are
indistinguishably considered Conditions.

Regions are another concept in the core of the definition of
Setplay, and are depicted in the diagram in Figure 3. Once
again, these concepts originate from Clang, including spatial
entities like points, Triangles, Arcs and Rectangles. Similarly,
the concept of Dynamic Point, referring to the location of a
player or of the ball, is also introduced. Named regions are
introduced to model intuitive locations like ’our mid-field” or
"their penalty box’, as defined in [6].

Region

RegionVar

<

Point 3

x: Decimal 1

instantiatedBy
Offset
x: Decimal InstantiatedRegion
: Decimal
'Lﬂ_ Union
1 S —
TranslatedPoint
Arc

radius_small: Decimal

: Decimal

radius_large: Decimal
angle_begin: Angle

BallPosition

angle_sean: Angle

2

DynamicPoint

PlayerPosition

PlayerReference

Fig. 3.

IV. INTER-ROBOT COMMUNICATION

The major issue in this framework was how to achieve
co-ordination between the robots when executing a Setplay.
Naturally, a complex Setplay must follow several steps, and
all participating players must be tightly synchronised in order
to achieve fruitful co-operation. The first step towards this
objective was to define a communication and synchronisation
policy, which should be as straightforward as possible, and
can be seen in Figure 4.

Each step will be led by the so-called lead player, who
has ball possession, since it is the one which has to take the
most important decisions, while manipulating the ball. This
player, is naturally not fixed throughout the Sefplay, and will
change from step to step, while monitoring the execution of
the Setplay, instructing the other players on Setplay begin,
step entry and transition choice. The entry into a new step,
which is decided by the lead player in charge of the previous
step, normally implies the change of the lead player. The
implementation of this communication policy is described in

Region definition

more detail in section V.

V. IMPLEMENTATION IN THE 3D SIMULATION LEAGUE

As a primary testbed for the Sezplays, the code of the 2006
champion in the 3D simulation league, FC Portugal [7], was
used. This code already had the main building blocks for
the implementation of Setplays: a mature state-of-the-world,
which considers both own observations and information shared
by other players, and which includes prediction of actions’
and interactions’ effects; and a set of actions and skills that
allows the easy mapping of actions as defined in the Setplay
framework to concrete executions in the 3D simulator.

This implementation was achieved after following several
steps. First, a parser for Setplay definitions was implemented,
in order to allow the players to read any Setplay defined in
the standard language. Secondly, Conditions and Actions were
implemented based on the existing code dealing with world-
state, skills and action. Finally, the dynamics of the Setplays’
steps and transitions were implemented.

BOwner: Player

EarticiBanﬂ : Plaxg
EarticiEantN: Plaxg

startSetplay(parameters)

startSetplay(paramete

e ;

———)———=

alternative J

abort

I
| nextStep(ID)
|
' nextStep(ID)
|
1

stepChange(ID)

stepChange(ID)

Fig. 4. Setplay interaction scheme

The major challenge in this implementation was how to deal
with the limited communication means allowed by the server.
To cope with the limited, single-channel communication, the
lead player (i.e, the player with ball possession) will be
the only player allowed to send messages. The content of
communication must be as concise as possible, in order to
follow the 3D simulator’s limitations and to leave enough
place for the sharing of world-state information, necessary
for the maintenance of a satisfactory and up-to-date world
model by all players. Examples and details of the transmitted
information are presented in the next section.

VI. EXAMPLE SETPLAY

In this section, a simple example is presented, to illustrate
the actual definition of Setplays, how the players in the 3D
simulation league deal with it, and how inter-robot commu-
nication is deployed. To emphasise the execution details, this
Setplay is not an actual game situation, but instead takes place
in a scenario without opponents. Thus, the players, identified
by roles PI, P2 and P3, are laid out in the vertices of a
triangle, defined by the point parameters P/Pos, P2Pos and
P3Pos. To introduce some tolerance to the players positions,
another parameter, PosTolerance is defined, and will be used
to define circles around the players’ intended positions. The
execution of the Setplay consists of the players simply passing
the ball among them.

The formal definition of this Setplay, which is known by
all players, consists of 4 different steps, as follows: in step
0, the players simply move to their assigned positions, and,
additionally, P1, which has ball possession, is also responsible
for carrying the ball to its own position. In steps 1, 2, and 3, the
players P1, P2 and P3 have, respectively and in turn, the ball
under possession, being responsible for choosing the transition
to be followed, i.e., passing the ball to one of the other players,
and communicating this decision to the other participants. The
definition of this Setplay is included in figure 5. Steps 2 and
3 were omitted due to space limitations and because they are
quite similar to step 1.

One application of Triang was conducted, its’ results
recorded, and will be used to illustrate the general execution
of Setplays. The terms in Figure 4 will be used to identify the
messages sent.

The Setplay was was started by initiative of player number
3. After deciding to start, it broadcasts a message of type
startSetplay with the data necessary for the instantiation of
the Setplay, as follows:

Triang -10.0 -17.7 -17.7 2 3 2 4

This message identifies the Setplay by its’ name. Next, the
three Point parameters are included: P/ Pos will be the Point (-
10,0), and P2Pos and P3Pos will, respectively, have the values
(-17,7) and (-17,-7). PosTolerance will have 2 as its’ value. The
last three arguments indentify the participants in the Setplay:
players 3, 2 and 4. After instantiating the Sezplay, all players
follow the only Directive in Step 0 and move to their assigned
positions, as seen in Figure 6(a). The lead player will also
move the ball to his position. When the players have reached
their positions, the lead player, which has ball possession and
is identified by its’ first position in the Participants list, decides
to make the Transition to Step 1. At this moment, it will issue
a stepChange message, identifying the new Step:

1

Next, the lead player, which remains P/ in Step 1, chooses
one of the available Transitions, in this particular texecution to
Step 2, and broadcasts a new nextStep message, which, with
the purpose of overcoming communication failures, also in-
cludes the present Step number in the beginning. The character
A’ is used as a separator between the two Step ids:

1A2

Player PI then proceeds to executing the transition, by
forwarding the ball to P2Pos (see Figure 6(b)), and then
moves back to its’ position. After finishing the transition, P1
again informs the other players, through a new stepChange
message, that the Step has changed to Step 2. Upon reception
of this last message, P2 takes the role of lead player and will
therefore be responsible for the choice of Transitions and their
communication to other players. Screenshots of subsequent
Transitions between Steps 2 and 3, 3 and 2, 2 and 1 and,
finally, 1 and 3 can be seen in Figure 6(b-f). As it can be
observed in these images, the Sefplay is smoothly executed
from step to step. In this particular Setplay no end transition
is included, so it will eventually be executed forever.

(setplay :name Triang

:parameters
(list (parameter :name PlPos :type point)
(parameter :name P2Pos :type point)
(parameter :name P3Pos :type point)
(parameter :name PosTolerance :type decimal))
:players (list (playerRole :roleName P1)
(playerRole :roleName P2) (playerRole :roleName P3))
:steps (list (step :id 0 :waitTime 0 :abortTime 30
:participants (list Pl P2 P3)
:condition (and (playm play_on) (bowner :players P1l))
:transitions (list (nextStep :id 1
:directives (list
(do :executors Pl (seq (fwd :region PlPos) (pos :region P1lPos)))
(do :executors P2 (pos :region P2Pos))
(do :executors P3 (pos :region P3Pos))))))
(step :id 1 :waitTime 20 :abortTime 30
:participants (list P1 P2 P3)
:condition (and (playm play_on)
(ppos :players P1
:region (arc :center PlPos :radius_large PosTolerance))
(ppos :players P2
:region (arc :center P2Pos :radius_large PosTolerance))
(ppos :players P3
:region (arc :center P3Pos :radius_large PosTolerance))
(bowner :players P1l))
:transitions (list (nextStep :id 2
:condition (canPassReg :from Pl :region P2Pos)
:directives (list
(do :executors Pl (seq (fwd :region P2Pos) (pos :region P1lPos)))
(do :executors P2 (pos :region P2Pos))
(do :executors P3 (pos :region P3Pos))))
(nextStep :id 3
:condition (canPassReg :from Pl :region P3Pos)
:directives (list
(do :executors Pl (seq (fwd :region P3Pos) (pos :region P1lPos)))
(do :executors P2 (pos :region P2Pos))
(do :executors P3 (pos :region P3Pos))))))
(step :id 2 ()
(step :id 3 (...))))
Fig. 5. Triangle setplay definition

VII. RELATED WORK

A strategy for role assignment in the four-legged league was
introduced by [8]. This strategy implies the communication of
the currently chosen Play, which provides a set of Roles to be
assigned to all the available players in the team. The strategy
assures co-ordination by the existence of a leader that selects
the best momentary Play and instructs the other robots on
what Roles to take. Each Role fully determines the player’s
behaviour. The strategy does not, however, define a concept
of Setplay with intermediary states, and Plays do not have
Parameters.

The concept of Setplay is present in a teamwork and com-

munication strategy for the 2D simulation league, presented by
[9]. These Setplays, however, lack some of the most relevant
features now presented. Namely, they are meant to be used
only in very specific situations, like corner kicks and throw-
ins, which are decided by the referee, and are unique for each
of these situations. Thus, the question of Setplay activation and
choice is not considered. Further, there is no mention to Pa-
rameters, though Player Roles are proposed. Most important, a
Setplay is limited to a sequence of Steps, without alternatives,
which excludes the need of choice announcing, and therefore
the use of communication.

(fisthalf) PlayOn 1857

0 team_tighilifcportugal 0 (st half) PlayOn 12982

(a) (b)

(frsthalf) PlayOn =40.92 0 team_righllliportugal 0 (frsthalf) PlayOn =47.82

(c) (@

(firsthalf) PlayOn t=61.02 0 tean_right Ml lportugal O (st hal) PlayOn 7422 0 team_tight

(e) ®

Fig. 6. Setplay example

VIII. CONCLUSIONS AND FUTURE DEVELOPMENT

Since the presented framework is, to the best of our knowl-
edge, an innovative contribution to the domain of co-operation
in robotic soccer, and agent systems in general, it opens a wide
range of new research opportunities. A league-independent
language for arbitrary setplay definition is presented, which
can be used by any team (including mixed teams), relying
on communication to manage setplay execution and player
synchronisation.

The first task will be to fully integrate the Setplays in the
top-level behaviour of the FCPortugal 2D and 3D simulation
teams. This integration will need a strategy for Setplay activa-
tion and instantiation, which will initially be made using Case-
based Reasoning. It seems clear that this is a good scenario for
research on this kind of reasoning. Since there is also a strong
connection to the 5dpo mid-size team, Setplays will also be
implemented in this league and used to enhance the team’s
current use of Setplays.

At present stage of development, all Transitions are consid-
ered equal and chosen randomly. This can be changed through

the consideration of weights, that will label a Transition as
more or less desirable. Such weights will surely be useful,
since there are situations where one way is preferable to
another.

Further, since the players knowledge of the world is imper-
fect and liable to uncertainties, Conditions could be considered
fuzzy and take benefit of the usage of thresholds of confidence.
This is surely suited to the robotic soccer domain, and will be
a subject of research in the near future.

ACKNOWLEDGMENT

The authors would like to thank Nuno Lau, also from
FCPortugal, for valuable inputs on the Sefplay definition
language.

This work was partially supported by a grant from Fundagdo
para a Ciéncia e a Tecnologia from the portuguese government.

REFERENCES
[1

—

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara,
“Robocup: A challenge problem for Al,” Al Magazine, vol. 18(1), pp. 73—
85, 1997.

L. Mota, L. P. Reis, and H.-D. Burkhard, “Communication challenges

raised by open co-operative teams in RoboCup,” in Encontro Cientifico

do Festival Nacional de Robética, 2006.

[3] A.S. Conceigdo, A. P. Moreira, L. P. Reis, and P. J. Costa, “Architecture
of cooperation for multi-robot systems,” in First I[FAC Workshop on
Multivehicle Systems (MVS’06), 2006.

[4] M. Kogler and O. Obst, “Simulation league: The next generation,”
in RoboCup 2003: Robot Soccer World Cup VII, ser. Lecture Notes
in Artificial Intelligence, D. Polani, A. Bonarini, B. Browning, and
K. Yoshida, Eds. Berlin, Heidelberg, New York: Springer, 2004, vol.
3020, pp. 458-469.

[S] M. Chen, E. Foroughi, F. Heintz, S. Kapetanakis, K. Kostiadis,
J. Kummeneje, I. Noda, O. Obst, P. Riley, T. Steffens, Y. Wang,
and X. Yin, Users manual: RoboCup soccer server manual for
soccer server version 7.07 and later, 2003. [Online]. Available:
http://sourceforge.net/projects/sserver/

[6] L.P. Reis and N. Lau, “Coach unilang - a standard language for coaching
a (robo) soccer team,” in RoboCup-2001: Robot Soccer World Cup V, ser.
Lecture Notes in Artificial Intelligence. Springer Verlag, 2002, vol. 2377,
pp. 183-192.

[7] N. Lau and L. P. Reis, “Coordination methodologies developed for FC
Portugal 3D 2006 team,” in 10th Robocup 2006 Symposium, Bremen,
Germany, 2006.

[8] C.McMillen and M. Veloso, “Distributed, play-based role assignment for

robot teams in dynamic environments,” in 8th International Symposium

on Distributed Autonomous Robotic Systems (DARS 2006), 2006.

P. Stone and M. Veloso, “Task decomposition, dynamic role assignment,

and low-bandwidth communication for real-time strategic teamwork,”

Artificial Intelligence, no. 110, pp. 241-273, 1999.

[2

—

[9

—

