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Abstract— The integration of advanced computation, wireless
communication, and control technologies has facilitated the cre-
ation of autonomous robot swarms for many civil and military
applications. In nature, animals that travel in groups often rely
on social interactions among group members to make movement
decisions. In many cases, few individuals within the group
have pertinent knowledge about the destination and/or migration
routes. In this paper, we adapt a swarm model developed for
animal groups to study the unique problems associated withcovert
leadership in the context of wireless robot swarms. We term this
problem autonomous navigation with covert leaders. In this covert
leadership problem, only a small subset of robots in a robot swarm
possess extra information that guides their movement, and both
this information and the identities of those individuals possessing
this information remain covert (to minimize the chance of being
compromised). We describe a distributed navigation algorithm,
where each robot locally makes its movement decision solelybased
on one-hop information collected via wireless communications.
The effectiveness and merits of the described navigation algorithm
are demonstrated through extensive simulations.

Index Terms— Robot Swarms, Navigation, Covert Leaders.

I. I NTRODUCTION

Animals that travel in groups often rely on social interac-
tions among group members to make movement decisions.
In many cases, few individuals within the group have perti-
nent knowledge about the destination and/or migration routes.
Based on such observation, Couzin et al. [1] has developed
a swarm model showing how information can be transferred
within animal groups both without explicit signaling and when
group members do not know which individuals possess such
knowledge.

The integration of advanced computation, wireless commu-
nication, and control technologies has facilitated the creation
of autonomous robot swarms for many civil and military
applications, where groups of robots running swarm algorithms
self-organize to achieve different goals. A swarm algorithm
is loosely defined as a set of rules which a group of robots
follow to interact locally with other proximal robots without
any centralized control. In particular, certain sets of rules in
certain swarm algorithms self-organize the group into coherent,
useful structures and behavior such as a uniformly translating
mass traveling in a fixed direction, or a milling mass which
holds a fixed position.
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In this paper, we adapt the swarm model described in [1]
to study the unique problems associated withcovert leadership
in the context of wireless robot swarms. We term this problem
autonomous navigation with covert leaders. Covert leadership
in a wireless robot swarm involves long-standing problems
associated with swarm algorithms and introduces new problems
and challenges unique to wireless communications that do not
exist in biological contexts. In typical leadership problems in
swarms, a small subset of individuals possess extra information
that guides their movement. For security concerns, both this
information and the identities of those individuals possessing
this information are covert. Furthermore, it is critical that this
information not be broadcast via wireless communications and
it is best to have the covert information on as few robots
as possible (to minimize the chance of being compromised).
The key differences are wireless definitions of robot proximity,
decision making data arriving at discrete intervals, and covert
leadership as a desirable quality. All swarm algorithms rely
upon the notion of proximal interactions, but proximity in
most biological systems is defined through direct sensory input
e.g., visual contact. In contrast, proximity associated with
wireless communications is determined by transmission power,
channel fading, path loss, among other factors. The second
difference is that decision making data in biological systems
arrive continuously in time or essentially continuously since
nervous system respond on a time scale faster than the motion
of the individual in most cases, whereas data arrives in discrete
bursts in a wireless system. The last difference is that we
consider a unique scenario where the information possessedby
leaders is absolutely covert in contrast to biological systems
where it is possible and in some cases likely that leaders can
be identified through sensory or behavioral cues.

Swarm techniques have been developed to control robots,
such as pattern formation [2], [3] and navigation [4]. However,
these swarm solutions either do not utilize wireless communi-
cations as the coordination methods or assumes that robots can
continuously exchange information without any communication
collision or packet loss. As pointed in [5], the usage of
wireless communications in networked control systems poses
new challenges on the optimization of performance in the face
of constraints on communication bandwidth, congestion, and
contention for communication resources, delay, jitter, noise,
fading, and the management of signal transmission power.
Furthermore, most existing work on autonomous navigation
focuses on computing trajectories satisfying certain constraints,
such as collision-free or obstacle avoidance, for each individual
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robot. For instance, the trajectories can be computed globally
assuming that the working environment is completely known
[6], or computed locally by each robot using information col-
lected in real-time in dynamic environment [7], [8]. However,
these efforts assume that the pertinent information related to
routes and destinations is known to all the robots. In addition,
these efforts do not use wireless communications as the coor-
dination method among robots.

Our solution is very different from existing work on au-
tonomous navigation in that we apply covert leadership to
control the movement of wireless robot swarms. Our algo-
rithm aims to navigate a robot swarm from one location
to another while satisfying the follow requirements: (1) the
number of leaders should be as small as possible, (2) the
leaders’ identities should remain covert, and (3) the destination
information should remain secret. The proposed navigation
algorithm is fully distributed, and each robot executes thealgo-
rithm asynchronously using information collected via wireless
communications from one-hop neighbors.

The remainder of the paper is organized as follows. Section
II briefly reviews the navigation model presented [1] for ani-
mal groups. Section III presents our navigation algorithm for
wireless robot swarms. Performance of the presented algorithm
is evaluated via extensive simulations in Section IV. Section V
concludes the paper with future research directions.

II. BASIC SWARM MODEL

This section briefly reviews the navigation model for animal
groups as described in [1]. The perceptual field of each animal
is divided into zone of repulsion (ZOR), zone of orientation
(ZOO) and zone of attraction (ZOA), as shown in Fig. 1. Given
a distribution ofN animals, to coordinate with the neighbors
in different zones, animali (located at position vectorPi and
pointing in directionDi) will move awayfrom the neighbors in
ZOR or movealong with the neighbor in ZOO while moving
towards the neighbors in ZOA, and therefore will have three
decision vectors,

DRi =
∑

j∈SZOR

Rij

|Rij |

DOi =
∑

j∈SZOO

Dj

|Dj |

DAi =
∑

j∈SZOA

Rji

|Rji|

(1)

whereRij = Pi −Pj is a displacement vector between theith

and jth animal, andSZOR, SZOO and SZOA are the sets of
indices of animals in the zones of repulsion, orientation and
attraction, respectively. Similarly,|SZ| denotes the number of
elements in zone Z. The normalization of the decision vectors
is not discussed in [1], but we assume that each decision is
treated as a unit vector in the network simulations.

If we assume that decision vectors are normalized as unit
vectors then the biologically inspired swarming algorithmin-
troduced in [1] is as follows.

Fig. 1. Representation of single animal in the navigation model. The perceptual
filed is divided into ZOR, ZOO and ZOA from inside to outside.

1) If |SZOR| 6= 0 thenVi = DRi. Break.
2) If |SZOO| 6= 0 and |SZOA| = 0 then Vi = DOi/|DOi|.

Break.
3) If |SZOO| = 0 and |SZOA| 6= 0 then Vi = DAi/|DAi|.

Break.
4) If |SZOO| 6= 0 and |SZOA| 6= 0 then Vi = α ×

DOi/|DOi| + (1 − α) × DAi/|DAi|.
It is important to note that other normalizations are possible
and some are more effective than others in producing self-
organized, coherent behavior. Typically,α is chosen to be1/2.
Enhancements of the basic model include limited cones of
perception and limited turning rates. Another interestingfeature
of this basic swarming algorithm is that the decision vectors
are spatially discontinuous. This means that slight changes in
relative positions may cause the direction vector to change
abruptly responding to animals crossing zone boundaries. This
is not a major issue in biological applications where the
size of the zone of repulsion is relatively small. In mobile
networking applications one desires well-spaced network to
achieve maximal coverage. In fact, a desired zone of repulsion
can be as much as 30% of the transmission radius. In simple
discontinuous models like these, high swarm densities leadto
unstable behavior and no self-organization will occur.

In leadership studies, there are two types of animals, leaders
and non-leaders. Leaders possess extra information about the
environment. In our study, the leaders possess a vectorFi =
Pd − Pi pointing to the desired destination, wherePd is
the position vector of destination. Leaders will set their new
orientation to be

Di = β × Vi + (1 − β) × Fi. (2)

where typicallyβ is chosen to be1/2. Non-leaders will set
their new orientation to be

Di = Vi. (3)

While only a small fraction of the animals possess destina-
tion information, the swarming rules effectively communicate
this information to non-leaders through the rule-based dynamics
of the swarm. Under proper conditions, the leaders will guide
non-leader neighbors toward a consensus direction through
covert leadership. Note that each animal, either leader or non-
leader, will keep observing its proximity and continuouslyuse



the coordination rules to interact with the neighbors within
different zones. Simulation results in [1] indicate that a small
percentage leaders can effectively lead the group to the desti-
nation point.

III. D ISTRIBUTED NAVIGATION ALGORITHM FOR

WIRELESSROBOT SWARMS

Although the navigation model described in [1] effectively
mimics the covert leadership behavior existing in animal
groups, this model cannot be directly applied to wireless robot
swarms due to the constraints imposed by wireless communi-
cations. We therefore present a distributed and asynchronous
autonomous navigation algorithm designed specifically for
wireless robot swarms.

A. System Model of Wireless Robot Swarms

The system model of wireless robot swarms makes the
following assumptions.
Assumption 1: A wireless robot swarm is composed of ‘homo-
geneous’ robots, where each robot executes the same swarm
algorithm and possesses identical omni-directional wireless
communication capability.
Assumption 2: Since the one-hop propagation delay in wireless
communications is usually very low (in the order of millisec-
onds), the propagation delay is ignored such that each broadcast
packet can be received immediately after its transmission.
Assumption 3: Each robot is aware of its own position at all
time. Such position information can be obtained via GPS or
other localization algorithms. The position of the destination is
known only to a small set of covert leaders within the robot
swarm.
Assumption 4: Each robot moves at the same speedV and can
turn its moving direction to any direction it desires. However,
the model is readily to be extended to the situations where
robots move at different speed or have limited maximum
turning angle.

B. Distributed Autonomous Navigation Algorithm

Adopting the idea of [1], the transmission area of each robot
(viewed as a circle centered at the robot with radius being
equal to the transmission radius) is divided into zone of repul-
sion, zone of orientation, and zone of attraction, respectively.
However, to facilitate interactions between ‘neighboring’ robots
using these three zones, we need to address the following two
critical issues. First, characteristics of wireless communications
make it impossible for a robot to continuously receive the
position information from all of its neighbors. Robots can only
exchange information periodically. Second, potential collisions
of wireless communications make it impossible for a robot to
receive the position information from all of its neighbors at the
exact same time. As a result, when a robot needs to decide its
moving direction according to the coordination rules, it must
be able to estimate the current positions and moving directions
of its neighbors based on previously received information.

Fig. 2. Example of estimating the positions of neighbors.

Tjitter Initial jitter
Tinterval Length of each time slot
Rzor Radius of ZOR
Rzoo Radius of ZOO
Rzoa Radius of ZOA
|RiRj | The distance between robotRi and robotRj

Pi The position vector of robotRi

Pd The position vector of the destination
V The moving speed of each robot
Di The moving direction vector ofRi

DRi Vectors ofRi for its neighbors in ZOR
DOi Vectors ofRi for its neighbors in ZOO
DAi Vectors ofRi for its neighbors in ZOA
α Constant within[0, 1]
β Constant within[0, 1]

TABLE I

TERMS AND THEIR SEMANTICS IN ALGORITHM 1

To address these issues, each robotindependentlydivides the
time into time slots of fixed length. At the beginning of a new
time slot, based on the information collected in the previous
time slot, each robot calculates its moving direction according
to the coordination rules and immediately broadcasts a hello
packet containing its current position and new moving direc-
tion. Then each robot will move along the decided direction
until the next time slot. How the time slots help each robot to
estimate the updated information about its neighbors is depicted
in Figure 2. Each robot, sayRi, maintains a neighbor cache,
which is reset to empty at the beginning of each time slot.
During a particular time slot starting at timeT1, upon Ri’s
receiving a hello packet from robotRj at local timeTj, Ri

records the positionPj1 and the moving directionDj of Rj

together with timestampTj in its neighbor cache. Using the
information in the neighbor cache,Ri can estimate the new
positionPj2 of Rj at the beginning ofRi’s next time slot,i.e.,
time T1 + Tinterval, using Equation 4, sinceRj is assumed to
move alongDj at speedV until Tj + Tinterval, which is later
thanT1 + Tinterval.

Pj2 = Pj1 + (T1 + Tinterval − Tj) ×
Dj

|Dj |
× V (4)

Algorithm 1 presents the autonomous navigation algorithm,
and the notations used in the algorithm are listed in Table I.
Notice that Algorithm 1 is an event-driven algorithm, and each
robot executes this algorithm independently until the entire
swarm arrives at the destination. Moreover, since the algorithm
only employs the local time of each robot, there is no need to
synchronize the entire swarm.



Algorithm 1 Autonomous Navigation Algorithm
1: OUTPUT: Robot Ri periodically computes its moving

directionDi;

2: START UP
3: Ri waits for a random timeTi0 between[0, Tjitter].
4: if (Ri is a leader robot)then
5: SetDi to be the directionPd−Pi

|Pd−Pi|
towards the destina-

tion;
6: else
7: SetDi to be a random direction;
8: end if
9: Ri broadcasts a hello packet containing its positionPi and

moving directionDi;
10: Ri resets its neighbor cache, schedules a timer for next time

slot starting atTi1 = Ti0 + Tinterval, and starts moving
alongDi;

11: END START UP

12: UPON EVENT Receive hello packet fromRj at Tij :
13: Ri records the positionPj and moving directionDj of Rj

together with time stampTij in its neighbor cache;
14: END UPON EVENT

15: UPON EVENT Timer ticks for new time slot atTin:
16: Di = DRi = DOi = DAi = null;
17: for each recordRj in the neighbor cachedo
18: Ri computes the distance|RiRj |;
19: if (|RiRj | ≤ Rzor) then
20: DRi = DRi +

Pi−Pj

|Pi−Pj |
;

21: end if
22: if (Rzor < |RiRj | ≤ Rzoo) then
23: DOi = DOi +

Dj

|Dj |

24: end if
25: if (Rzoo < |RiRj | ≤ Rzoa) then
26: DAi = DAi +

Pj−Pi

|Pj−Pi|

27: end if
28: end for
29: if (NR 6= null) then
30: Di = V R

|V R| ;
31: else
32: Di = α × ROi

|ROi|
+ (1 − α) × RAi

|RAi|
;

33: if (Ri is a leader robot)then
34: Di = β × Di

|Di|
+ (1 − β) × Pd−Pi

|Pd−Pi|
;

35: end if
36: end if
37: Ri broadcasts a hello packet containing its positionPi and

moving directionDi;
38: Ri resets neighbor cache, schedules a timer for next time

slot starting atTin+1 = Tin + Tinterval, and starts moving
alongDi;

39: END UPON EVENT

PHYSICAL and MAC Layer Protocols 802.11b
Data Rate (MBPS) 5
Transmission Range (Meters) 354
Broadcast Interval (Seconds) 2
Initial Jitter (Seconds) 1
Number of Robots 10 - 50
Speed (MPS: Meters / second) 1 - 10
Percentage of Leaders (%) 10 - 25
α 0.5
β 0.5

TABLE II

SIMULATION CONFIGURATIONS

IV. SIMULATION STUDY

We conduct extensive simulation to evaluate the performance
of the proposed autonomous navigation algorithm with respect
to two evaluation metrics,average arrival ratioand average
arrival time, whose formal definitions are given below. In the
simulation, the initial robot swarms are randomly deployedwith
a density of 50 robots per square kilometer. We use QualNet as
the simulation platform. Table II summarizes the configurations
of these simulations. All of the qualitative results presented in
this section are the average of 100 trials.

Definition 4.1: [Successful Arrival]: A robot swarm success-
fully arrives at the destination if the swarm is connected and
the destination point is within the transmission area of at least
one robot leader.

Definition 4.2: [Average Arrival Ratio]: For a robot swarm
using a given configuration and moving to the destination, its
average arrival ratio is the number of successful arrivals over
the number of total simulation runs.

Definition 4.3: [Average Arrival Time]: For a robot swarm
using a given configuration and moving to the destination, the
average arrival time is the average time that the swarm needsto
arrive at the destination point over all of the successful arrivals.

A. Evaluation of the Size of the Three Zones

In the first set of simulations, we set the moving speed
of each robot to be 5 MPS, and let a wireless robot swarm
containing 30 robots with15% leaders move to a destination
point about 5 kilometers away. We repeat this simulation with
different configurations ofRZOR, RZOO andRZOA.

Figures 3(a), 3(b) and 3(c) demonstrate the navigation pro-
cess of the robot swarm usingRZOR = 40 meters,RZOO =
274 meters andRZOA = 40 meters. It takes about 1180 seconds
for the swarm to get to the destination. Once arriving at the
destination, the entire swarm will move around the destination
point, as shown in 3(c).

Figures 4(a) and 4(b) compare the performance of the robot
swarm using different combinations ofRZOR, RZOO and
RZOA (We increaseRZOR and RZOA from 0% to 10% of
the transmission radius, respectively). First, when the sizes of
RZOR andRZOA are less than10% of the total transmission
range (area 1 in figure 4(a)) ,which implies a largeRZOO

about 80% of the transmission range, the robot swarms can
quickly move to the destination with100% average arrival
ratio. Second, as shown in area 2 in figure 4(a), forRZOR



ranging from 0% to 20% of the transmission range, there
is a valid range ofRZOA ranging from5% to 70% of the
transmission range, within which the robot swarms can arrive
at the destination with arrival ratio100%. Also, when the
size of RZOR increases, the valid range ofRZOA decreases
correspondingly. Third, whenRZOR is larger than22.5% of
the transmission radius, the robot swarms fail to arrive at the
destination most of the times. However, exceptions occur when
RZOR is between50% and 80% of the transmission radius,
where the robot swarms can actually arrive at the destination
with high average arrival ratio by choosing a smallRZOA. Such
results deserve more explanation. We track the movement of
the swarms and find that whenRZOR is within this particular
range, with smallRZOO andRZOA, the robot swarms can still
adjust to consensus moving directions towards the destination
and hence eventually arrive at the destination. However, after
successfully arriving at the destination, if no further action is
taken, only leader robots may stay, while non-leader robotswill
continue moving and result in partition. Finally, we also notice
that when the average arrival ratio decreases, the average arrival
time increases correspondingly.

B. Evaluation of the Number of Robots

We then evaluate how the number of robots in the swarms
would affect the performance of our navigation algorithm. In
these simulations, each robot usesRZOR = 40 meters,RZOO

= 274 meters andRZOA = 40 meters. We gradually increase
the number of robots from 10 to 50, and let the swarms move
to a destination about 5 kilometers away. We test the presented
navigation algorithm in different configurations using leader
percentage15%, 20% and25% coupled with moving speed 3
MPS, 6 MPS and 9 MPS. Figure 5 shows the average arrival
ratio. As we can see, when the moving speed is low (3 MPS),
the average arrival ratio is100%. Such results remain stable
when the number of robots increases except for the cases of
large swarms containing 50 robots and15% or 20% leaders.
However, when the moving speed is high (6MPS and 9 MPS),
the average arrival ratio drops significantly when the number
of robots is over a threshold number (40 when the moving
speed is 6 MPS; 35 when the moving speed is 9 MPS). We
also notice that the increase of leader percentage can effectively
improve the average arrival ratio of large robot swarms. Figure
6 shows the average arrival time. We observe that the more
robots a swarm has, the more time the swarm requires to arrive
at the destination. We also notice that once the number of robots
increases beyond a threshold number when moving at 6 MPS
or 9 MPS, the average arrival time increases sharply. This is
because when the moving speed is high, it takes much more
time for large robot swarms to coordinate and make consensus
decisions on the moving direction. Finally, when the moving
speed is low, the different leader percentage would not improve
the average arrival time; however, when the moving speed is
high, more leaders could effectively reduce the average arrival
time of large robot swarms.

C. Evaluation of the Percentage of Leaders

The percentage of leaders in the robot swarms is certainly
an important parameter in the presented navigation algorithm.
In the third set of simulations, we set the destination point
to be 5 kilometers away, and let each robot useRZOR = 40
meters,RZOO = 274 meters andRZOA = 40 meters. Then
we gradually increase the percentage of leaders from10% to
25% to evaluate the performance of the navigation algorithm in
robot swarms containing 10, 20, 30, 40, 50 robots and moving
at the speed of 3 MPS, 6 MPS and 9 MPS. Figure 7 shows the
average arrival ratio. For small swarms containing 30 or less
robots, the arrival ratio is always100%, and such result remain
stable with different leader percentage or moving speed; For
large swarms containing 40 or more robots, the average arrival
ratio is low initially. However, it can be effectively improved
with increase of leader percentage, especially when each robot
moves at a high speed of 6 MPS or 9 MPS. Figure 8 shows
the corresponding average arrival time of Figure 7. In general,
the faster the robots move, the quicker robot swarms arrive at
the destination. However, we observe fluctuations for the robot
swarm containing 50 robots, for these particular robot swarms,
their average arrival time is unstable when the moving speed
is 9 MPS, since the average arrival ratio is very low.

D. Evaluation of the Moving Speed

Finally, we evaluate the presented navigation algorithm using
different moving speed. In these simulations, each robot uses
RZOR = 40 meters,RZOO = 274 meters andRZOA = 40
meters. We gradually increase the moving speed from 1 MPS
to 10 MPS, and compare the performance of our algorithm
in robot swarms containing 10, 20, 30, 40 and 50 robots, and
having15%, 20% and25% leaders. Again, the destination point
is about 5 kilometers away. Figure 9 shows the average arrival
ratio of the robot swarms. For small swarms containing 30 or
less robots, the average arrival ratios remain stable when the
moving speed increases. However, for large swarms with 40
or more robots, the increase of moving speed can significantly
degrade the average arrival ratio when the leader percentage is
low. We also observe that this negative effect can be effectively
improved if the leader percentage increases. Figure 10 shows
the average arrival time of the robot swarms. In general, the
more robots a swarm has, the more time the swarm needs to
arrive at the destination. Furthermore, the increase of leader
percentage would not improve the average arrival time.

E. Summary of Simulation Results

The key results of the all of the simulations can be sum-
marized as follows. (1)When using proper configurations, the
presented navigation algorithm can effectively lead the robot
swarms to the destination. Such results remain stable within a
wide range of swarm size, moving speed and leader percentage.
(2) For large robot swarms containing 40 or more robots, the
successful arrival ratio drops when the moving speed is high
or the leader percentage is low. This implies that for a given



(a) (b) (c)
Fig. 3. The hollow circles stand for the non-leader robots, while the solid circles circles stand for the leader robots. The dot-line crossing in the up-right
conner is the destination.(a) The initial topology of the wireless robot swarm. (b) The topology of the wireless robot swarm at 800 seconds. (c) The topology
of the wireless robot swarm at 1500 seconds.
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Fig. 4. Average arrival ratio and arrival time of a robot group containing 30 robots with15% leaders moving to a destination point about 5 kilometers away.
(a) Average arrival ratio. (b) Average arrival time.
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Fig. 5. Average arrival ratio of the wireless robot swarms containing 15%, 20% and25% leaders and moving at the speed of 3 MPS, 6 MPS and 9 MPS,
respectively. (a) Moving Speed = 3 MPS. (b) Moving Speed = 6 MPS. (c) Moving Speed = 9 MPS.
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Fig. 6. Average arrival time of the wireless robot swarms containing 15%, 20% and 25% leaders and moving at the speed of 3 MPS, 6 MPS and 9 MPS,
respectively. (a) Moving Speed = 3 MPS. (b) Moving Speed = 6 MPS. (c) Moving Speed = 9 MPS.
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Fig. 7. Average arrival ratio of wireless robot swarms containing 10, 20, 30, 40, and 50 robots and moving at the speed of 3 MPS, 6 MPS and 9 MPS. (a)
Moving Speed = 3 MPS. (b) Moving Speed = 6 MPS. (c) Moving Speed= 9 MPS.
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Fig. 8. Average arrival time of wireless robot swarms containing 10, 20, 30, 40, and 50 robots and moving at the speed of 3 MPS, 6 MPS and 9 MPS. (a)
Moving Speed = 3 MPS. (b) Moving Speed = 6 MPS. (c) Moving Speed= 9 MPS.

robot swarm where each robot uses fixed radii of ZOR, ZOO
and ZOA, there is a threshold moving speed and a threshold
leader percentage in the presented algorithm. In order to achieve
better performance, the moving speed must be lower than the
threshold value or the leader percentage must be higher thanthe
threshold value. This points out an important future research
issue: to derive the thresholds of moving speed and leader
percentage using mathematical analysis.

V. CONCLUSION AND FUTURE WORK

This paper presents an autonomous navigation algorithm for
wireless robot swarms. Unlike traditional navigation problems
and solutions, our model aims to navigate robot swarms using
covert leaders where only a small number of leader robots
possess the destination information, and both the leaders’
identities and the destination information should remain secret
at all time. Our model is fully distributed and robots coordi-
nate via wireless communications without any synchronization.
Simulation results show that through local coordinations,covert
leaders can effectively help robot swarms make a consensus
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Fig. 9. Average arrival ratio of wireless robot swarms containing 10, 20, 30, 40, and 50 robots and having15%, 20%, and 25% leaders, respectively. (a)
Leader Percentage =15%. (b) Leader Percentage =20%. (c) Leader Percentage =25%.
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Fig. 10. Average arrival ratio of wireless robot swarms containing 10, 20, 30, 40, and 50 robots and having15%, 20%, and25% leaders, respectively. (a)
Leader Percentage =15%. (b) Leader Percentage =20%. (c) Leader Percentage =25%.

decision on moving direction and thus lead the robot swarms to
successfully arrive at the destination. Future research includes
mathematically analyzing the thresholds of moving speed and
leader percentage for the given configuration of robot swarms,
as well as extending our algorithm to more complicated sce-
narios, such as each robot has kinetic constraints and static or
mobile obstacles exist in the environment.
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