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Abstract— The integration of advanced computation, wireless  In this paper, we adapt the swarm model described in [1]
communication, and control technologies has facilitatedlte cre- to study the unique problems associated withert leadership
ation of autonomous robot swarms for many civil and military j, the context of wireless robot swarms. We term this problem
applications. In nature, animals that travel in groups often rely N - .
on social interactions among group members to make movement gutonomous navigation with .COVGI‘I leade€overt .Ieadershlp
decisions. In many cases, few individuals within the group N & wireless robot swarm involves long-standing problems
have pertinent knowledge about the destination and/or migation ~associated with swarm algorithms and introduces new pnoble
routes. In this paper, we adapt a swarm model developed for and challenges unique to wireless communications that lo no
animal groups to study the unique problems associated witlsovert exist in biological contexts. In typical leadership prabkein
leadership in the context of wireless robot swarms. We term this S o
problem autonomous navigation with covert leaders. In this covert swarm;, a smal! subset of individuals po_ssess extra infiloma )
leadership problem, only a small subset of robots in a robotwarm ~ that guides their movement. For security concerns, both thi
possess extra information that guides their movement, anddih information and the identities of those individuals posses
this information and the identities of those individuals pagsessing this information are covert. Furthermore, it is criticahtthis
this information remain covert (to minimize the chance of béng jnformation not be broadcast via wireless communications a

compromised). We describe a distributed navigation algothm, it is best to h th tinf i f bot
where each robot locally makes its movement decision solebased it1s best 10 have the covert information on as Tew robots

on one-hop information collected via wireless communicatins. s possible (to minimize the chance of being compromised).
The effectiveness and merits of the described navigationgdrithm — The key differences are wireless definitions of robot pragim

are demonstrated through extensive simulations. decision making data arriving at discrete intervals, angeto
Index Terms— Robot Swarms, Navigation, Covert Leaders. leadership as a desirable quality. All swarm algorithmy rel
upon the notion of proximal interactions, but proximity in
most biological systems is defined through direct sensguytin
e.g, visual contact. In contrast, proximity associated with
Animals that travel in groups often rely on social interacwireless communications is determined by transmissiongpow
tions among group members to make movement decisionbannel fading, path loss, among other factors. The second
In many cases, few individuals within the group have pertilifference is that decision making data in biological syste
nent knowledge about the destination and/or migrationesutarrive continuously in time or essentially continuouslycs
Based on such observation, Couzin et al. [1] has developseivous system respond on a time scale faster than the motion
a swarm model showing how information can be transferred the individual in most cases, whereas data arrives irrelisc
within animal groups both without explicit signaling andevh bursts in a wireless system. The last difference is that we
group members do not know which individuals possess suchnsider a unique scenario where the information posséssed
knowledge. leaders is absolutely covert in contrast to biological eyst
The integration of advanced computation, wireless commwhere it is possible and in some cases likely that leaders can
nication, and control technologies has facilitated theatom be identified through sensory or behavioral cues.
of autonomous robot swarms for many civil and military Swarm techniques have been developed to control robots,
applications, where groups of robots running swarm algorit such as pattern formation [2], [3] and navigation [4]. Hoeev
self-organize to achieve different goals. A swarm alganiththese swarm solutions either do not utilize wireless comimun
is loosely defined as a set of rules which a group of robatations as the coordination methods or assumes that rofots c
follow to interact locally with other proximal robots withib continuously exchange information without any commundsat
any centralized control. In particular, certain sets ofsuln collision or packet loss. As pointed in [5], the usage of
certain swarm algorithms self-organize the group into cehe wireless communications in networked control systems gose
useful structures and behavior such as a uniformly tranglat new challenges on the optimization of performance in the fac
mass traveling in a fixed direction, or a milling mass whichf constraints on communication bandwidth, congestiom, an
holds a fixed position. contention for communication resources, delay, jitterisep
fading, and the management of signal transmission power.
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robot. For instance, the trajectories can be computed thjoba y
assuming that the working environment is completely known
[6], or computed locally by each robot using information-col
lected in real-time in dynamic environment [7], [8]. Howeve
these efforts assume that the pertinent information reléde
routes and destinations is known to all the robots. In aoldljti
these efforts do not use wireless communications as the coor
dination method among robots.

Our solution is very different from existing work on au-
tonomous navigation in that we apply covert leadership to
control the movement of wireless robot swarms. Our alg@l’g. 1. Representation of single animal in the navigatiomehor he perceptual
rithm aims to navigate a robot swarm from one locatiofied is divided into ZOR, ZOO and ZOA from inside to outside.
to another while satisfying the follow requirements: (1 th
number of leaders should be as small as possible, (2) the
leaders’ identities should remain covert, and (3) the dattin 1) If [Szor| # 0 thenV; = DR;. Break.
information should remain secret. The proposed navigationz) If [Szoo| # 0 and[Szoa| = 0 thenVi = DO;/|DO;|.

algorithm is fully distributed, and each robot executesaiy®- Break.
fithm asynchronously using information collected via vegs ) g |SZkOO| = 0 and|Szoa| # 0 thenV; = DA; /[ DA
reak.

communications from one-hop neighbors.
The remainder of the paper is organized as follows. Section® ! [Szoo| # 0 and [Szoa| # 0 then Vi = « x

II briefly reviews the navigation model presented [1] for-ani DOi/|DOi| + (1 — ) x DA;/|DA;.

mal groups. Section Il presents our navigation algorittun flt is important to note that other normalizations are pdssib

wireless robot swarms. Performance of the presented tigori @1d some are more effective than others in producing self-

is evaluated via extensive simulations in Section IV. Secy  Organized, coherent behavior. Typicallyjs chosen to bé /2.
concludes the paper with future research directions. Enhancements of the basic model include limited cones of

perception and limited turning rates. Another interesfeaure
of this basic swarming algorithm is that the decision vextor

. . . . N . gre spatially discontinuous. This means that slight chsuiige
This section b_rlefly_rewews the nawgatlon_model for anim a[elative positions may cause the direction vector to change
groups as Qescrlbed in [1]. Th_e perceptual field of ea_ch dn_| %ruptly responding to animals crossing zone boundarigs. T
is divided into zone of repulsmn (ZOR), zone of orientation, s ' major issue in biological applications where the
(ZO_O).anq zone of atFracuon (ZOA), as shov_vn In Fig. 1 leeg'ize of the zone of repulsion is relatively small. In mobile
a distribution of N animals, to coordinate with the ne'ghbor%etworking applications one desires well-spaced network t

n _d|I_fere_ntdz_0ner[_s,nzg1.|mq:l(Iocated at ?05|t|?hn vec_tofé anq achieve maximal coverage. In fact, a desired zone of repulsi
pointing in directionl);) will move awayfrom the neighbors in can be as much as 30% of the transmission radius. In simple

ZOR or movea_long W'th the neighbor in ZOO W.h'le MOVING yiscontinuous models like these, high swarm densities fead
towardsthe neighbors in ZOA, and therefore will have thre¢ - .. \o \ ohavior and no self-organization will occur

decision vectors, In leadership studies, there are two types of animals, tsade

II. BASIC SWARM MODEL

DR — Rij and non-leaders. Leaders possess extra information abeut t
! i |Ri;| environment. In our study, the leaders possess a veGtes
' D. P; — P; pointing to the desired destination, wherg, is
DO; = Z ﬁ (1) the position vector of destination. Leaders will set theswn
j€Szo0 Y orientation to be
Rji
DA = Y |R-?_| D;=BxVi+(1-p)xF,. @)
. ]t
j€8z0A where typically 3 is chosen to bel /2. Non-leaders will set

whereR;; = P, — P; is a displacement vector between tie  their new orientation to be
and j*" animal, andS;or, Szoo and Szp4 are the sets of
N . . . . . D; =V, 3)
indices of animals in the zones of repulsion, orientatiod an
attraction, respectively. SimilarlyS;| denotes the number of While only a small fraction of the animals possess destina-
elements in zone Z. The normalization of the decision vactdion information, the swarming rules effectively commuatie
is not discussed in [1], but we assume that each decisiontligs information to non-leaders through the rule-baseddyios
treated as a unit vector in the network simulations. of the swarm. Under proper conditions, the leaders will guid

If we assume that decision vectors are normalized as undn-leader neighbors toward a consensus direction through
vectors then the biologically inspired swarming algoritinm  covert leadership. Note that each animal, either leadeoor n
troduced in [1] is as follows. leader, will keep observing its proximity and continuouske



the coordination rules to interact with the neighbors withi

. . . . L Robot Rj @ )
different zones. Simulation results in [1] indicate thatraad e E 5
percentage leaders can effectively lead the group to thi des . . :
nation point. Tj Tt Tinteval

Robot Ri time
I11. DISTRIBUTED NAVIGATION ALGORITHM FOR T Tt + Tinteval
WIRELESSROBOT SWARMS Fig. 2. Example of estimating the positions of neighbors.
Although the navigation model described in [1] effectively
mimics the covert leadership behavior existing in anim BT e, Thitial Jitter
groups, this model cannot be directly applied to wireles®to | Tinterval Length of each time slot
swarms due to the constraints imposed by wireless communfZzer Radius of ZOR
i We therefore present a distributed and asynchenp2 Radlus of 20O
cations. We fore p ‘a distribu Y Rzon Radius of ZOA
autonomous navigation algorithm designed specifically fONR; R;] The distance between rob&; and robotR;
wireless robot swarms. P; The position vector of robofR2;
P, The position vector of the destination
\% The moving speed of each robot
A. System Model of Wireless Robot Swarms D; The moving direction vector of;
. DR; Vectors of R; for its neighbors in ZOR
The system model of wireless robot swarms makes thesp, Vectors of R, for its neighbors in ZOO
following assumptions. DA; Vectors of R; for its neighbors in ZOA
Assumption 1A wireless robot swarm is composed of ‘homo-_¢ Constant within|0, 1
, Jéi Constant within|0, 1
geneous’ robots, where each robot executes the same swatm
algorithm and possesses identical omni-directional egl TABLE |
communication capability. TERMS AND THEIR SEMANTICS IN ALGORITHM 1

Assumption 2Since the one-hop propagation delay in wireless

communications is usually very low (in the order of millisec

onds), the propagation delay is ignored such that each basad To address these issues, each rahdépendentlylivides the
packet can be received immediately after its transmission. time into time slots of fixed length. At the beginning of a new
Assumption 3Each robot is aware of its own position at altime slot, based on the information collected in the presiou
time. Such position information can be obtained via GPS time slot, each robot calculates its moving direction adivay
other localization algorithms. The position of the dedirais to the coordination rules and immediately broadcasts & hell
known only to a small set of covert leaders within the robgtacket containing its current position and new moving direc
swarm. tion. Then each robot will move along the decided direction
Assumption 4Each robot moves at the same spé&eand can until the next time slot. How the time slots help each robot to
turn its moving direction to any direction it desires. Howgv estimate the updated information about its neighbors isctisp
the model is readily to be extended to the situations where Figure 2. Each robot, sag;, maintains a neighbor cache,
robots move at different speed or have limited maximumvhich is reset to empty at the beginning of each time slot.
turning angle. During a particular time slot starting at timg;, upon R;’s
receiving a hello packet from robdt; at local time7}, R;
records the positiorP;; and the moving directiorD; of R;

together with timestamf’; in its neighbor cache. Using the

Adopting the idea of [1], the transmission area of each robgormation in the neighbor cache?; can estimate the new
(viewed as a cwclg C(_antereq at _the_r_obot.wnh radius bel%sitionij of R; at the beginning ofR;’s next time slotj.e.,
equal to the transmission radius) is divided into zone ofikep ime 7, 477, ... " using Equation 4, sinc&; is assumed to

sion, zone of orientation, and zone of attraction, respelsti ,ove alongD; at speed” until Tj + T}y,ervar, Which is later
However, to facilitate interactions between ‘neighbotiiodpots  {han Ty + Tontorval- '

using these three zones, we need to address the following two
critical issues. First, characteristics of wireless comioations
make it impossible for a robot to continuously receive the
position information from all of its neighbors. Robots camiyo
exchange information periodically. Second, potentialisioihs Algorithm 1 presents the autonomous navigation algorithm,
of wireless communications make it impossible for a robot @nd the notations used in the algorithm are listed in Table I.
receive the position information from all of its neighbotdtee Notice that Algorithm 1 is an event-driven algorithm, andtea
exact same time. As a result, when a robot needs to decideritbot executes this algorithm independently until the renti
moving direction according to the coordination rules, itsnuswarm arrives at the destination. Moreover, since the dlgor

be able to estimate the current positions and moving domesti only employs the local time of each robot, there is no need to
of its neighbors based on previously received information. synchronize the entire swarm.

B. Distributed Autonomous Navigation Algorithm

D.
Pj2 = le + (Tl + Enterval - T]) X —|D7| xV (4)
J



Algorithm 1 Autonomous Navigation Algorithm PHYSICAL and MAC Layer Protocols | 802.11b
1: OUTPUT: Robot R; periodically computes its movin bata Rate (MBPS) >
e . ) i P y p 9 Transmission Range (Meters) 354
direction D;; Broadcast Interval (Seconds) 2
Initial Jitter (Seconds) 1
Number of Robots 10 - 50
) Speed (MPS: Meters / second) 1-10
2: START upP . Percentage of Leader$o) 10 - 25
3: R; waits for a random tim&;, between[0, Tjister). « 05
4: if (R; is a leader robot)hen g 0.5
5. SetD; to be the direction% towards the destina- TABLE II
tion; SIMULATION CONFIGURATIONS
6: else
7. SetD, to be a random direction; IV. SIMULATION STUDY
8: end if We conduct extensive simulation to evaluate the performanc
9: R; broadcasts a hello packet containing its positiorand  of the proposed autonomous navigation algorithm with respe

10:

11:

12:
13:

14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38:

39:

moving directionD;; to two evaluation metricsaverage arrival ratioand average

R; resets its neighbor cache, schedules a timer for next timgival time, whose formal definitions are given below. In the
slot starting atl;; = Tjo + Tintervar, @nd starts moving simulation, the initial robot swarms are randomly deplowth
along D;; a density of 50 robots per square kilometer. We use QualNet as
END START UP the simulation platform. Table Il summarizes the configorat

of these simulations. All of the qualitative results presenn

this section are the average of 100 trials.

Definition 4.1: [Successful Arrivdl A robot swarm success-
fully arrives at the destination if the swarm is connected an
the destination point is within the transmission area okast
one robot leader.

Definition 4.2: [Average Arrival Ratifi For a robot swarm
using a given configuration and moving to the destinatian, it
average arrival ratio is the number of successful arrivaksr o
the number of total simulation runs.

Definition 4.3: [Average Arrival Timg For a robot swarm
using a given configuration and moving to the destinatioa, th
average arrival time is the average time that the swarm rteeds
arrive at the destination point over all of the successfrivals.

UPON EVENT Receive hello packet frolR; at T;;:

R; records the positio®; and moving directiorD; of R;
together with time stamff;; in its neighbor cache;
END UPON EVENT

UPON EVENT Timer ticks for new time slot &f},,:
D, = DR, = DOl = DAl = null;
for each recordR; in the neighbor cachdo
R; computes the distand®; R, |;
if (|R:R;j| < R.or) then
DR; = DR; + (p=p;
end if
if (Rzor < |R1RJ| < Rzoo) then
DO; = DO; + 17
end if
if (Rz00 < |RiR;| < R.o,) then
DA; = DA; + |1;;+§:‘

A. Evaluation of the Size of the Three Zones

In the first set of simulations, we set the moving speed
of each robot to be 5 MPS, and let a wireless robot swarm
containing 30 robots with5% leaders move to a destination
point about 5 kilometers away. We repeat this simulatioriwit

end if different configurations ofzor, Rzoo and Rz 4.
end for . L
it (N'R + null) then Figures 3(a), 3(b) and 3(c_) demonstrate the navigation pro-
D. = VE. cess of the robot swarm usingzor = 40 meters,Rzoo =
elsez [VR]’ 274 meters an®zo 4 = 40 meters. It takes about 1180 seconds

- RO; _ RA; .
Di = a x g + (1 a) X TRAT

if (R; is a leader robot)hen

Di =6 57+ (1= 8) < m=py;
end if
end if

R; broadcasts a hello packet containing its positigrand

moving directionD;;

R, resets neighbor cache, schedules a timer for next ti
slot starting atli,+1 = Tin + Tintervar, @and starts moving

along D;;
END UPON EVENT

for the swarm to get to the destination. Once arriving at the
destination, the entire swarm will move around the destinat
point, as shown in 3(c).

Figures 4(a) and 4(b) compare the performance of the robot
swarm using different combinations dtzor, Rzoo and
Rzoa (We increaseRzor and Rzpa from 0% to 10% of
the transmission radius, respectively). First, when tzessof
ﬁﬁngR and Rzo 4 are less tharl0% of the total transmission
range (area 1 in figure 4(a)) ,which implies a lar§goo
about80% of the transmission range, the robot swarms can
quickly move to the destination with00% average arrival
ratio. Second, as shown in area 2 in figure 4(a), Ryor



ranging from 0% to 20% of the transmission range, thereC. Evaluation of the Percentage of Leaders

is a valid range ofRfzoa ranging from5% to 70% of the  The hercentage of leaders in the robot swarms is certainly

transmission range, within which the robot swarms can @rmiyn important parameter in the presented navigation algorit
at the destination with arrival ratid00%. Also, when the |, he third set of simulations, we set the destination point

size of Rzor increases, the valid range éizo4 decreases ig pe 5 kilometers away, and let each robot Uggor = 40
correspondingly. Third, wheRzor is larger than22.5% of meters, Rzo0 = 274 meters andizos = 40 meters. Then
the transmission radius, the robot swarms fail to arrivehat t,, o gradually increase the percentage of leaders ftof to
destination most of the times. However, exceptions occleWhys ;g evaluate the performance of the navigation algorithm in
Rzor 18 betweens0% and 80% of the transmission radius, rohot swarms containing 10, 20, 30, 40, 50 robots and moving
where the robot swarms can actually arrive at the destimatig; e speed of 3 MPS, 6 MPS and 9 MPS. Figure 7 shows the
with high average arrival ratio by choosing a smjio 4. SUCh  ayerage arrival ratio. For small swarms containing 30 os les
results deserve more explanation. We track the movement,@fts; the arrival ratio is alway€)0%, and such result remain
the swarms and find that wheltzor is within this particular gapie with different leader percentage or moving speed; Fo
range, with small? 700 and k20, the robot swarms can still |36 swarms containing 40 or more robots, the averagesérriv
adjust to consensus moving directions towards the detmat,atig is ow initially. However, it can be effectively impved
and hence eventually arrive at the destination. Howeveégr af,iih increase of leader percentage, especially when edwt ro
successfully arriving at the destinatior_w, if no furtherim'gis moves at a high speed of 6 MPS or 9 MPS. Figure 8 shows
taken, only leader robots may stay, while non-leader robdls he corresponding average arrival time of Figure 7. In g@iner
continue moving and result in partition. Finally, we alsdio@ e faster the robots move, the quicker robot swarms artive a
that when the average arrival ratio decreases, the avenag# a e destination. However, we observe fluctuations for timto
time increases correspondingly. swarm containing 50 robots, for these particular robot svear
their average arrival time is unstable when the moving speed

is 9 MPS, since the average arrival ratio is very low.
B. Evaluation of the Number of Robots

We then evaluate how the number of robots in the swars Evaluation of the Moving Speed

would a_lffect t_he performance of our navigation algorithm. | Finally, we evaluate the presented navigation algorithingis
these simulations, each robot usegor = 40 meterskzoo  different moving speed. In these simulations, each robes us
= 274 meters and?zpa = 40 meters. We gradually increaser .. = 40 meters,Ryz00 = 274 meters andizo = 40

the number of robots from 10 to 50, and let the swarms Moygaters. We gradually increase the moving speed from 1 MPS
to a destination about 5 kilometers away. We test the predent; 19 MPS. and compare the performance of our algorithm
navigation algorithm in different configqrations_ usingdea i, robot swarms containing 10, 20, 30, 40 and 50 robots, and
percentagd 5%, 20% and25% coupled with moving speed 3 haying15%, 20% and25% leaders. Again, the destination point
MPS, 6 MPS and 9 MPS. Figure 5 shows the average arriyalapout 5 kilometers away. Figure 9 shows the average &rriva
ratio. As we can see, when the moving speed is low (3 MPS}tio of the robot swarms. For small swarms containing 30 or
the average arrival ratio i$00%. Such results remain stablejggg robots, the average arrival ratios remain stable when t
when the number of robots increases except for the cases;ffying speed increases. However, for large swarms with 40
large swarms containing 50 robots anabs or 20% leaders. or more robots, the increase of moving speed can significantl
However, when the moving speed is high (6MPS and 9 MPQjeqgrade the average arrival ratio when the leader perceigag
the average arrival ratio drops significantly when the nump%w_ We also observe that this negative effect can be effelgti

of robots is over a threshold number (40 when the moving,roved if the leader percentage increases. Figure 10 show
speed is 6 MPS; 35 when the moving speed is 9 MPS). Wes average arrival time of the robot swarms. In general, the
also notice that the increase of_Ieader percentage cameﬂg_c more robots a swarm has, the more time the swarm needs to
improve the average arrival ratio of large robot swarmsufég grrive at the destination. Furthermore, the increase afdea

6 shows the average arrival time. We observe that the m@j& centage would not improve the average arrival time.
robots a swarm has, the more time the swarm requires to arrive

at the destination. We also notice that once the number aftsob ) )

increases beyond a threshold number when moving at 6 MPs Summary of Simulation Results

or 9 MPS, the average arrival time increases sharply. This isThe key results of the all of the simulations can be sum-
because when the moving speed is high, it takes much manarized as follows. (1)When using proper configurations, th
time for large robot swarms to coordinate and make consenguesented navigation algorithm can effectively lead thieoto
decisions on the moving direction. Finally, when the movingwarms to the destination. Such results remain stable wihi
speed is low, the different leader percentage would notawgr wide range of swarm size, moving speed and leader percentage
the average arrival time; however, when the moving speed(® For large robot swarms containing 40 or more robots, the
high, more leaders could effectively reduce the averagesarr successful arrival ratio drops when the moving speed is high
time of large robot swarms. or the leader percentage is low. This implies that for a given



(a) (b) (©)
Fig. 3. The hollow circles stand for the non-leader robothijlavthe solid circles circles stand for the leader robotise Tot-line crossing in the up-right

conner is the destination.(a) The initial topology of theelss robot swarm. (b) The topology of the wireless robarewat 800 seconds. (c) The topology
of the wireless robot swarm at 1500 seconds.
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Fig. 4. Average arrival ratio and arrival time of a robot goozontaining 30 robots with5% leaders moving to a destination point about 5 kilometersyawa
(a) Average arrival ratio. (b) Average arrival time.
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Fig. 5. Average arrival ratio of the wireless robot swarmstaming 15%, 20% and 25% leaders and moving at the speed of 3 MPS, 6 MPS and 9 MPS,
respectively. (a) Moving Speed = 3 MPS. (b) Moving Speed = 6SM{) Moving Speed = 9 MPS.
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Fig. 8. Average arrival time of wireless robot swarms cantaj 10, 20, 30, 40, and 50 robots and moving at the speed of S, RMPS and 9 MPS. (a)

Moving Speed = 3 MPS. (b) Moving Speed = 6 MPS. (c) Moving SpeédMPS.

robot swarm where each robot uses fixed radii of ZOR, ZOO

V. CONCLUSIONAND FUTURE WORK

and ZOA, there is a threshold moving speed and a thresholdryis paper presents an autonomous navigation algorithm for
leader percentage in the presented algorithm. In ordefi@@e \yjreless robot swarms. Unlike traditional navigation peshs

better performance, the moving speed must be lower than §igy sojutions, our model aims to navigate robot swarms using
threshold value or the leader percentage must be highettiBancqert |eaders where only a small number of leader robots
threshold value. This points out an important future researossess the destination information, and both the leaders’

issue: to derive the thresholds of moving speed and leaggtntities and the destination information should remaicret

percentage using mathematical analysis.

at all time. Our model is fully distributed and robots coerdi
nate via wireless communications without any synchroropat
Simulation results show that through local coordinati@mesert
leaders can effectively help robot swarms make a consensus
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Fig. 10. Average arrival ratio of wireless robot swarms eamng 10, 20, 30, 40, and 50 robots and havirigs, 20%, and 25% leaders, respectively. (a)
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decision on moving direction and thus lead the robot swaams[t] K. Macek, M. Becker, and R. Siegwart, “Motion planningr fcar-

successfully arrive at the destination. Future researcludies like vehicles in dynamic urban scenarios,” Rroceedings of IEEE/RSJ

. . . International Conference on Intelligent Robots and Syst@iROS) 2006,
mathematically analyzing the thresholds of moving speetl an ;4375 4380, 9 YStROS)

leader percentage for the given configuration of robot swarng] V. John and X. Jing, “Real-time motion planning of mulépmobile

as well as extending our algorithm to more complicated sce- Manipulators with a common task objective in shared workrenments,”
. . . . . in Proceedings of IEEE International Conference on Robotias Automa-

narios, such as each robot has kinetic constraints and stati  on (1CrRA) 2007.

mobile obstacles exist in the environment.

REFERENCES

[1] I. Couzin, J. Krause, N. Franks, and S. Levin, “Effectieadership and
decision-making in animal groups on the moweATURE vol. 433 (7025),
pp. 513-516, 2005.

[2] N. Michael, C. Belta, and V. Kumar, “Controlling three ndénsional
swarms of robots,” inProceedings of IEEE International Conference on
Robotics and Automation (ICRA2006.

[3] D. V. Dimarogonas and K. J. Kyriakopoulos, “A connectidretween
formation control and flocking behavior in nonholonomic tiagent
systems,” inProceedings of IEEE International Conference on Robotics
and Automation (ICRA)2006.

[4] S. Berman, A. Halasz, V. Kumar, and S. Pratt, “Bio-insgir group
behaviors for the deployment of a swarm of robots to multigéstina-
tions,” in Proceedings of IEEE International Conference on Robotitd a
Automation (ICRA)2007.

[5] J. Baillieul and P. J. Antsaklis, “Control and commuriioa challenges in
networked real-time systems$?roceedings of the IEEEvol. 95, no. 1, pp.
9-27, January 2007.

[6] T.-Y.Liand H.-C. Chou, “Motion planning for a crowd of bots,” in Pro-
ceedings of IEEE International Conference on Robotics antbration
(ICRA), vol. 3, 2003, pp. 4215-4221.





