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Abstract—This paper considers two asynchronous identical
mobile robots in an environment devoid of any landmarks or
common coordinate system. The robots, executing their own
instance of the same algorithm, must cooperate to end up at
the exact same location (not predetermined) within a finite time.

The problem, known as gathering, is the simplest form of
spontaneous agreement that can be reached between the robots.
This simple problem is however notoriously impossible with two
such robots. Surprisingly, the problem was shown to be solvable
for three robots or more, adding a weak assumption to help
break any potential symmetry in the system. Prior work has
shown that the problem could be solved by letting each robot have
access to some compass, provided that the divergence between the
compasses is at most 45◦. The question remained open, however,
as to whether the problem could still be solved with a larger
divergence.

In this paper, we present a distributed algorithm that solves
the gathering problem with two asynchronous robots, when their
compasses can differ by any angle less than 180◦, which is
obviously the largest divergence for which the compasses can
still bring any useful information.

I. INTRODUCTION

During the past decade, increasingly more research has been

focussing on the coordination and self-organization of mobile

robot systems involving multiple simple robots working to-

gether, rather than a single highly-complex one. This view

is motivated by a variety of reasons, including reduced man-

ufacturing costs, increased fault resilience, improved overall

maneuverability, or simply better polyvalence of the system.

The challenge is however to ensure enough coordination so

that the multiple robots appear as a single coherent system

rather than as a set of independent entities.

The coordination of groups of robots has been studied from

various perspectives (see [12] for a survey).

In Swarm intelligence (e.g., [9], [10], [11]), the approach

consists in setting simple behaviors to individual robots and

studying the global behavior that emerges from the interactions

between these robots, for instance, inspired by the behavior of

social insects. This approach is also called behavior based.

An other kind of approach to the problem of studying multi-

robot systems, is that of Kawauchi, Inaba, and Fukuda [13]

who have studied dynamically reconfigurable robotic system,

consisting of several cells that can physically detach and

combine autonomously according to the assigned task. In

the same perspective is the work of Walter et al. [16] in

metamorphic robot system.

Some of the studies addressed the problem from engineering

stand point. For instance, the work of Belta et al [17], in

planning and control of robots’ motions.

Sometimes [14], coordination is also seen as an optimization

problem and addressed by metaphors such as a free market

economy. In networked robotics (e.g., [15]), the problem is

sometimes expressed as a global control system that relies on

tight real-time network guarantees. In distributed algorithms

and self-stabilizing systems (e.g., [5], [8]), the aim is to

provide a formal representation of multi-robots systems and

coordination problems in which provably correct solutions

can be developed and verified. All approaches bring light on

different parts of the puzzle but much remains to be done

before the pieces can actually be put together.

In this work, we consider the latter approach and focus on

the interactions between the robots. We consider a system in

which the robots are represented as points moving in a plane.

Each robot executes its own instance of the same algorithm

which consists of repeatedly (1) observing the environment,

(2) computing a destination, and (3) moving toward it. Each

action can take arbitrarily long, and a robot can also be idle for

an arbitrary duration. The robots are not synchronized, they

are identical (i.e., the algorithm cannot distinguish them), and

they do not retain any information between activations. This

last assumption is useful both for memory management and

because an algorithm designed for such robots in inherently

self-stabilizing.1

We focus on an agreement problem called gathering (also

known as rendez-vous or point formation) in a system with no

agreement on a global coordinate system and in the absence

of any landmarks in the environment. In short, the problem

requires that the robots, initially located at random locations,

move in such a way that they eventually end up at the

exact same location, not determined a priori. The algorithm

must ensure that the final configuration is obtained within a

finite number of steps, from any initial situation and in every

possible execution. While being very simple to express, this

problem has the advantage of retaining the inherent difficulty

1Self-stabilization is the property of a system which, starting in an arbitrary
state, always converges toward a desired behavior [2].
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of agreement, namely the question of breaking symmetry

between the robots. Among other things, being able to gather

at a point means that the robots have the inherent ability to

agree on a common origin.

In their SYM model [8], referred to as semi-synchronous

model, Suzuki and Yamashita proposed an algorithm to solve

the gathering problem deterministically in the case where

robots have unlimited visibility. For a system with two robots,

they have proven that it is impossible to achieve the gathering

of two stateless mobile robots that have no common orienta-

tion in a finite time.

Prencipe [6] has shown that gathering stateless robots cannot

be done deterministically without some additional assump-

tions. For instance, gathering is possible if robots share a

common direction, as given by perfect compasses [3]. Sim-

ilarly, if robots can detect multiplicity (i.e., count robots that

share the same location) gathering is possible for three or more

robots [1].

Our work is motivated by the pragmatic standpoint that

(1) compasses are error-prone devices in reality, and (2) mul-

tiplicity detection allows for gathering in situations with more

than two robots.

In our recent work, we have proposed a self-stabilizing

algorithm with which two asynchronous robots can gather in

finite time using inaccurate compasses with a divergence of

as much as 45◦ [7]. 2 The question was still open whether

it is also possible to solve the problem when the compasses

diverge by a larger angle? We addressed the question, and the

answer is yes.

In this paper, we propose a self-stabilizing algorithm with

which a pair of asynchronous mobile robots can gather in finite

time, provided that their compasses diverge by less than 180◦.

This is the main contribution of this paper, and this closes the

question since it is obviously impossible to do better than this.

The remainder of this paper is organized as follows. Section

II describes the system model and the basic terminology.

In Section III, we describe our gathering algorithm based

on compass inconsistencies and give a tight bound. Finally,

Section IV concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

A. System Model

In this paper, we consider the CORDA model of Prencipe [5],

which is defined as follows. The system consists of a set

of autonomous mobile robots R = {r1, · · · , rn}. A robot is

modelled as a unit having computational capabilities, which

can move freely in the two-dimensional plane. In addition,

robots are equipped with sensor capabilities to observe the

positions of other robots, and form a local view of the world.

The robots are modelled and viewed as points in the Euclidean

plane.3 The local view of each robot includes a unit of length,

2A similar result was obtained and presented by Imasu et al. [4] at a
domestic workshop in Japan.

3We assume that there are no obstacles to obstruct vision. Moreover, robots
do not obstruct the view of other robots and can ”see through” other robots.

an origin, and the directions and orientations of the two x and

y coordinate axes as given by a compass.

We further assume that the robots are stateless, meaning

that they keep information neither on previous observations

nor on past computations.

The cycle of a robot consists of four states: Wait-Look-

Compute-Move.

• Wait. In this state, a robot is idle. A robot cannot

stay permanently idle (see Assumption 2) below. At the

beginning all robots are in Wait state.

• Look. Here, a robot observes the world by activating its

sensors, which will return a snapshot of the positions of

all other robots with respect to its local coordinate system.

• Compute. In this state, a robot performs a local compu-

tation according to its algorithm. The algorithm is the

same for all robots, and the result of the compute state is

a destination point.

• Move. The robot moves toward its computed destination.

The robot moves toward the computed destination, but

the distance it moves is unmeasured; neither infinite,

nor infinitesimally small (see Assumption 1). Hence, the

robot can only go towards its goal, but the move can end

anywhere before the destination.

Finally, in the model, there are two limiting assumptions

related to the cycle of a robot.

Assumption 1: It is assumed that the distance traveled by

a robot r in a move is not infinite. Furthermore, it is not

infinitesimally small: there exists a constant δr > 0, such that,

if the target point is closer than δr, r will reach it; otherwise,

r will move towards it by at least δr.

Assumption 2: The time required by a robot r to complete a

cycle (Wait-Look-Compute-Move) is not infinite. Furthermore,

it is not infinitesimally small; there exists a constant ǫr > 0,

such that the cycle will require at least ǫr time.

B. Definitions

Definition 1 (Relative north): A relative north
−→
NA(t) is a

vector that indicates a north direction for some robot A at

some time t.
Definition 2 (Inaccurate compasses): Informally,

compasses of a pair of robots A and B are inaccurate

by some angle θ iff., the absolute difference between the

north of A and B,
−→
NA and

−→
NB is at most θ at any time t.

In addition, the north directions of A and B are invariant

over time. The special case when θ = 0 represents perfect

compasses.

Formally, compasses are inaccurate by some angle θ iff.,

the following two properties are satisfied:

1) Inaccuracy: ∀A, B ∈ R, ∀t, |∡
−→
NA(t)

−→
NB(t)| ≤ θ,

2) Invariance: ∀A, ∀t, t′,
−→
NA(t) =

−→
NA(t′).

In the sequel, we consider compasses that diverge by an angle

strictly less than 180◦. Obviously, compasses that could differ

by an angle of 180◦ would provide no information at all.

Hence, the compasses considered in this paper represent the

worse inaccuracy in compasses. Nevertheless, we will show

that we can solve the gathering of two stateless robots.
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Side move south.
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(c) π + θ < α ≤
2π, then A does not
move: No move.

Fig. 1. Principle of the algorithm.

TABLE I
COMBINATION OF MOVES FOR ROBOTS A AND B ALLOWED BY THE

ALGORITHM WHEN θ < π. THE TABLE IS SYMMETRICAL.

Robot A
0 < α ≤ π π < α < π + θ π + θ < α ≤ 2π

Robot B (direct move) (side move south) (no move)

0 < α ≤ π © © ©
(direct move)

π < α < π + θ © © ©
(side move south)

π + θ < α ≤ 2π © © not applicable
(no move)

III. GATHERING WITH VERY INACCURATE COMPASSES

In this section, we provide an algorithm for solving the

gathering of two asynchronous stateless mobile robots when

their compasses diverge by an angle θ < π.

A. Algorithm Overview

Consider a local x-y coordinate system where, the positive

y-axis points North and hence the positive x-axis points East.

Let also the location of the robot be the origin of its local

coordinate system.

Let A be some robot, and let B be the position at which

the other robot is located. We denote by α the angle between

the y-axis of robot A, namely yA and the segment AB in

clockwise direction. That is, α = 0 when B is on the positive

yA axis and α = π/2 when B is on the positive x-axis of robot

A. Finally, let θ be the difference in north direction indicated

by the two local coordinate systems of robot A and B. In our

algorithm, we assume that 0 ≤ θ < π. Then, robot A decides

its movement as follows:

• If 0 < α ≤ π, then robot A moves directly on the segment

AB to B. We refer to this move as direct move.

• If π < α < π + θ, then robot A moves towards its south

by the distance ‖AB‖. We will refer to this move as side

move south.

• If π + θ < α < 2π, then robot A does not move. We

refer to this move as no move.

The pseudo-code is given in Algorithm 1, and Table I

summarizes the different moves of robot A and B.

Algorithm 1 Gathering two of asynchronous robots, when

compass divergence θ < π.

1: if (r sees only itself) then {gathering terminated}
2: Do nothing();
3: else
4: B := position of the other robot B;
5: yA := y-axis of robot A;
6: α := angle between yA and AB in clockwise direction;
7: if (0 < α ≤ π) then {direct move}
8: robot A moves to robot B;
9: else if (π < α < π + θ) then {side move south}

10: robot A moves toward its south by distance ‖AB‖;
11: else if (π + θ < α ≤ 2π) then {no move}
12: Do nothing();
13: end if
14: end if

A

B

yA=yB 

(a) Situation (1).

A

yA 

B

yB 

(b) Situation (2).

Fig. 2. Situations of A and B where θ = 0.

B. Description of Situations

In this section, we define the different possible situations

of robot A and B, when their compasses are inconsistent by

0 ≤ θ < π. Without loss of generality, we consider that the

north of robot B, denoted by yB is always on the right hand

side of the north of robot A, denoted by yA. Thus, we define

the following 10 situations4:

• Situation (1): yA = yB , and robots A and B are located

on the same y-axis (refer to Fig. 2(a)).

• Situation (2): yA of robot A and yB of robot B are

parallel. Besides, A and B are not located on the same

y-axis (refer to Fig. 2(b)).

Situations (1) and (2) refer to cases when θ is equal to

zero. In the following cases, we consider that θ is different

than zero. Let I be the intersection of yA and yB . Then, four

cases arise when both A and B are not at I .

• Situation (3): A is below I , and B is above I (see

Fig. 3(a)).

• Situation (4): Both A and B are above I (see Fig. 3(b)).

• Situation (5): A is above I , and B is below I (see

Fig. 3(c)).

• Situation (6): Both A and B are below I (see Fig. 3(d)).

Finally, we distinguish the following four cases (refer to

Fig. 4) when either robot A or B is at I .

• Situation (7): A is at I and B is above I .

• Situation (8): A is above I and B is at I .

4If the north of robot B is on the left hand side of the north of robot A,
then by symmetry we will have the same 10 situations.
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Fig. 3. Situations of A and B where θ 6= 0 and both A and B are not at I .
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(d) Situation (10).

Fig. 4. Situations of A and B where θ 6= 0 and either A or B is at I .

• Situation (9): A is at I , and B is below I .

• Situation (10): A is below I , and B is at I .

Due to lack of space, the proofs are omitted. Complete

proofs of correctness are however available in a longer version

of this paper [18].

IV. CONCLUSION

In this paper, we presented a self-stabilizing algorithm to

gather, in a finite time, two stateless asynchronous mobile

robots equipped with compasses that can differ by an angle

strictly less than 180◦. Obviously, this is the largest divergence

for which compasses can still bring useful information since

two compasses that can differ by an angle of up to 180◦

provide no information at all.

The natural problem of generalizing our algorithm to an

arbitrary finite number of robots remains open. We conjecture

that a smaller angle of divergence of compasses is required.

Another interesting issue to investigate is to consider the

variance in the north directions indicated by compasses over

time, and how it affects the solvability of the gathering

problem. This remains an open question.

ACKNOWLEDGMENTS

Work supported by MEXT Grant-in-Aid for Young Scien-

tists (A) (Nr. 18680007).

REFERENCES

[1] Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots
gathering problem. In: Proc. Intl. Colloquium on Automata, Languages
and Programming (ICALP’03). (2003) 1181–1196

[2] Dolev, S.: Self-Stabilization. MIT Press (2000)
[3] Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of

asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–
3) (2005) 147–168

[4] Imazu, H., Itoh, N., Katayama, Y., Inuzuka, N., Wada, K.: A Gath-
ering Problem for Autonomous Mobile Robots with Disagreement in
Compasses (in Japanese). In: 1st Workshop on Theoretical Computer
Science in Izumo, Japan (2005) 43–46

[5] Prencipe, G.: CORDA: Distributed coordination of a set of autonomous
mobile robots. In: Proc. 4th European Research Seminar on Advances
in Distributed Systems (ERSADS’01), Bertinoro, Italy (2001) 185–190

[6] Prencipe, G.: On the feasibility of gathering by autonomous mobile
robots. In: Proc. Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO’05). (2005) 246–261
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