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Abstract—A self-reconfigurable robot is a robotic device that
can change its own shape. Self-reconfigurable robots are com-
monly built from multiple identical modules that can manipulate
each other to change the shape of the robot. The robot can
also perform tasks such as locomotion without changing shape.
Programming a modular, self-reconfigurable robot is however a
complicated task: the robot is essentially a real-time, distributed
embedded system, where control and communication paths often
are tightly coupled to the current physical configuration of
the robot. To facilitate the task of programming modular, self-
reconfigurable robots, we present the concept of distributed
control diffusion: distributed queries are used to identify modules
that play a specific role in the robot, and behaviors that
implement specific control strategies are diffused throughout the
robot based on these role assignments. This approach allows
the programmer to dynamically distribute behaviors throughout
a robot and moreover provides a partial abstraction over the
concrete physical shape of the robot.

We have implemented a prototype of a distributed control
diffusion system for the ATRON modular, self-reconfigurable
robot. The prototype relies on a simple virtual machine with
a dedicated instruction set, allowing mobile programs to migrate
between the modules that constitute a robot. Through a number
of simulated experiments, we should how a single rule-based
controller program implemented using distributed control diffu-
sion can perform simple obstacle avoidance in a wide range of
different car-like robots constructed using ATRON modules.

I. INTRODUCTION

A self-reconfigurable robot is a robot that can change its
own shape. Self-reconfigurable robots are built from multiple
identical modules that can manipulate each other to change
the shape of the robot [4], [10], [12], [15], [18], [23]. The
robot can also perform tasks such as locomotion without
changing shape. Changing the physical shape of a robot allows
it to adapt to its environment, for example by changing from
a car configuration (best suited for flat terrain) to a snake
configuration suitable for other kinds of terrain.

Programming self-reconfigurable robots is complicated by
the need to (at least partially) distribute control across the
modules that constitute the robot and furthermore to coordinate
the actions of these modules. Algorithms for controlling the
overall shape and locomotion of the robot have been inves-
tigated (e.g. [5], [21]), but the issue of providing a high-
level programming platform for developing controllers remains
largely unexplored. Moreover, constraints on the physical size
and power consumption of each module limits the available
processing power of each module. A typical consequence of

the limited computational resources of each module is that
the behavior of each module is programmed statically before
deployment, resulting in a paradoxical scenario where the
hardware can evolve dynamically through self-reconfiguration
but the software cannot.

In this paper, we present a novel approach to programming
modular, self-reconfigurable robots, based on the concept of
distributed control diffusion: distributed queries are used to
identify modules that play a specific role in the robot, and be-
haviors that implement specific control strategies are diffused
throughout the robot based on these role assignments. In more
detail, queries on the physical structure of the robot allows
the program to identify specific parts of the robot such as
“wheel”, “leg”, or “arm”, independently of the configuration of
the rest of the robot. The result of a query is to assign roles to
selected modules. A role can directly activate preprogrammed
behaviors in a module, similar to rule-based programming.
Moreover, a role serves as an addressing mechanism when
diffusing behaviors throughout the robot in the form of mobile
programs. In effect, this allows new behaviors to be dynami-
cally installed in a running robot, enabling dynamic software
update scenarios and facilitating interactive experimentation
with controllers. The concept of distributed control diffusion
is based on the concept of directed data diffusion, as known
from sensor networks [8], [9], albeit heavily adapted to take
the control aspect of robots into account.

We have implemented a prototype of distributed control dif-
fusion for the ATRON modular, self-reconfigurable robot [10],
[11]. Our implementation is based on a simple virtual ma-
chine, which includes a bytecode interpreter as well as a
simple network stack, memory manager, and task scheduler.
The network stack provides compass and spatial coordinate
information throughout the robot and implements broadcast
communication for arbitrary module configurations without
the assumption of having a unique identifier for each module.
The virtual machine runs on the physical ATRON modules,
the complete controller program (including hardware interface
libraries and infrared communication stacks etc.) consumes
less than 2K of RAM and less than 20K of program memory.
Complete experiments with locomotion, obstacle avoidance,
and basic self-reconfiguration have been performed in simula-
tion.
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Fig. 2. Simulated car configurations: basic 4-wheels, long 6-wheels, and collaborating 12-wheels.
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Fig. 1. Basic car configuration, physical modules

A. The ATRON Self-Reconfigurable Robot

Outline

The rest of this paper is organized as follows. First, Sec-
tion II provides background information on self-reconfigurable
robots. Next, Section III presents the concept of distributed
control diffusion, Section IV describes various implementation
issues, and Section V details our experiments. Last, Section VI
presents related work, and Section VII concludes.

II. BACKGROUND: SELF-RECONFIGURABLE ROBOTS

The ATRON self-reconfigurable robot is a 3D lattice-type
robot [10], [11]. An ATRON module is spherical, is com-
posed of two hemispheres, and can actively rotate the two
hemispheres relative to each other. A module may connect to
neighbor modules using its four actuated male and four passive
female connectors. The connectors are positioned at 90 degree
intervals on each hemisphere. Eight infrared ports, one below
each connector, are used by the modules to communicate with
neighboring modules and sense distance to nearby obstacles
or modules. A module weighs 0.850kg and has a diameter
of 110mm. Currently 100 hardware prototypes of the ATRON
modules exist. Motion constraints on the modules affect their
ability to self-reconfigure. The single rotational degree of
freedom of a module makes its ability to move very limited: in
fact a module is unable to move by itself. The help of another
module is always needed to achieve movement. All modules
must also always stay connected to prevent modules from
being disconnected from the robot. They must avoid collisions
and respect their limited actuator strength: one module can lift

two others against gravity. As a concrete example, consider
the robots shown in Figures 1 and 2, which are different
configurations for car-like robots, physical and simulated.
These robots have a number of “wheels”: modules that are in
contact with the floor, that can turn freely, and that are aligned
in the same direction. Turning the wheels allows a program to
propel the robot in a given direction. The 12-wheeled “joined”
configuration simulates two cars that have been linked by a
bridge and must coordinate their movements.

Other examples of self-reconfigurable robots include the
M-TRAN and the SuperBot self-reconfigurable robots [12],
[18]. These robots are similar from a software point of view,
but differ in mechanical design e.g. degrees of freedom per
module, physical shape, and connector design. This means that
algorithms controlling change of shape and locomotion often
will be robot specific, however general software principles are
more easily transferred.

A. Programming self-reconfigurable robots

General approaches to programming the self-reconfigurable
ATRON robot include gradients, metamodules, and rule-based
control [1], [5], [13], [14]; we return to some of these later in
the context of related work. In the context of this article, we are
more interested in role-based control, which is a generalization
of rule-based control. Role-based control is an approach to
behavior-based control for modular robots where the behavior
of a module is derived from its context [20], [22]. The behavior
of the robot at any given time is driven by a combination
of sensor inputs and internally generated events. Roles allow
modules to interpret sensors and events in a specific way, thus
differentiating the behavior of the module according to the
concrete needs of the robot.

All ATRON modules are equipped with numerous infrared
sensors allowing them to sense nearby objects.1 In the car
example, all modules could collect information about their
immediate surroundings, for example allowing them to detect
presence and dimensions of obstacles. Aggregating this sensor
information and using it to control the overall behavior of
the robot is one of the key challenges in programming the
ATRON system. Moreover, coordinating the movement of the

1Note that due to implementation issues, the infrared proximity sensors are
currently only available in the simulator.



individual modules is a key challenge; the wheels and axles
must for example work together to move the car.

III. DIRECTED CONTROL DIFFUSION

A. General principles

Directed control diffusion allows the programmer to abstract
over the physical configuration of a modular robot. The key
idea is to assign a behavioral role to each module depending on
the properties of the module, including its physical position,
current behavior, and connectivity to other modules. A role
can activate selected behaviors stored natively in a module, or
be used to identify the module as a target for behavior that is
diffused throughout the robot using mobile code.

Modular robots often have a limited computational power,
due to constraints on physical size, price, and battery power.
For this reason, a general-purpose virtual machine such as the
Java Virtual Machine cannot realistically be used for executing
mobile code inside the robot. We propose to use an approach
based on domain-specific languages, where the virtual machine
is tailored to the problem domain. Specifically, the instruction
set of the virtual machine is dedicated to the characteristics
modular robot system, and can even be extended to support
the specific application area being targeted by the programmer.
Moreover, to facilitate role selection, the virtual machine
maintains information about the local configuration of the
robot and what roles are currently active.

Directed control diffusion does not explicitly target the issue
of self-reconfiguration. Self-reconfiguration can be done using
behaviors distributed to modules that play a specific role, but
this is orthogonal to the principle of directed control diffusion.
Nevertheless, self-reconfiguration can change the properties
of a module, such as its physical position or connectivity.
Thus, self-reconfiguration should in some cases trigger a new
assignment of roles throughout the robot, potentially changing
the role of all the modules that constitute the robot; we cur-
rently require the programmer to trigger this role reassignment
manually based on knowledge of when the robot is in a stable
configuration where role assignment is meaningful.

B. Directed control diffusion on ATRON

We have implemented directed control diffusion for the
ATRON modular, self-reconfigurable robot. Each module is
programmed with identical controller programs that provide
a virtual machine with a network stack and a bytecode
interpreter. Throughout this paper, we refer to our virtual ma-
chine implementation as the ATRON DCD-VM. The overall
functionality of the virtual machine is illustrated in Figure 3.

The network stack supports messages containing notifica-
tions of role changes, control commands, mobile programs,
and notification of self-reconfiguration. Notifications of neigh-
boring role changes allows each module to maintain infor-
mation about the local configuration. A control command
activates a specific functionality in a module, either a generic
functionality such as moving an actuator, a functionality
implemented by a bytecode program loaded on the module,
or a domain-specific functionality written in native code and

stored in the module with the interpreter. All messages carry a
context, a three-dimensional coordinate and compass direction
relative to the origin of the message; coordinates and compass
direction are automatically updated before transmission to
another module. Mobile programs maintain the origin infor-
mation when moving from one module to another, and pass
this origin information when spawning new mobile programs
or sending out commands. Thus, if a single module initiates
a set of behaviors in the robot by distributing mobile code
throughout the robot, all these behaviors will share a common
coordinate system and compass direction. Control commands
and mobile programs are not executed directly when they are
received, but are enqueued as tasks that are executed in turn.
Last, notifications of self-reconfiguration are simply used to
reset the context of the module, to facilitate reprogramming
the module for a new usage context.

The bytecode interpreter is used to execute bytecode pro-
grams; mobile programs are executed when they move onto a
module, but a bytecode program can also store a new control
command for a specific role, install an event handler for a
sensor, or schedule itself for re-execution (thus implementing
a recurring behavior). The interpreter has instructions for
querying the module for its compass direction and position in
the coordinate system, the connectivity to other modules, the
role of the module and the modules that it is directly connected
to, as well as reading the sensors of the module such as the
accelerometer and the joint position. Moreover, instructions
allow the program to assign a new role to the module and
issue control commands.

C. Query and command language

Modules are programmed using a bytecode language; the
development of one or more high-level languages is considered
future work. The semantics of the bytecode language are as
follows. A bytecode program always executes in a context
that defines the compass direction and coordinates relative to
its origin (the module that first evaluated the program). The
context also defines a fixed-size stack for storing intermediate
results, e.g., a conditional branch will pop the value at the top
of the stack and jump to the specified instruction number if
the value is non-zero.

Instructions can be divided into five categories: general-
purpose instructions, queries, commands, and program control.
General-purpose instructions include conditional branching,
logical operators, an equality operator, and pushing a constant
onto the stack. Query instructions inspect the context and the
physical state of the module, as described earlier. Command
instructions allow the program to control the actuators of the
module, for example by turning the main joint or opening
a connector. Program control instructions can terminate a
program or migrate a program to other modules. Moreover,
program control instructions can also install bytecode se-
quences carried inside the program as new control commands
for a specific role or as handlers for specific events, such as
proximity detection on a given connector.
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Fig. 3. The ATRON DCD-VM: messages are received, enqueued as tasks, and processed either by actuating the module or by the interpreter

The values manipulated by the instructions are always 8-
bit bytes, either signed or unsigned. Signed bytes are used
to represent integers, whereas unsigned bytes are used to
represent connector sets: there are exactly 8 connectors on
an ATRON module, so an 8-bit bit-vector can be used to e.g.
represent the set of connectors that are connected to another
module.

A common complication when working with the ATRON
robot is to know what connector to use for actuation or
communication. To facilitate programming controllers, we use
the concept of a virtual connector: using the spatial coordinate
and rotational information stored in the context, the physical
connectors can be assigned virtual connector numbers based
on how the module is physically rotated. For example, for
a module with a north-south rotation axis, virtual connector
number 2 is always upwards and facing forwards.

D. Communication

Messages containing mobile programs and control com-
mands are dispersed throughout the robot using broadcast
communication. Broadcast communication is however non-
trivial to implement for arbitrary structures of ATRON mod-
ules. Messages that are received on one connector must be
retransmitted on those connectors where modules are present,
but structures may be cyclic and a given message must only
be delivered once to each module. Deciding if a message
has already been seen is critical for avoiding endless loops
of message retransmissions, but is non-trivial given that the
number of modules may be arbitrarily large and that mes-
sages may arrive out-of-order. Moreover, it is advantageous
if message routing does not rely on each module having a
unique identifier, since this improves scalability and facilitates
combining arbitrary structures to form new robots.

As messages containing mobile programs or control com-
mands are transmitted throughout the robot, the network
stack maintains the context of the message: the spatial co-
ordinate and compass direction relative to the origin of the
message. The spatial coordinate supports querying the robot
configuration, but also enables the network stack to discard
messages that it has already seen, since the origin of the
message is identical no matter what route the message has been
transmitted through the robot. In more detail, on the sender

side, each module maintains a counter that is incremented
when a new message is generated, and the value of this counter
is included in the message. On the receiver side, each module
maintains a cache of messages that it has seen. The cache is
indexed by the spatial coordinate stored in the message (and
hence implicitly by the origin of the message), and uses a
sliding bit-vector to keep track of what message counters have
been received from each origin. When full, the cache uses a
first-in first-out discipline to discard entries.

The size of the message cache is critical for avoiding
repeated messages. If the cache size is greater than or equal
to the number of modules in the robot, repeated delivery
of messages can in most cases be avoided. The sliding bit-
vector allows each module to keep track of some number of
messages from each of the other modules, but since messages
containing a mobile program only are retransmitted when
they explicitly execute the instruction MIGRATE_CONTINUE,
the delay between receiving two copies of a message can
be arbitrarily long. If the message counter in an incoming
message is outside the sliding bit-vector, a heuristic is used to
determine if the message is old, and should be discarded, or is
new, and should cause the bit-vector to slide to accommodate
the new message counter. If the heuristic fails, messages may
be lost in the former case or duplicated in the latter case. In
our experiments, a message cache of 16 entries taking up 144
bytes in total size was sufficient, but depending on the expected
size of the robot and the complexity of the communication,
the parameters of the cache may need to be optimized to avoid
communication problems.

E. Example

We now demonstrate how distributed control diffusion can
be used to write a single, general controller program that
can be dynamically deployed to robots that have wheels (see
Figure 2 earlier in the paper). For readability, we use a C-like
syntax to represent the bytecode programs, even though no
compiler from this syntax to bytecode has been implemented.
As an example, we will implement a controller that causes
any car robot (see definition below) to move forwards until it
encounters an obstacle, at which time the robot should stop.
More elaborate examples can be found in Section V.



void find_wheels() {
if(center_position()==EAST_WEST
&& size(connected())==1
&& size(connected_dir(UP))==1) {
if(size(connected_dir(EAST))==1)
set_role_notify(RIGHT_WHEEL);

else
set_role_notify(LEFT_WHEEL);

} else
migrate_continue();

}

void install_obstacle_avoidance() {
if(instanceof(role(),RIGHT_WHEEL)
&& get_module_y()>0)
install_handler(PROXIMITY_5, {
send_command(WHEEL,ROTATE_STOP,0);
clear_handler(PROXIMITY_5);

});
else
migrate_continue();

}

Fig. 4. Program fragments for finding wheels (left) and for installing obstacle avoidance handlers (right).

The controller is implemented using a combination of
mobile programs and control commands. Two of the mobile
programs are shown in Figure 4. First, a query mobile program
(shown in Figure 4, left) is used to identify the wheels
in the robot. For simplicity, any module with a rotational
axis perpendicular to the direction we wish to go in can be
considered a wheel if it only has a single, upwards connection.
(For the ATRON, a single upwards connection means that
the other hemisphere is free to rotate and hence can act
as a wheel.) Note that we assume that the robot has been
configured with car-motion as a purpose: we do not detect any
orthogonally aligned modules that may cause friction when
moving forward, and free-hanging modules that cannot reach
the surface are still considered wheels. The mobile program
queries the position and connectivity properties of the module,
and sets the role to either left or right wheel, as appropriate.
When setting the role, any neighboring modules are notified
of the role change, facilitating queries that include the role of
neighboring modules. (For example, an axle has a wheel as a
neighbor.)

Once the wheels have been identified, appropriate control
commands turning the main actuator in either direction can be
sent to the left and right wheels, respectively. Moreover, event
handlers for detecting obstacles using the proximity sensors
can be installed in the front modules of the robot. Installation
of event handlers is done by another mobile program (shown
in Figure 4, right). Note that for simplicity, we assume that
the origin of the program is located at the center of the
robot, and moreover we install proximity sensor handlers in
all modules in the front part of the robot, relative to the
origin module. Installing event handlers in modules inside the
robot is appropriate for the simulator but would most likely
be problematic in practice. The handler is installed for the
sensor attached to a particular connector, corresponding to the
front side of the module. The action to perform when the
event is triggered is included in the program, and is stored in
the module after the program terminates. When the event is
triggered, the module that detected the obstacle sends out a
stop command to all wheels in the robot. Thus, the controller
has effectively been distributed to the relevant modules of the
robot.

F. Discussion
Directed control diffusion provides a flexible means to

programming a modular robot, but also has a number of
liabilities in terms of scalability. Scalability of communication
is an issue since we employ broadcast communication to
distribute code and invoke commands using the role-based
addressing scheme. A convenient solution to this issue is to
use the role information contained in a message to route the
message only to those modules that are in the target role,
similarly to how gradients are formed in sensor networks
and used to efficiently route data to a central sink [8], [9].
The implementation of such a role-based routing scheme is
however considered future work.

Scalability in terms of behavior is another issue since
the proposed bytecode language by design is intended to
be simple and thus most likely will be inappropriate for
expressing controllers for realistic scenarios involving physical
hardware. As a solution we propose a generative approach
where new functionality is prototyped using bytecodes but can
subsequently be compiled to C code that becomes available as
a new bytecode instruction. This way, prototype functionality
can be dynamically deployed to the robot (facilitating exper-
imentation), whereas stable code is eventually implemented
in C, thus allowing a general-purpose language to be used to
enrich the initial implementation with richer functionality. The
link between bytecodes and more stable code in C is that the
C code becomes available as a new bytecode instruction; con-
figuration is currently done manually but should be supported
by appropriate compilation tools.

IV. IMPLEMENTATION

A. Software architecture
The ATRON DCD-VM is structured in terms of a number

of logical subsystems: an interpreter, a scheduler, a commu-
nication stack, and a memory manager. The interpreter is
implemented as a simple switch-case interpreter. Safety checks
ensure that stack overflow/underflow is not possible, and that it
is not possible to set the program counter outside the program’s
instruction range. Essentially, we see the interpreted language
as a scripting language that only performs simple operations,
for which reason execution speed is not currently a significant
issue.



All incoming communication is processed by an interrupt
handler in the communications stack. To allow communication
to start long-running operations such as interpreting a program,
we use a scheduler to execute tasks sequentially outside the
interrupt handler. The scheduler simply uses a fixed-size first-
in first-out queue of statically allocated task structures. A task
can currently either be a program to interpret or a control
command to execute. A task can reschedule itself, meaning
that it will be re-executed again later, but support for priorities
and timers is considered future work.

Incoming mobile programs are processed as follows. First,
the program is received as a data packet by the commu-
nications stack, which inspects the header of the packet to
determine that it is a mobile program. The packet includes
both the context (spatial coordinates etc.) and the bytecode
program. The bytecode information is then stored in a program
slot by the memory manager; the memory manager simply
provides a fixed number of fixed-size program slots for storing
incoming programs. Program slots are ordinarily freed when
a program has finished execution; this is however not the case
e.g. for event handlers. If no free program slots are available,
an error is signaled and the incoming program is discarded.
After storing the program, a task is created that includes the
context and the index of the program slot. When the task is
scheduled, the interpreter extracts the information and executes
the program.

B. Instruction set

To reduce the size of bytecode programs, all commonly
used instructions have been specialized for their arguments.
For example, to query for a module where the number of
modules connected to the upwards connectors is equals to 2,
the following instruction sequence can be used:

01: CONNECTED UP /* 2 bytes */
03: SIZEOF /* 1 byte */
04: EQUALS 2 /* 2 bytes */

The first instruction pushes the bit-set of upwards connected
modules on the stack, the second instruction computes the size
of the set, and the last instruction tests whether this value is
equal to 2. This sequence takes up 5 bytes, but can also be
represented by the following specialized instructions:

01: CONNECTED_UP_SIZEOF /* 1 byte */
02: EQUALS_2 /* 1 byte */

This sequence only takes up 2 bytes which saves space and can
increase the execution speed. The amount of space that can be
saved using specialized instructions is typically smaller than
what was the case in this minimal example; in the experiment
reported in Section V, the savings are around 10%.

C. Status of the implementation

We have implemented the ATRON DCD-VM using a proto-
type simulator for modular robots currently under development
here at the Maersk Institute. The simulator is written in Java
but supports controllers written both in Java and in C, the latter

Target Size Uncompressed
Program role (bytes) size (bytes)
Find wheels Any 24 31
Install proximity handler L/R-Wheel 21 24
Find axles Any 13 15
Install stop command L/R-Wheel 34 35
Axle behavior Axle 48 60

TABLE I
MOBILE PROGRAMS FOR CAR OBSTACLE AVOIDANCE

option being supported using JNI (the Java Native Interface).
The DCD controller has been developed in C code with the
hardware constraints of the ATRON modules in mind. An
ATRON module has 4K of RAM, 4K of self-programmable
EEPROM, and 128K of flash memory for storing the program.
Currently, we do not make use of the EEPROM, but we
speculate that it could be used for storing mobile programs.
The total size of the DCD controller, including the complete
ATRON library containing the infrared communication stack
and functions for interfacing to actuators, is less than 20K
of program memory. The statically used RAM size is less
than 2K when using a 16-entry communication cache, 10-
entry stack queue, and 5-entry program store; these values
were appropriate for all experiments reported in this paper,
but may need to be adjusted for more complex applications.
The ATRON DCD-VM runs on the physical modules but is
currently not stable enough on the physical hardware for large-
scale experiments.

V. EXPERIMENTS

A. Methodology

All distributed experiments described in this paper currently
are simulated. Moreover, dynamic installation of code from
outside the robot is not currently supported either in the
simulator or on the physical hardware. For this reason, we
store the bytecode on a single module that then diffuses
the behavior to the rest of the robot.2 The orientation of
this module thus decides the coordinate system and compass
directions for the other modules.

B. Obstacle avoidance

As a more complete example of distributed control dif-
fusion, we have implemented a simple obstacle avoidance
controller for wheeled ATRON robots. This controller is a
generalization of the example from Section III-E that works for
all the simulated ATRON cars shown in Figure 2, as follows.
The car moves forward until it encounters an obstacle, at which
time it stops and starts to reverse while turning. Once the
wheels have rotated three times, it stops again and resumes
the initial behavior. This behavior is illustrated in Figure 5.
The 12-wheeled car built by joining two 6-wheeled cars is
difficult to turn, but does turn [in simulation] by making those

2Storing the bytecode in a single module is equivalent to reprogramming a
single module, which provides a significant advantage compared to requiring
the user to manually reprogram all modules in the robot.



Experimental setup Approaching obstacle Stopped Reverse and turn

Moving forward again New obstacles! Stopped (again) Reverse and turn (again)

Fig. 5. Obstacle avoidance using generic distributed controller diffusion program. Note that some obstacles are moved manually during simulation.

wheels that are innermost in the turn more sharply than the
outermost wheels.

The obstacle avoidance controller is implemented using
seven different mobile programs that are diffused throughout
the robot when the simulation starts. The programs are sum-
marized in Table I along with the role they are targeted at and
their sizes in bytes, using specialized and generic instructions
respectively. The “find wheels” and “install proximity handler”
programs are as in the example of Section III-E, except that
the event handler sends out a user-defined command “stop” to
all wheels rather than directly stopping the wheels. The “find
axles” program locates axle modules by finding modules that
are connected downwards to a module having any of the wheel
roles (left wheel or right wheel). The “install stop command”
program installs the “stop” command in the wheels. This
command causes a wheel to assume a sub-role “reversing” and
then to start to move in the reverse direction. Last, the axle
behavior is to turn the axles so that the car moves straight
when the wheels are in their standard roles, but to turn to an
appropriate angle when the wheels assume a “reversing” role.
The axle behavior uses the spatial coordinate of the module
to differentiate its behavior, turning the front and back wheels
symmetrically and turning the innermost wheels more sharply
for wide car configurations such as the “collaborating cars” in
Figure 2.

C. Self-Reconfiguration

To test directed control diffusion with self-reconfiguration,
we have performed two simple experiments with the DCD-
VM, as follows. The first experiment is to dynamically disrupt
a structure after behaviors have been diffused, but without
recomputing roles for each module. Concretely, we disrupt
the 12-wheeled car by removing the bridge that connects the
two 6-wheeled cars that make out the larger car. Removing the
bridge is done simply by introducing a timer that disconnects
the bridge modules after a fixed time period. The effect is
that behavior is diffused in the 12-wheeled car but then has

to keep functioning in each of the individual 6-wheel cars.
Nonetheless, since the key principle of the DCD-VM is that
behavior is distributed to all modules, each individual car still
performs obstacle avoidance after the breakup, without requir-
ing reprogramming. One car does however turn more sharply
than the other, since the turning behavior was differentiated
based on the spatial position of the modules.

The second experiment uses a 10-wheeled car built by
attaching the 4-wheeled car to the end of the 6-wheeled car.
When the 10-wheeled car meets an obstacle it will split into
a 6-wheeled car and a 4-wheeled car; the 4-wheeled car is
then reprogrammed be executing a dedicated “split” bytecode
instruction. (Implementing complex behavior in dedicated
bytecode instructions is central to our approach, as described
in Section III-F.) In more detail, the controller used in the
previous experiments is extended with a new behavior that
causes the axle module that connects the 4-wheeled car to the
6-wheeled car to disconnect (the spatial position is used to
identify this module). The disconnection happens when the
wheels take on the “reversing” role, which happens when an
obstacle is encountered. The module then executes the split
bytecode which sends out a “reset” message to all modules
in the 4-wheeled car (a standard broadcast is not used since
it will also reach the 6-wheeled car so long as it is within
communication distance). The split bytecode subsequently
sends out the “find wheels” program from Table I and last
sends appropriate rotation commands to the left and right
wheels. The overall effect is that the 6-wheeled car continues
performing the obstacle avoidance behavior whereas the 4-
wheeled car takes on a new (albeit very simple) behavior of
simply driving in a straight line. Note that this experiment
requires the bytecode programs to be stored on one of the
modules from the 4-wheeled car.

D. Assessment

The obstacle avoidance experiment demonstrates how dis-
tributed control diffusion is implemented on the DCD-VM.



Queries and the selection of roles is implemented using
mobile programs that implicitly maintain coordinates, compass
direction, and information about the local configuration, for
example allowing the controller to identify those modules that
can serve as wheels and axles. The axle turning behavior is
implemented as a mobile program that always reschedules
itself as its last instruction, thus providing a simple approach
to programming behavior-based controllers [2]. Roles both
serve to identify message receivers and to enable the module
to respond to new commands. All programming is done
dynamically while the robot is running, for example allowing
the left sub-car in a 12-wheeled car configuration to activate
roles and install behaviors on the modules in the right sub-car.

The simple reconfiguration experiments demonstrate some
of the advantages of distributed control diffusion in self-
reconfigurable robots. The first reconfiguration experiment
shows that distributed control diffusion is robust to accidental
reconfiguration such as module failure since it does not rely
on any precomputed knowledge of the topology of the robot.
The second reconfiguration experiment shows how a module
structure can be reprogrammed after self-reconfiguration to
obtain a new behavior.

Last, we note that all programs are smaller than 50 bytes,
which facilitates transmitting them on the physical ATRON
modules (which currently are sensitive to transmitting large
amounts of data). The size of the largest programs could even
be significantly reduced by replacing complex functionality
implemented in bytecodes with single bytecodes implemented
in C code.

VI. RELATED WORK

A sensor network is a distributed, embedded system ded-
icated to gathering sensor information and conveying this
information to a central unit. Network connections are typ-
ically wireless and ad-hoc, and price, size, and power con-
straints impose severe resource limitations on the individual
sensor nodes and their network communication. For many
applications of sensor networks, the exact identity of each
sensor node and the routing of messages over specific ad-
hoc connections is unimportant for the end goal of gathering
specific data about a geographical location and assembling this
data at a specific node (typically a server). This observation is
the basis for the directed diffusion communication paradigm
proposed by Chalermek et al [8], [9] (for clarity, we will refer
to their technique as directed data diffusion). Using directed
data diffusion, the programmer expresses an interest in a
data source in terms of queries over required data properties,
such as the physical location of the sensor. Queries form
gradients in the network that implicitly connect data sources
to data sinks, thus making it possible to route data packets
based on the shortest path of the query from the sink to the
source. Queries are broadcast throughout the network, and
each node uses a cache to eliminate redundant messages.
We have observed that many issues in programming self-
reconfigurable robots are similar to the issues in programming
sensor networks: a large number of low-end embedded systems

connected using ad-hoc networking need to gather information
using sensors and to convey this information to the appropriate
party [16]. Moreover, dynamic software updates are in both
cases critical to enable evolution of the system after it has
been deployed. Distributed control diffusion has a strong
resemblance to directed data diffusion from sensor networks.
In both cases, a query mechanism is used as a means of
identifying nodes (modules) for addressing. Nevertheless, dis-
tributed control diffusion is designed for controlling robots and
thus has additional features for using actuators and allowing
the robot to respond immediately to sensor inputs. In general,
we expect that the synergy between modular robotics and
sensor networks can benefit researchers from both fields.

Software architecture for modular robots has been inves-
tigated by Zhang et al by deploying a component infras-
tructure on the PolyBot self-reconfigurable robot [24], [25].
The component infrastructure is based on the attribute/service
model where components acting either as attributes or services
are distributed on a communication network that connects all
the modules of the robot using a CAN bus. Here, attributes
are distributed, thread-safe shared data repositories, whereas
services are abstractions over hardware or software routines.
Scalability to a large number of modules is achieved by
using a dedicated CAN-bus protocol coupled with a general-
ized master/slave architecture where multiple masters control
multiple slaves. Compared to the attribute/service model and
multi-master/multi-slave model, distributed control diffusion
is a lower level software layer providing flexible execution
support. Indeed, the primary concern in our work is pro-
viding a means to identify what role a module should play
and subsequently diffuse the required controller code to the
all modules playing this role. As such, distributed control
diffusion could probably provide a highly flexible platform
for implementing an architecture similar to attribute/service
and multi-master/multi-slave. Nevertheless, we note that since
PolyBot modules are connected by a CAN bus, communication
is significantly simplified compared to the strict module-to-
module nature of communication in ATRON robots. Moreover,
the available computational resources in the ATRON hardware
are more constrained than those of PolyBot. For these reasons,
the principles behind attribute/service and multi-master/multi-
slave must be heavily adapted before they can be used on the
ATRON hardware.

The experiments reported in this paper were performed
using a combination of roles and rule-based control. The idea
of role-based control is derived from Stoy et al where changes
to behavior are driven by changes to the context, resulting in
a robust and very flexible approach to controlling the CONRO
reconfigurable, modular robot [20], [22]. Nevertheless, the
only control examples investigated are cyclic, signal-driven
behaviors for locomotion, whereas our work concerns runtime
distribution of mobile code and a general-purpose concept
of roles as a means for structuring arbitrary behaviors. The
generality of our approach however comes at a price in terms
of robustness, since there is no inherent tolerance to e.g.
loss of communication or spurious reconfiguration. The use



of queries for selecting roles in the DCD-VM is similar to
rule-based control [3], [7], [14], except that we use mobile
code to install behaviors, potentially allowing arbitrary rules
to be applied. The observation of Brandt and Ostergaard that
more expressive means of writing rules leads to more compact
and efficient rules [1] supports the DCD-VM approach of
using a flexible bytecode instruction set to express conditions
and actions. As an alternative to roles and rules, we believe
control could be implemented using hormone-based control, as
proposed by Shen et al [19]. Here, data packets referred to as
hormones are broadcast through the robot structure, triggering
various actions such as role assignment and actuation. Unlike
distributed control diffusion, hormones do not contain program
fragments, although this extension is listed as future work
by Shen et al. We believe an approach to distributed control
diffusion based on hormones would enhance robustness, for
example reducing the consequences of packet loss.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the principle of distributed
control diffusion, where mobile code is used to query the
physical characteristics of the robot structure to determine
what role each part should play, and then subsequently install
dedicated controller programs on each module depending
on its role. We see the ATRON DCD-VM as a proof-of-
concept implementation: virtual machines can be used on self-
reconfigurable, modular robots to provide a higher level of
abstraction and a higher degree of flexibility.

In terms of future work, we are interested in investigating
high-level languages for programming the ATRON DCD-
VM [6], [17], experimenting with hormone-based control as
outlined in the previous section, and improving the efficiency
of the communication stack, as described in Section III-F.
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