
A Middleware for Ecologies of Robotic Devices
Mathias Broxvall

AASS Mobile Robotics Lab
Örebro University, Örebro, Sweden

mbl@aass.oru.se

Abstract—The fields of autonomous robotics and ambient intel-
ligence are converging toward the vision of smart robotic environ-
ments, or ubiquitous robotics, in which tasks are performed via
the cooperation of many simple networked robotic devices. The
concept of Ecology of Physically Embedded Intelligent Systems,
or PEIS-Ecology, combines insights from these fields to provide
a new solution to building intelligent robots in the service of
people. To enable this vision, we need a common communication
and cooperation model that allows dynamically assembled ad-
hoc networks of robotic devices, a flexible introspection and
configuration model allowing automatic (re)configuration and
that can be shared between robotic devices at different scales,
ranging from standard mobile robots to tiny networked embed-
ded devices.

In this paper we discuss the development of a middleware
suitable for ubiquitous robotics in general and PEIS-Ecologies in
specific. Our middleware is suitable for building truly ubiquitous
robotics applications, in which devices of very different scales
and capabilities can cooperate in a uniform way. We discuss the
principles and implementation of our middleware, and also point
to experimental results that show the viability of this concept.

I. INTRODUCTION

There is a marked tendency today toward the embedding of
many intelligent, networked robotic devices in our homes and
offices. A particularly interesting case is the recent emergence
of a paradigm in which many robotic devices, pervasively
embedded in everyday environments, cooperate in the perfor-
mance of possibly complex tasks. Instances of this paradigm
include the so called network robot systems [1], intelligent
space [2], sensor-actuator networks [3], ubiquitous robotics
[4], and PEIS-Ecologies [5]. Common to these systems is the
fact that the term “robotic device” is taken in a wide sense,
including both mobile robots, static sensors or actuators, and
automated home appliances. In this paper, we generically refer
to a system of this type as an “ecology of robots”.

As part of a collaborative research project between the Elec-
tronics and Telecommunications Research Institute (ETRI),
Korea, and the Centre for Applied Autonomous Sensor Sys-
tems, Sweden, we are developing ubiquitous robotic technolo-
gies to be used in domestic environments. In this project,
we take an ecological view of the robot-environment relation-
ship [6]. We see the robot and the environment as parts of the
same system, which are engaged in a symbiotic relationship.
We assume that robotic devices are pervasively distributed
in the environment in the form of sensors, actuators, smart
appliances, active tagged objects, or more traditional mobile
robots. We further assume that these devices can communicate
and collaborate with each-other by providing information or by

performing actions. We call a system of this type an Ecology
of Physically Embedded Intelligent Systems, or PEIS-Ecology.1

When realizing these PEIS-Ecologies, there is a need to
focus as much on the communication and integration of the
constituent components as on the individual functionalities of
each participating robot. This problem of communication and
integration involves issues such as introspection and config-
uration of multiple agents as well as in using a middleware
suitable for the application. In the literature, a large variety
of middlewares [7], [8], [9], [10], [11] have been proposed
for robotic applications. However, none of these existing
middlewares satisfy the basic requirements necessary to realize
PEIS-Ecologies and as such we require another solution for
realizing this concept.

In this paper we describe the implementation of a middle-
ware used in practice today for the realization of such ecolo-
gies of robots and discuss some of the current developments.
This middleware is continuously updated and published under
an OpenSource license at regular intervals.

The goal of this paper is to give a general overview of
the middleware used in the PEIS-Ecology project and on our
progress towards its practical realization. Accordingly, we give
only a brief overview of the other research issues posed by
PEIS-Ecology and refer the reader to the relevant papers [5],
[12], [13] in which more details and experimental results are
reported. More information can also be found at the project
web site [14].

The rest of this paper is organized as follows. In the
next section, we briefly recall the concept of PEIS-Ecology
which is followed by a section describing the middleware
requirements for this concept. In Section IV we discuss the
basic concepts in the middleware and follow this with details
on how the communication is implemented in Section V, an
implementation of it for tiny network devices in Section VI
and some of the software tools in Section VII. We take a look
at an experiment run in Section VIII and, finally, in section IX
we outline some future directions and new requirements posed
on the middleware as more and more advanced ecologies of
robots are created.

II. THE PEIS-ECOLOGY APPROACH

The concept of PEIS-Ecology, originally proposed by Saf-
fiotti and Broxvall [5], combines insights from the fields of
ambient intelligence and autonomous robotics, to generate a

1PEIS is pronounced /peIs/ like in ‘pace’.

peri
Typewriter

peri
Typewriter
ROBOCOMM 2007, 14th–16th Oct 2007, Athens, Greece.
Copyright © 2011–2012 ICST 
ISBN 978-963-9799-08-0
DOI 10.4108/ICST.ROBOCOMM2007.2184

peri
Typewriter



Fig. 1. A simple PEIS-Ecology consisting of a vacuum cleaner, an overhead
tracking system, and a plant.

new approach to the inclusion of robotic technology into smart
environments. In this approach, advanced robotic functional-
ities are not achieved through the development of extremely
advanced robots, but rather through the cooperation of many
simple robotic components. The concept of a PEIS-Ecology
builds upon the following ingredients:

First, any robot in the environment is abstracted by the uni-
form notion of a PEIS (Physically Embedded Intelligent Sys-
tem), which is any device incorporating some computational
and communication resources, and possibly able to interact
with the environment via sensors and/or actuators. A PEIS can
be as simple as a toaster and as complex as a humanoid robot.
In general, we define a PEIS to be a set of inter-connected
software components, called PEIS-components, residing in one
physical entity. Each component may include links to sensors
and actuators, as well as input and output ports that connect
it to other components in the same or another PEIS.

Second, all PEIS are connected by a uniform communication
model, which allows the exchange of information among PEIS,
and can cope with them joining and leaving the ecology
dynamically.

Third, all PEIS can cooperate using a uniform cooperation
model, based on the notion of linking functional components:
each participating PEIS can use functionalities from other PEIS
in the ecology in order to compensate or to complement
its own. We define a PEIS-Ecology to be a collection of
inter-connected PEIS, all embedded in the same physical
environment.

As an illustration, consider the autonomous vacuum cleaner
(PEIS) in Figure 1. By itself, the simple device can only use
basic reactive cleaning strategies, because it does not have
enough sensing and reasoning resources to assess its own
position in the home. But suppose that the home is equipped
with an overhead tracking system, itself another PEIS. Then,
we can combine these two PEIS into a simple PEIS-Ecology,
in which the tracking system provides a global localization
functionality to the vacuum cleaner. Suppose then that the
cleaner encounters a plant, and that the plant is equipped with
a micro-PEIS (e.g., a mote) able to communicate its properties
— e.g, size, humidity, temperature and type of support. Then,
the vacuum cleaner can use these properties to decide whether
it can push the plant away and clean under it.

Fig. 2. Two views of the PEIS-Ecology testbed.

In our realization of a PEIS-Ecology, the PEIS rely on a
distributed middleware to communicate and cooperate, called
the PEIS-middleware. The PEIS-middleware implements a
distributed tuple-space on a P2P network: PEIS exchange
information by publishing tuples and subscribing to tuples,
which are transparently distributed by the middleware. By
stipulation, each PEIS also provides a set of standard tuples,
e.g., to announce its physical appearance or the functionalities
that it can provide.

In order to validate the utility and acceptability of a PEIS-
Ecology for humans, we have built a physical testbed facility,
called the PEIS-Home, which looks like a typical Swedish
bachelor apartment (Figure 2). The PEIS-Home is equipped
with a communication infrastructure and with a number of
PEIS, including: static cameras, mobile robots, sensor nodes,
a refrigerator equipped with gas sensors and an RFID reader,
and many more.

Additionally, a previously existing testbed for intelligent
home environments at ETRI, Korea, has also been retrofitted
with PEIS-components and have been run as a PEIS-Ecology
with various experiments to test reconfiguration, tiny devices
and the incorporation of various automated home appliances
into the PEIS-Ecology.

III. MIDDLEWARE RESPONSIBILITIES

When realizing a system containing many heterogeneous
components, such as an ecology of robots, communication
and cooperation become an important part. Commonly this
role is played by a middleware acting as a collaboration
layer between all involved devices, lifting the complexity of
low-level communication and hiding the heterogeneity of the
underlying systems.

Many different middlewares have been proposed for robotic
applications, often from a different point of view and with
different applications. Examples include the Player frame-
work [7] providing an infrastructure, drivers and basic algo-
rithms for mobile robotic tasks; RT-middleware [8] or Miro [9]
which are both based on CORBA [10] functioning as a classic
middleware but for robotic applications; or more specialized
libraries such as Lime [11] focusing more towards sensor
networks and less on remote actuation.

For the purpose of the PEIS-Ecology project many require-
ments have been posed on the infrastructure to be used. The



primary tenet for these requirements stems from the basic
concepts behind the view of ecologies of robotic devices and
a need for a simple interface tailored specifically to match the
concepts of PEIS-Ecologies.

These requirements include: providing a shared memory
model, a simple dynamic model for self-configuration and
introspection, a small footprint suitable both for very small
devices and larger embedded computers, and a minimalistic
API easily usable by both expert roboticists as well as com-
ponent programmers with little expertise in middleware and
network design. Additionally, the middleware must support
heterogeneous devices ranging from simple sensors and house-
hold appliances to complex robots with powerful embedded
computers. These different devices must all be automatically
detected and interconnected to realize an ecology and the
middleware must work both for separate devices working in
isolation as well as ad-hoc groups formed when devices come
within communication range. Thus the infrastructure must
smoothly scale as the number of devices increase and handle
when individual devices as well as large groups of devices
appear and/or disappear from the network.

Although not a formal requirement these constraints seem
to impose also a decentralized middleware.

When evaluating previous middlewares with these con-
straints in mind both Miro [9] and RT-middleware [8] have
problems since the Corba stack on which they are based makes
it impossible to run on devices with only a few kilobytes of
memory. Additionally, it is unclear if they in their current form
satisfy the requirements on dynamicity and discovery when
PEIS are introduced/removed from the ecology.

Likewise, the Player framework [7] is not designed for
ubiquitous robotics and as such lack certain facilities required
for dynamic reconfiguration. For instance, it does not provide
automatic network discovery of available devices and is built
using a server-client architecture. Even so, Player provides
many services commonly used in the PEIS-Ecology and the
devices it provide are often exported by generalized PEIS-
components which acts as player clients.

As for the Lime [11] middleware, this is not usable for
a full PEIS-Ecology since it lacks mechanisms for actuation.
Also, the use of Java for this middleware reduces the language
independence and makes it harder to interface with previously
existing components using Lisp, Python and C/C++.

Since none of the classical middlewares, or eg. the robotics
middlewares described above, satisfy these requirements, a
new middleware called the PEIS-kernel was developed. Al-
though developed independently this middleware has many
concepts in common with Lime [11] such as using a distributed
tuplespace but is tailored rather towards robotic applications
and the concepts of PEIS-Ecologies instead of ambient intelli-
gence type of applications. During the progress of the project
this middleware is continuously updated and made available
to the research community under an OpenSource license and
is available from the PEIS project webpage [14].

Fig. 3. The application stack used for individual PEIS-components

IV. CONCEPTS

At a first glance, the PEIS-middleware is a set of software
libraries used while developing individual PEIS-components
as well as a number of specific programs responsible for
fixed functionalities in each PEIS and additional software to
enable debugging and visualization of the current state of the
ecology. The tools and libraries exist for many platforms and
comprises a software stack used for implementing the PEIS-
Ecology concept. See Figure 3 for a simple illustration of how
these libraries and tools are related.

A. Distributed Tuplespace

From a conceptual point of view the PEIS-kernel enables
each component in a PEIS to communicate and participate in
the PEIS-Ecology by implementing a distributed tuplespace.
This tuplespace is a decentralized version of the shared
memory proposed by Linda [15], augmented with an event
mechanism.

We recall that in a Linda-space a number of tuples contain-
ing keys and other data that can be stored and retrieved by any
participating process using an abstract tuple where some of the
fields have been initialized to wild-cards. In our version of this
space a tuple has been specified to consist of a namespace,
key, data as well as a number of meta attributes such as
timestamps and expiration date. Separating the allowable keys
into different namespaces is done not only for programming
practices but is also used as an arbitration mechanism when
storing and retrieving information. This is done by having
the identifier for each PEIS-component as namespaces, and
by using the corresponding PEIS-component as the arbiter for
disambiguating all write operations to that tuple. Any PEIS-
component can still store information in any namespace. We
call the component corresponding to the namespace the owner
of a tuple.

When components write to a tuple this is done, transparently
by the PEIS-kernel, by sending a message to the owning
PEIS-component which stores the master copy of that tuple.
Depending on the order of arrival of these messages the owner



Fig. 4. Example of message passing when reading, writing and subscribing
to tuples.

commits the write operations as they come in, thus avoiding
synchronization issues with simultaneous writes, and sends a
notification of the modified value to all other PEIS-components
which are subscribed to the specific tuples. A PEIS-component
must always subscribe to a tuple before it can be accessed
if it belongs to another PEIS-component. These subscriptions
are created by giving an abstract tuple which corresponds
to the tuples of interest. Furthermore, since read and write
operations finishes atomically there is a latency caused by
network delay between when a new tuple is written and the
corresponding value can be read by other PEIS-components.
If a PEIS-component reads a value before the latest value has
arrived over the network, it receives the old value.

Upon receiving a notification that a tuple matching an ab-
stract tuple has been modified, the receiving PEIS-component
performs two things. First, the modified value of the tuple is
stored in a local database containing the last observed value of
that tuple, because of network latency this is sometimes not the
real latest value of the tuple. This allows local read operations,
returning all tuples matching a prototypical abstract tuple, to
complete instantly. Second, if a callback function has been
registered to an abstract tuple matching the modified tuple then
this callback is invoked. This invocation is performed within
the flow control of the PEIS-kernel and has some restrictions
on callable kernel functionalities to ensure responsiveness
of the kernel. Thus the kernel implements not only a pure
distributed tuple space but also allows an event based flow
control.

As an example, consider a situation where we have three
components with the identfiers 3200, 6200 and 7400 as given
in Figure 4. Assume that the later component, 7400, have
registered a subscription and a callback to all tuples that
have key ”sonar” in all namespaces. This is done by giving a
wildcard in the first namespace field and the PEIS-kernel will
send subscription messages to all relevant components. When
the first component, 3200, writes to a tuple with the namespace
6200 and the key ”sonar”, a message is transparantly sent to
the PEIS-kernel inside component 6200. The receiving PEIS-
kernel will then update the tuplespace with this new value and
alert the PEIS-kernel inside 7400 since it’s has a registered
subscription. When the later receives this updated tuplevalue,

it in turn calls the registered callback function on the local
processor before continuing the execution of any other PEIS-
kernel related activities.

Other modifications to the Linda concept includes the use
of timestamps for when tuples are created or given as user
defined time stamp, as well as dates for expiring outdated
tuples. To allow timestamps to be meaningful a distributed
clock is implemented in the PEIS-kernel to ensure that all
devices uses the same frame of reference.

B. Configurations

When creating an ecology of cooperating robotic compo-
nents the issue of configuration is an important problem under
much consideration. Solving this problem is akin to answering
the questions of which components should collaborate, what
data should be communicated and how these collaborations
can be realized. The first two of these questions can be
solved using planning techniques [16] while the last question
translates into specific requirements on the used middleware
to collect the information required to compute configurations
as well as providing the mechanism to deploy configurations.

The first of these requirements is realized by using a fixed
functionality component, PeisInit, which runs on all PEIS and
provides a list of available PEIS-component which can be
instantiated. This list is built up from the content of a con-
figuration file on each PEIS listing the available resources and
programs in an XML based format describing the semantics
of the components. This information can easily be retrieved
from the tuplespace by planners and once which components
to be run has been determined these are started and monitored
by the PeisInit. If a component is terminated abruptly this is
detected by PeisInit, a failure is signaled in the tuple space
and the component is restarted as needed.

For the question of what data to communicate and how
to set up the collaborations between participating components
this uses another concept of the PEIS-Ecology middleware,
meta tuples. A meta tuple is a tuple whose data is a pointer to
another tuple to be used. By implementing components to read
inputs from named meta tuples in their own tuple space and
produce outputs to concrete tuples we achieve an easy way
of configuring components. Imagine that we have a vision
component V which consumes the meta tuple V.IMAGE to
produce a list of recognized objects V.OBJECTS. To allow this
component to use the data produced by a camera component C
we set the value of V.IMAGE to be C.IMAGE, where the later
is the name of the camera images produced by C. This notion
of meta tuples have been implemented in the PEIS-kernel to
allow any components to be configured in a consistent way.

When a PEIS is powered on but before any communications
with other PEIS have been established, it counts as an ecology
consisting of only the components inside itself. As other
PEIS are detected by the available communication devices and
connections are established the ecologies are merged. From
the component programmers point of view this is evident
in the appearance of new tuples residing in the other PEIS.
Similarly, when one or more PEIS are dropped from the



Fig. 5. Network topology for a simple PEIS-Ecology.

ecology this is noted by the remaining PEIS-component which
makes tuples belonging to these components lost. They are
then dropped from the local cache of tuples and attempts to
modify these tuples results in an error, possibly leading to
a reconfiguration of the ecology. Since tuples are used for
closed (control) loops used in robotic devices it is important
to not queue tuple modifications, otherwise unwanted actions
would be performed when the PEIS are reintroduced into the
ecology. This is an important distinction from how Lime treats
dynamicity of components.

V. MIDDLEWARE IMPLEMENTATION

In the implementation of the PEIS-kernel a layered structure
has been used to build up the various services needed. See
Figure 3 for an illustration of the layers of the PEIS-kernel.

A. Communication layer

At the lowermost level an abstraction of the operating
system specific communication methods isi used to provide
potential communication links and device detection for shared
medias, eg. using TCP/IP broadcasts on wireless lan networks.
In addition to the operating system functionalities this layer
also provides general services for initializations, calling func-
tionalities periodically etc.

On top of this layer the general peer-to-peer network is
implemented using standardized algorithms for eg. optimizing
connectivity and performing routing.

To realize the communications necessary to implement
the distributed space, the PEIS-kernel detects and connect
all PEIS devices in the local environment. This is done
by abstracting the available communication devices on all
participating PEIS and by establishing a peer-to-peer network
between all detected devices. This allows PEIS without a direct
means of communication to still share tuples. See Figure 5
for an example situation when some PEIS are used to route
messages between other PEIS. Note that this routing even
allows devices which have mutually exclusive communication
methods such as wireless lan (802.11) and ZigBee (802.15.4)
to still communicate using any set of intermediate PEIS as a
bridge. An example of the later case is the embedding of Tiny

sensor motes in the ecology with limited memory (10kb) and
communication (802.15.4) capabilities which communicates as
peers with the larger robots via a PEIS connected to both the
802.15.4 network and the wireless network. This later PEIS
also serves as a bridge translating message to a more compact
protocol suitable on the low-bandwidth network.

The services exported from this layer includes the trans-
mission of routed point-to-point messages and of broadcasted
messages. Message broadcasting uses a stochastic method only
propagating fresh messages along a subset of the available
connections, thus only consuming a global bandwidth con-
sumption of 3N instead of V N where N is the number of
nodes reached by a message and V is the average connectivity.
Due to the use of broadcasting the total amount of bandwidth
consumed per participating PEIS grows as the number of PEIS-
components grows. Nonetheless, successfull tests have been
performed with several hundred PEIS-components.

Since communications can go through multiple hops be-
fore reaching the destination the issue of congestion control
becomes important. The method used here is based on the
standard weighted random early detection (WRED) algorithm
which works well to ensure a higher QoS for control messages
and meta data.

B. Tuple layer

Finally, on top of the peer-to-peer network layer the actual
functionalities for maintaining the distributed tuplespace and
the API functionalities used by component programs are im-
plemented. By implementing a small database for the storage
of tuples each PEIS-component which uses the PEIS-kernel
library can be used to store all relevant tuples. To avoid some
of the problems typically associated to distributed databases
the namespaces of tuples are used to circumvent many of
the distribution and synchronization issues. The drawback of
this approach is that if a PEIS containing information about
a specific tuple is disconnected then that tuple is lost. In
practice, however, this is not any major limitation since tuples
are mostly used only by those components storing them.

In the implementation of these databases special attention
has been given to abstract tuples. An abstract tuple is here a
tuple in which one or more fields have been initialized to a
wild-card value while the remaining fields have been given a
concrete value. When comparing abstract tuples to concrete
tuples an abstract tuple is said to match a tuple if all non
wild-card fields are equal to the corresponding fields of the
concrete tuple. When comparing two abstract tuples the first
is said to be a generalization of the second if every non wild-
card field of the second is matched by either an equal value
or a wild-card field of the first, and if every wild-card field of
the second is matched by a wild-card field of the first. As an
example, consider the tuples T1 = (a, ∗, ∗), T2 = (a, b, ∗) and
T3 = (a, ∗, b). We see here that T1 is a generalization of T2

and T3 while the later two are unrelated to each other.
Abstract tuples are used for three purposes in the PEIS-

Ecology middleware: Firstly, they are used whenever an
application is accessing the database to query the current



value of a tuple. In this case an abstract tuple is given as
a prototype and a search is made to find all tuples matching
that prototype. Secondly, before a PEIS can access tuples at
a remote location, a subscription to the corresponding tuples
must be made. Again, this takes the form of an abstract tuple
given as a prototype and the PEIS-kernel sends messages to
all PEIS-components which could possibly have a matching
tuple, depending on if there is a wild-card on the owner field.
If a tuple is later created, modified or a PEIS-component with
a tuple matching the prototype is connected then a copy of this
tuple is propagated to the original PEIS-component. Thirdly,
abstract tuples are used by the event mechanism to setup
callbacks when tuples changes value. In practice this happens
by matching all received tuple change notifications against the
prototypes of all registered callbacks. Those callbacks which
match the concrete tuple is invoked with it as an argument.

By using the read operation to access tuples it is possible
to poll for the current value of tuples, this is commonly used
within control loops where only the latest value is of interest.
For event driven applications or applications responding to
all tuple changes the callback mechanism is typically used
instead.

VI. TINY PEIS KERNEL

By implementing the above software stack in first desktop
machines and robots with powerful computers, this approach
have been shown successful for scenarios including multiple
robots, static sensors, and custom-made home appliances [5],
[17], [18]. Some of these scenarios also included the automatic
self-configuration of the ecology [16], [19]. These experiments
provided us with a preliminary validation of the concept
of PEIS-Ecology. In order to push the PEIS-Ecology vision
further, however, we need to enable even smaller devices to
be part of a PEIS-Ecology. This requires a middleware that
needs to be tailored to meet the requirements of tiny networked
embedded devices with as little as 4kb of memory.

For this purpose, we have extended the PEIS-middleware
to allow for computationally simple devices to take part of a
PEIS-Ecology as first class citizens. In doing so, we had two
important requirements in mind. First, tiny embedded devices
should be functionally equivalent to standard PEIS, that is,
they should appear as standard PEIS to the rest of the PEIS-
Ecology, using the same abstraction, communication and co-
operation models. Said differently, we do not want to develop
a separate, ad-hoc middleware model to suit the restrictions
of tiny devices. Second, we want to be able to include in the
PEIS-Ecology off-the-shelf tiny embedded devices, like micro
controllers and WSN motes. Said differently, we do not want
to restrict tiny PEIS to run on some specific, ad-hoc hardware
platform.

This extension of the PEIS-middleware is implemented by
providing a small version of the PEIS-kernel which can be run
on top of TinyOS, a common operating system for motes and
other tiny platforms. We refer to this slimmed down version of
the PEIS-kernel as the Tiny PEIS-kernel and have performed
a number of experiments with this kernel using small sensor

Fig. 6. Illustration of an ecology with seven components and four established
subscriptions

motes and motes capable of actuation. This version of the
PEIS-kernel requires at most 35 KB of programming memory,
including the used TinyOS components, and about 2.5 KB of
RAM. The actual footprint of the program may be smaller
if an application only uses some functions in the PEIS-
Kernel. For further details about the Tiny PEIS-kernel see
Bordignon et.al.[20].

VII. SOFTWARE TOOLS

Apart from the libraries necessary to implement the PEIS-
kernel a number of software tools have been developed which
can also be considered part of the PEIS-Ecology middleware or
which can be used for visualizing and debugging the ecology.
The two most important of these tools are the PeisInit which
takes care of bootstrapping and monitoring the components in
the PEIS-Ecology and Tupleview which is used as a debugging
tool for visualizing all available tuples, components, and
connections.

The first of these two tools was described briefly in Sec-
tion IV. The later tool, Tupleview, consists of a graphical
user interface which can display all the available PEIS, PEIS-
components and can display and allow the user to modify
all tuples. Tuples with a more complex encoding, such as
images, are displayed by special handlers which allows the
components to use this tool as a simple user interface (display
and receiving feedback) during development. In addition to
displaying the content of the distributed tuplespace this tool
is also used to display the network topology of all participat-
ing components and to visualize all established collaboration
patterns (subscriptions). See Figure 6 for a screenshot of this
tool when displaying the current configuration.

VIII. EXAMPLE RUN

As an example to illustrate the capabilities of the PEIS-
Ecology concept in general and the middleware used we will
look at one of the experiments performed in the ETRI testbed
mentioned in Section II. In this experiment a number of PEIS
were used, ranging from a simple mote sensing the light level
on a plant, to automated home appliances (actuation of lights,



Fig. 7. The robot encounters an unexpected parcel when entering the bedroom

motion sensors etc.) to a mobile robot equipped with a stereo
vision head and wheel based navigation. Also number of PEIS-
components (17) consisting of standard robotic and AI tools
such as robot navigation algorithms, vision algorithms and
high-level probabilistic and conditional planning was used in
the experiment.

The execution of the experiment started with running a static
configuration script consisting of a bash-script which requests
all the necessary components to be started by issuing tuples
belonging to the various PeisInit components that always run
on all participating PEIS. Next the configuration script wrote
the necessary meta tuples to setup the configuration. Note that
both these two tasks could as well have been achieved using
the dynamic configuration services [16] if deemed neccessary.
See Figure 8 for an overview of this configuration involving
17 components and 77 subscriptions.

Next, we gave the high-level planner the goal that Johanna,
the inhabitant of the apartment, should be woken up and that
the robot should in the end be in the dedicated robot waiting
area. This was expressed as a predicate logic goal: (AND
(WOKEN-UP JOHANNA) (AT WEVER = GARAGE)). After this
the planner generated the task to turn on the lights necessary
for safe robot navigation (the vision algorithms require this),
moving into the bedroom and issuing a wake up message using
the text-to-speech services. As the final step the plan involved
the robot returning back to the waiting area.

This sequence of actions was given to the execution mon-
itor which requested each action to be performed, step by
step, by the different components by issuing and listening
to tuples belonging to different components. As the robot
was executing this sequence of actions one component, the
home monitoring component, in the ecology reacted to the
changed light level reaching the mote supervising Johanna’s
favourite plant, and as such reacted by closing the curtains
controlled by a home automation ZigBee network. During
this part messages was passed between 802.15.4 devices and
the wired/wireless 802.11 network via those PEIS-components
which had capabilities to communicate on both networks.

Later in the execution the robot encounters an unknown

Fig. 8. Configuration snapshot of experiment run. Here components are
represented by large ovals and subscriptions given by arrows annoted with
the subscribed keys.

package blocking the way into the bedroom, see Figure 7 and
an automatic replanning to satisfy the goal was performed,
receiving descriptions from all available PEIS containing their
status, seen objects etc. The newly generated plan involved a
query to test the weight of the box, and if possible to push
it into the bedroom before resuming the original task. This
plan was executed successfully thanks to a PEIS component
publishing the weight and appearance of the box in the
tuplespace, and thus Johanna was woken up and the robot
returned to it’s resting place.

IX. CONCLUSIONS

The integration of robots and smart environments is believed
by many to be the key factor that will enable the massive
inclusion of robotic technologies and products into our every-
day life. A few projects were recently started with the aim to
explore the scientific, technological and practical implications
of this integration. Currently the largest efforts are probably
the Network Robot Forum [1], the U-RT project at AIST [21],
and the Korean Ubiquitous Robot Companion program [4].
The PEIS-Ecology project presented in this paper is part of the
latter effort. The PEIS-Ecology project is distinct in its strong
emphasis on the study of the fundamental scientific principles
that underlie the design and operation of an ubiquitous robotic
system.

In this paper, we have discussed the implementation of a
middleware for the PEIS-Ecology approach. We believe that
many of the requirements and techniques used for this robotic
middleware are not limited to a PEIS-Ecology but also apply
to any ubiquitous robotic system.

To the best of our knowledge, no comparable middleware
was available until now. Today’s robot middlewares are typi-
cally too heavy to run on tiny devices; and middleware for net-
worked embedded devices are typically not powerful enough
to support the complex cooperation models allowed by a
PEIS-Ecology. An interesting exception is the RT-Middleware
[8], for which a light-weight version has been defined [22].
However, this version runs on specialized devices. By contrast,
our PEIS-Ecology middleware is intended to run on custom as



well as off-the-shelf hardware, including standard WSN motes
and hobbyist micro-controller boards.

We have run a large number of experiments on the PEIS-
Ecology with many different ubiquitous robotic devices ac-
complishing various tasks. As such, we have performed many
tests and incremental development of the middleware required
for the collaborations of the devices. For details about some
of these experiments see [5], [18], [19], [17], [20].

X. ACKNOWLEDGMENTS

The author would like to express his gratitude to Prof.
Alessandro Saffiotti for his work on the PEIS concept and to
Jayedur Rashid and Mirko Bordignon for their implementation
of the TinyOS version of the PEIS-middleware. This work has
been supported by ETRI (Electronics and Telecommunications
Research Institute, Korea) through the project ”Embedded
Component Technology and Standardization for URC (2004-
2008)” and Vetenskapsrdet.

REFERENCES

[1] “Network Robot Forum,” www.scat.or.jp/nrf/English/.
[2] J. Lee and H. Hashimoto, “Intelligent space – concept and contents,”

Advanced Robotics, vol. 16, no. 3, pp. 265–280, 2002.
[3] F. Dressler, “Self-organization in autonomous sensor/actuator networks,”

in Proc of the 19th IEEE Int Conf on Architecture of Computing Systems,
2006.

[4] J. Kim, Y. Kim, and K. Lee, “The third generation of robotics: Ubiq-
uitous robot,” in Proc of the 2nd Int Conf on Autonomous Robots and
Agents, Palmerston North, New Zealand, 2004.

[5] A. Saffiotti and M. Broxvall, “PEIS ecologies: Ambient intelligence
meets autonomous robotics,” in Proc of the Int Conf on Smart Objects
and Ambient Intelligence (sOc-EUSAI), Grenoble, France, 2005, pp.
275–280.

[6] J. Gibson, An ecological approach to visual perception. Boston, MA:
Houghton Mifflin, 1979.

[7] T. H. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0: Toward
a practical robot programming framework,” in Proc. of the Australasian
Conference on Robotics and Automation (ACRA), Sydney, Australia,
2005.

[8] N. Ando, T. Suehiro, K. Kitagaki, and T. Kotoku, “RT-middleware:
distributed component middleware for RT (robot technology),” in Int
Conf on Intelligent Robots and Systems, 2005, pp. 3933–3938.

[9] S. Enderle, H. Utz, S. Sablatng, S. Simon, G. Kraetzschmar, and
G. Palm, “Miro: Middleware for autonomous mobile robots.” [Online].
Available: citeseer.ist.psu.edu/enderle01miro.html

[10] OMG, “Corba/iiop specification,” Object Management Group, Inc.,
2000.

[11] A. L. Murphy, G. P. Picco, and G.-C. Roman, “Lime: A middleware for
physical and logical mobility,” in Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS-21), Phoenix,
AZ, USA, 2001.

[12] A. Saffiotti, M. Broxvall, B. Seo, and Y. Cho, “The PEIS-ecology
project: a progress report,” in Proc. of the ICRA-07 Workshop on
Network Robot Systems, Rome, Italy, 2007, pp. 16–22, online at
http://www.aass.oru.se/˜asaffio/.

[13] A. Saffiotti, M. Broxvall, B. Seo, and Y. Cho, “Steps toward an ecology
of physically embedded intelligent systems,” in Proc of the 3rd Int Conf
on Ubiquitous Robots and Ambient Intelligence, Seoul, Korea, 2006.

[14] “The PEIS ecology project,” Official web site, www.aass.oru.se/˜peis/.
[15] D. Gelernter, “Generative communication in linda,” ACM Trans. Pro-

gram. Lang. Syst., vol. 7, no. 1, pp. 80–112, 1985.
[16] R. Lundh, L. Karlsson, and A. Saffiotti, “Plan-based configuration of

an ecology of robots,” in Proc of the IEEE Int Conf on Robotics and
Automation, Rome, Italy, 2007.

[17] A. Loutfi, M. Broxvall, S. Coradeschi, and A. Saffiotti, “An ecological
approach to odour recognition in intelligent environments,” in Proc of
the IEEE Int Conf on Robotics and Automation, Orlando, FL, 2006.

[18] M. Broxvall, M. Gritti, A. Saffiotti, B. Seo, and Y. Cho, “PEIS ecology:
Integrating robots into smart environments,” in Proc of the IEEE Int
Conf on Robotics and Automation, Orlando, FL, 2006.

[19] M. Gritti, M. Broxvall, and A. Saffiotti, “Reactive self-configuration of
an ecology of robots,” in Proc of the ICRA-07 Workshop on Network
Robot Systems, Rome, Italy, 2007.

[20] M. Bordignon, J. Rashid, M. Broxvall, and A. Saffiotti, “Seamless
integration of robots and tiny embedded devices in a peis-ecology,” in
Proc of the IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS),
San Diego, CA, 2007, online at http://www.aass.oru.se/˜asaffio/.

[21] O. Lemaire, K. Ohba, and S. Hirai, “Dynamic integration of ubiquitous
robotic systems using ontologies and the rt middleware,” in Proc of the
3rd Int Conf on Ubiquitous Robots and Ambient Intelligence, Seoul,
Korea, 2006.

[22] Y. Tsuchiya, M. Mizukawa, T. Suehiro, N. Ando, H. Nakamoto, and
A. Ikezoe, “Development of light-weight RT-component (LwRTC) on
embedded processor,” in Proc of the SICE-ICASE Conf, 2006, pp. 2618–
2622.




