
Neighbor Detection and Crosstalk Elimination in Self-Reconfigurable Robots

David Johan Christensen, David Brandt, Ulrik Pagh Schultz and Kasper Stoy
The Maersk Mc-Kinney Moller Institute

University of Southern Denmark
Odense, Denmark

Email: {david, david.brandt, ups, kaspers}@mmi.sdu.dk

Abstract— This paper addresses two issues concerning com-
munication between neighbor modules in self-reconfigurable
robots. The first issue is automatic neighbor detection that is
due to modules self-reconfiguring, whereby the local commu-
nication network topology dynamically changes. The second
issue is crosstalk between non-neighbor modules, where data
packages send through an infrared communication channel
are received by a non-neighbor module because of reflections.
In this paper, we proposed algorithmic solutions to automatic
neighbor detection and crosstalk elimination. The algorithms
are simple, distributed, self-organizing and robust. For vali-
dation, they are implemented and evaluated on the physical
ATRON system. In conclusion, the algorithms are efficient and
effective and we argue that these algorithmic contributions may
be applicable on other systems as well.

I. INTRODUCTION

By connecting, moving, and disconnecting the modules,
of a self-reconfigurable robot, can autonomously change
their configuration. Such modules are often homogeneous
in both hardware and software and their control completely
distributed. Hence, modules may be mass-produced and high
numbers of modules can be assembled into a large range
of different functional robots. Further, a robot can adapt its
morphology to the task if required. Distributed control may
ensure scalability and homogenous modules ensures redun-
dancy where one module may takeover the functionality of
another modules, thereby, enabling fault-tolerance and self-
repair.

This paper considers some challenges related to the com-
munication in self-reconfigurable robot. In such systems,
local communication between two neighbor modules is de-
sired. In addition, modules must be able to communicate
without being physically connected, e.g. to negotiate when to
connect. These requirements imply directional and wireless
communication, why infrared communication is often used.
However, emitted infrared light can be reflected off other
modules or objects to be received by a non-neighbor module.
Such crosstalk has serious effects on the functionality of the
system, just consider a disconnect from me command arriving
at the wrong module. In general, such crosstalk can be hard
to avoid and care must be given to design the communication
system of the modules to reduce it.

Here, we consider the ATRON module which mechanical
design did not allow its infrared transceivers and receivers
to be shielded off. Hence, the emitted infrared light can be
reflected and received as crosstalk by non-neighbor modules.

This paper proposes a distributed algorithmic solution to
detect and remove crosstalk without the need of globally
unique IDs. Further, we propose an algorithmic strategy for
automatic detection of neighbors, which is necessary due to
self-reconfiguration of modules and non-trivial because of
imperfect communication. The algorithms are implemented
and validated on the physical ATRON modules. We be-
lieve that the algorithms may have applications beyond the
ATRON modules, since similar challenges exist for other
similar modular robots and in the context of mobile multi-
robot systems.

II. RELATED WORK

Hardware prototypes of self-reconfigurable robotic sys-
tems [3], [7], [9], [13], [14], [17], [21] consist of dozens of
centimeter-scale modules. From such modules robots with
various capabilities have been assembled, e.g. robots able to
move [8], [19], [20] and self-reconfigure [5], [11].

These systems all use neighbor-to-neighbor communica-
tion to coordinate the modules (in addition, some systems
such as the MTRAN system also have a global bus system).
Since the modules can self-reconfigure, the communication
system must automatically detect the appearance or removal
of neighbors. Distributed control strategies can be used to
ensure scalability [2], [10], [15]. In such distributed systems,
the use of global IDs should be avoided to allow any module
to replace any other module in the system (e.g. replace a
broken module).

An adaptive communication protocol for the self-
reconfigurable robot CONRO has been presented by Shen
et al. [18]. This protocol can detect changes in topology,
due to self-reconfiguration. As in this work, the detection
is performed using a special detection message, however, it
assumes a reliable communication and no crosstalk. In this
paper, we present a practical implementation of automatic
neighbor detection and crosstalk elimination as required by
the ATRON hardware.

III. ATRON SELF-RECONFIGURABLE MODULES

The ATRON self-reconfigurable robotic system [7] is a
homogeneous modular system. This means that all modules
are identical in both hardware and software - functional
differentiation can be achieved using roles. Modules can be
assembled into a variety of robots: Robots for locomotion
(like snakes, cars, and walkers), robots for manipulation (like

peri
Typewriter
ROBOCOMM 2007, 14th–16th Oct 2007, Athens, Greece.
Copyright © 2011–2012 ICST 
ISBN 978-963-9799-08-0
DOI 10.4108/ICST.ROBOCOMM2007.2183

peri
Typewriter



Fig. 1. A single ATRON module: on the top hemisphere the two male
connectors are extended, on the bottom hemisphere they are contracted.

small robot arms) or robots that achieve some functionality
from their physical shape, such as structural support [1], [4].
By self-reconfiguring, modules can change the shape of the
robot, for example from a car to a snake and then to a walker.

An ATRON module has a spherical appearance composed
of two hemispheres, which can actively be rotated relative to
each other. On each hemisphere, a module has two actuated
male connectors and two passive female connectors. In the
HYDRA project [16] we have manufactured 100 ATRON
modules, a single module is shown in Figure 1.

Rotation around the center axes is, for self-reconfiguration,
always done in 90-degree steps. This moves a module,
connected to the rotating module, from one lattice position to
another. One full 360-degree rotation takes about 6 seconds,
without the load from other modules. Encoders sense the
rotation of the center axes. Male connectors are actuated
and shaped as three hooks, which grasp on to passive female
connector bars. A connection or a disconnection takes about
two seconds. Located next to each connector are an infrared
transmitter and receiver, which allow modules to commu-
nicate with neighbor modules and sense distance to nearby
objects, more on this in Section IV. Connector’s positions
and orientation are such that the ATRON modules sit in a
global surface-centered cubic lattice structure. Furthermore,
each module is equipped with tilt sensors that allow the
module to know its orientation relative to the direction of
gravity.

IV. ATRON COMMUNICATION SYSTEM

The ATRON communication system must allow two
neighbor modules reliably to exchange data packages with
each other. Such local (neighbor-to-neighbor) communica-
tion scales well with the number of modules since the load
on individual communication channels is constant, if well-
designed distributed control strategies are used. In contrast
global communication, such as wireless, would have scaling

problems since the same medium is use by all the modules
[22].

The ATRON communication system is implemented us-
ing a infrared receiver and transmitter for each connector
position, see Figure 1. Infrared is preferred over wired com-
munication since this allows two modules to communicate
even if they are not physically connected.

However, crosstalk occurs because the physical spheri-
cal design of the ATRON modules did not allow the IR
communication channels to be shielded off. This cause the
transmitted IR light to be reflected off the metallic surfaces
of the modules which then reach other non-neighbor modules
as illustrated on Figure 2. This crosstalk communication is
highly undesired but has proven extremely hard to remove
with solutions such as: non-reflexive film, IR caps for making
light more diffuse, lower transmission power, etc. Some of
these solutions have reduced the crosstalk problem to some
extend; however, no solution has come anywhere close to
removing the problem entirely.

A number of experiments have been performed on the
unmodified hardware to measure the communication quality
between different (neighbor and non-neighbor) modules as
shown in Figure 2. This is the only configuration where
crosstalk occurs in the ATRON system. Because of the
ATRON lattice configuration, any communication channel
will be arranged in such a four-module loop. The measured
results showed a perfect communication (no noise or byte
loss) between both M1 and M2 and between M1 and M3.
Note, that communication between M1 and M3 is crosstalk
and therefore undesirable. We found no communication
between M1 and M4. However, we believe that it can occur
in some rare cases. In addition, we cannot rule out that
small uncertainties in the mounting of the IR transmitter
and receiver on the PCBs, which sometimes will make
non-neighbor modules communicate even better than two
neighbor modules.

V. DESIGN GOALS FOR COMMUNICATION IN
SELF-RECONFIGURABLE ROBOTS

The overall design goal of this communication protocol
is to provide secure peer-to-peer communication between
neighbor ATRON modules and automatically detect if a
neighbor module is present on a given IR channel. How-
ever, because of self-reconfiguration (neighbors can ap-
pear/disappear) and crosstalk (IR can be reflected) a standard
communication protocol cannot be used. Here, we summa-
rize the design goals of a communication system for self-
reconfigurable robots.

Scalable: State-of-the art self-reconfigurable robots con-
sist of dozens of modules. We are, however, concerned
with robots consisting of hundreds, thousands and eventually
billions of microscopic size modules. To ensure scalability,
the communication protocol must utilize distributed secure
peer-to-peer communication between neighbor modules. Fur-
ther, modules are homogenous in hardware and should be
the same in software, again to ensure scalability. Thus, the
modules do not have globally unique IDs.



Fig. 2. Crosstalk between 4 ATRON modules. One module, M1, sends
messages through the IR transmitters that are received by M2. However,
the infrared light is also reflected by mechanical parts of M2 causing M3
also to receive the messages from M1 (crosstalk). We did not observe any
crosstalk from M1 to M4, but believe it to be feasible that it occur in rare
cases.

Robust: Since dealing with large numbers of modules, the
communication protocol must be robust to module failures,
like resetting or dead modules. Further, it must be robust to
self-reconfiguration, crosstalk, noise etc.

Self-organizing: Changes in the network topology due
to self-reconfiguration must be detected and dealt with lo-
cally while ensuring secure peer-to-peer communication with
neighbor modules. Simultaneously, the system must adapt to
changes in the communication load and filter out crosstalk
messages. These adaptations must be based on local available
information only.

Minimal: The ATRON and self-reconfigurable robots in
general are small embedded system with limited resources.
The communication protocol must therefore have a minimum
of memory, bandwidth and computational overhead.

VI. BASIC COMMUNICATION PROTOCOL

For comparison and as a foundation for further expan-
sions a simple, custom build, communication protocol has
been implemented to provide peer-to-peer communication
between two neighbor modules. This basic protocol assumes
no crosstalk and a prior knowledge of the local network
topology (which channels has neighbors).

Each ATRON module contains two micro-controllers, one
on each hemisphere. The two micro-controllers use RS485 to
communicate with each other through a center slip-ring. Each
micro-controller manages the communication of the four IR
channels on its hemisphere by multiplexing a single UART.
The micro-controller can listen for IR activity on all four
channels at the same time but can only receive and transmit
data on one channel at a time.

The basic communication protocol therefore manages four
channels at a time. It can be in one of three states: lis-
tening (all channels), sending (one channel) or receiving
(one channel). When listening, the protocol will as soon
as some IR activity is detected switch to that channel and
start to receive. Errors in data packages are detected using
a cyclic redundancy check (CRC). Correctly received data
packages will be acknowledged (single byte) by the receiver.
Non-acknowledged packages will timeout and be resent.
The packages are unnumbered, so if an acknowledge byte
is lost a package may be sent and received several times.
The process of switching between the listening and sending
state is randomized, with some back-off if package collisions
occurs in the communication (e.g. data error or receiving
while sending).

In the following subsections, we will present extensions
to this basic communication protocol that enables it to
automatically detect neighbors and eliminate crosstalk from
non-neighbor modules.

VII. EXTENDED COMMUNICATION PROTOCOL

In this section, we present a strategy for dealing with self-
reconfiguration and crosstalk in a simple, computationally
cheap and completely distributed way, which provide the
application layer with transparent functionality such as safe
sending of a package to a neighbor module and information if
a module is present on a given channel. We extend the basic
communication protocol, described in Section VI, with these
algorithmic strategies.

A. State of Module, Channel and Neighbor Channels

First we expand the basic communication protocol to
include some state information about the module and any
detected modules within communication range. A module
has a locally unique ID, idmy, which is used by the commu-
nication protocol (Section VII-B describes how local unique-
ness of the ID is ensured). In addition, each of the eight
communication channels has a state. Hence, the module’s
communication state is given by its ID and the state of its
eight channels:

M = {idmy,C0, C1, C2, C3, C4, C5, C6, C7}
The states of the channels are independent and we can

therefore split their states into two, where two protocols
manage four channels each on different hemispheres. Only
the idmy state must be shared between the two protocols.

Further, the state of an ATRON communication channel is
given by the state of up to three neighbor channels (due to
crosstalk) which can communicate with this channel i. Only
one of those neighbors can be its immediate neighbor, others
may be sending data to that channel through crosstalk. The
states are identified using the neighbor channel’s IDs. The
channel state also include a state variable, tcomp, which is
used to compensate the neighbor channel’s strength for the
communication load on that channel:

Ci = {tcomp, Sid1, Sid2, Sid3}



Algorithm 1 Receive a ping byte on channel i
Require: idrec read from ping byte

if Sidrec /∈Ci then
if Ci is full then

delete S ∈Ci with min(S.strength)
end if
construct Sidrec from idrec
add Sidrec to Ci

end if
Sidrec .pingCount = Sidrec .pingCount +1

In general, the state of a channel must include the state of
as many neighbor channels as it can to communicate with
(inclusive crosstalk).

Finally, the local state of a neighbor channel, i, is given
by its ID and two variables (strength and pingCount) used
to measure the communication quality with that neighbor
channel:

Si = {id, strength, pingCount}
The use of these states should become clear in the follow-

ing sections.

B. Automatic Neighbor Detection and Locally Unique IDs

In order to facilitate automatic discovery of neighbor
modules a special ping byte is sent at random time, with
on average one ping per ∆t = 20ms on each communication
channel. The ping byte is encoded as follows:

PING =

header︷︸︸︷
01

gender︷︸︸︷
×

id︷ ︸︸ ︷
×××××

Every module is assumed to have a locally unique ID in
the range 1-31 (0 is reserved as a no ID). The gender bit
indicates if the sending connector is male of female - such
information is useful for the application layer. Below we
explain the approach used in detail.

Receive a ping: We can expect to receive a ping byte every
20ms from neighbor modules within communication range.
Every time a ping is received on a channel i, from a neighbor
with ID, idrec, the counter, Sidrec .pingCount, is incremented.
If the ping was received from an unknown neighbor we con-
struct its corresponding state Sidrec , potentially removing the
neighbor state which has the lowest strength. See Algorithm
1.

Update channel state: Approximately every ∆t = 20ms
the state of a channel i is updated, see Algorithm 2. For
simplicity this is done in conjunction with the sending of a
ping on the same channel i. When updating the channel’s
state we first compute the amount of time spend, since last
update, listening on that channel (for pings and packages),
e.g. ∆tlisten = 17ms, and the total amount of time since last
update, e.g. ∆ttotal = 23ms. From this we update the channel’s
state variable tcomp as a moving average of the percentage
of time spend listening, e.g. 73% (time not spend sending or
receiving packages).

Then, the states of the known neighbor channels are
updated. The communication strength to a neighbor module

Algorithm 2 Update state, Ci, of channel i
Require: ∆ttotal and ∆tlisten since last update

tcomp⇐ α1 ·∆tlisten/∆ttotal ·+(1−α1) · tcomp
for all S j ∈Ci do

S j.strength⇐ α2 ·S j.pingCount/tcomp+
(1−α2) ·S j.strength

S j.pingCount⇐ 0
if S j.strength < ε1 then

remove S j from Ci
end if
if S j.id = idmy and S j.strength > ε3 then

idmy = newRandomID()
end if

end for

is updated as a moving average of the number of pings
received from that neighbor (typical 0, 1 or 2). However,
since the channel has not spend all its time listening it
may have missed some pings, this problem increase as the
communication load increase. Hence, we compensate the
strength based on the average percent listening time, tcomp,
as shown in Algorithm 2. After updating the strength, the
pingCount state variable is reset. If the strength of a neighbor
channel falls below a threshold, ε1, the neighbor is removed.
In the implementation on the physical ATRON modules, the
floating-point moving average is replaced with a fixed-point
version to minimize computational overhead.

Several parameters has to be selected in Algorithm 2. The
choice of α1 should match the speed at which the load of
the system can change. Likewise the choice of α2 should
match the speed at which the system self-reconfigures. For
the ATRON communication load changes faster than the
system should be able to detect new neighbors, that is why
we select α1 = 1/16 and α2 = 1/32. Which means that a
neighbor modules will be detected in less than a second,
see Section VIII-A. Likewise, we select ε1 = 0.022 which
implies that one ‘noise’ ping will be removed after 10
updates or approximately 200ms.

Locally unique IDs: In Algorithm 2, on a given channel
i, if a neighbor has the same as the ID as the updating
module and its strength is above a threshold ε3 then the
updating module will randomly select a new ID. Dependent
on the number of different IDs used and average numbers
of neighbors this method will very fast converge so that
the modules locally but not globally have unique IDs. This
strategy is a distributed one-hop version of the algorithm
presented by Zhou et al. [23]. The communication system
will adapt to the change of an ID the same as if it were a
self-reconfiguration. The effects of changing ID on a module
might result in that neighbor modules ‘forget’ the existence
of that module, but only for a very short time and most likely
not a all (dependent on the choice of ε2 in Algorithm 3). For
ATRON ε3 = 1/8, which is a tradeoff between fast update to
ensure local uniqueness and not being too sensitive to noise.

Neighbor Detection: The strength state variable allows
the communication protocol to provide the application layer



Algorithm 3 Is neighbor module on channel Ci?
for all S j ∈Ci do

if S j.strength > ε2 then
return true

end if
return false

end for

with information about whether or not the module have a
neighbor on a given channel, see Algorithm 3. The algorithm
simply checks if the channel has any neighbor channels with
a strength above a threshold ε2. For ATRON we select ε2 =
3/8 which is below 0.5 since this will reduce the probability
of undesirable ‘neighbor knowledge loss’ by the neighbor
modules if the local ID is changed. This is because that
strength of new ID will rise above 3/8 faster than strength
of old ID will drop from 1 to 3/8. Note that false-positive
does not occur since crosstalk does not occur if the channel
does not in fact have a true (physical) neighbor to reflect the
signal from.

The use of ping bytes as a mean of detecting, remov-
ing and estimating the communication strength to a neigh-
bor module allows the structure of modules to be self-
reconfigured while detecting local changes in the topology
of the communication network.

C. Cross-Talk Elimination

To the package, about to be send, the algorithm attach its
own locally unique ID and the ID’s of N of the channel’s
neighbors (N=2 for ATRON). These extra bytes send are
the only communication overhead involved in cross-talk
elimination, see Algorithm 4. The algorithm is designed so
that it only accepts (and acknowledge) packages, which it is
confident, is send from an immediate neighbor module. Pack-
ages from immediate neighbors may initially be rejected, but
will eventually be accepted when the states of the neighbor
channels have adjusted. This is less serious than wrongly
accepting a crosstalk package, since this package then would
never reach its indented destination and could cause serious
confusion at the receiving end.

Sending a package: When sending a package the algo-
rithm first ensures that it has a neighbor on that channel
(by comparing the neighbors strength with ε2 = 3/8). To the
package the algorithm will attach its module ID as well a
number, N = 2, of known neighbor IDs. The IDs attached is
the potential immediate neighbor channels on that channel,
the neighbors are selected based on their strength. These
extra bytes are the only communication overhead involved,
see Algorithm 4. For ATRON the three IDs are encoded as
two bytes, giving an overhead of two bytes per package.

Receiving a package: Crosstalk elimination is performed
as shown in Algorithm 5. If the two communicating channels
do not agree that they are neighbors or if the communi-
cation strength is too low (strength < ε2) the package is
not accepted (first and second condition in Algorithm 5).
Further, the channels must have no common neighbors (third

Algorithm 4 Send package, P, through channel Ci

Ensure: ∃S ∈Ci : S.strength > ε2
add idmy to P
for k = 0 to N do

select id with max(Sid .strength), id /∈ P∧Sid ∈Ci
add id to P

end for
send P on hardware
if P is not acknowledge or timeout then

schedule resend of P
end if

Fig. 3. Intuition of crosstalk elimination. Crosstalk is eliminated by
comparing the neighbors of the sending channel with the neighbors of
the receiving channel. If the channels have a common neighbor, the
communication is crosstalk and ignored. This strategy does not work in
general for any robot, but does work in general for the ATRON because
the modules sit in a lattice. The figure shows three robots (A, B and C)
with directional communication channels (triangles). Robot A and B has no
common neighbor, why they can communicate. Robot A and C do have the
common neighbor B which is why they cannot communicate.

condition in Algorithm 5). This is due to the fact that a
module (M1) and its crosstalk neighbor (M3) will also have
a common neighbor in its immediate physical neighbor (M2),
see Figure 2. The intuition is given in Figure 3. The algorithm
assumes that the amount of crosstalk received from a module
two hops away (M4) is low (in fact we have recoded no
such crosstalk, but consider it a theoretical possibility). This
simple algorithm rejects any received crosstalk packages.
The dynamics of the strength ensures that no crosstalk occur,
even when a module is briefly reset, change its ID or self-
reconfigures. If a physical neighbor module is turned off
or broken, crosstalk can happen since it may reflect the IR
signal between non-neighbor modules.

VIII. EXPERIMENTS

The proposed algorithms were first tested in a simulation
of ATRON modules containing dozens of modules. Here,
we saw that the reactive assignment of local IDs quickly
stabilized, neighbors were detected, and that crosstalk was
eliminated. Here, we present experimental validation on the
physical ATRON modules and on a simple model of two



Algorithm 5 Receive package, P, through channel Ci

Require: idrec and idsrec read from P
if Sidrec /∈Ci or Sidrec .strength < ε2 then

return // package is not accepted
end if
if idmy /∈ idsrec then

return // package is not accepted
end if
if (idsrec∪S.id ∈Ci) 6= /0 then

return // package is not accepted
end if
acknowledge and process message // package accepted

communication channels.

A. Neighbor Detection

Here, we validate the proposed neighbor detection strategy
with communication load compensation. As explained in
Section VII-B and Algorithm 1 and 2. Every module emits
a ping every 20ms which is received by neighbor modules
if they are listening. Neighbor detection is achieved by
using two moving averages in combination, one for load
compensation and one estimating the for communication
strength.

In Figure 4(a) and 4(b) results obtained from simulation
of a model of two communication channels are shown. A
receiving channel will receive a percentage of the pings sent
by another channel (percentage given by the communicating
load). The model assumes a perfect load estimation and
noise free communication between the two channels. The
parameters of the system are otherwise the same as for the
physical ATRON modules. As can be seen from Figure 4(a)
an uncompensated version of the neighbor detection system
fails to detect the neighbor under high loads. This problem
is reduced with the compensated version, see Figure 4(b).

The theoretical average time to detect a neighbor is always
600ms independent on the communication load (for the given
parameters). The time variation is, however, dependent on
the load (percent time not spend listening). For 25% load
the expected time to detect a neighbor with one standard
deviation range from 540ms to 660ms while it at 75%
load range from 460ms to 840ms. On the physical ATRON
modules, the time for one module to detect another has
also been measured under various realistic loads. In 20 trials
under a load of approximately 5% we found that the average
time to detect a neighbor were 484ms with a max time of
780ms and min time of 372ms. The reason that the physical
system is somewhat faster than the theoretical model is due to
the dynamics of the communication protocol which is likely
to shift to another task (than listening) just after receiving a
ping.

B. Crosstalk Elimination

In the following experiment we compare three commu-
nication protocols for their ability to eliminate crosstalk in
the ATRON system. The first is a basic protocol which

makes no attempt to remove crosstalk, as explained in
Section VI. The second protocol uses reactive local unique
ids, neighbor detection based on pings but do not uses the
‘neighbor’ information to eliminate crosstalk (first condition
in Algorithm 5). Third protocol is the full implementation as
proposed in this paper, it is the same as the second protocol
but also make use of the neighbor information to eliminate
crosstalk (second and third condition in Algorithm 5).

The setup is shown in Figure 2, M1 sends out 100
packages on a given channel with payload of 1 byte, total
package size is 7 bytes inclusive header (3 bytes) and CRC
check (2 bytes). For each protocol 20 trials were performed,
five trials on each of four permutations of modules. The
baud rate were set low (9600bps) to increase the probability
of collisions and thereby noise (to stress test the protocol).
In Table I we report the number of packages received by
M2, M3 and M4. We observe that neither the basic or
strength based protocols works very well, both accept a lot of
crosstalk. The full implementation performs much better, no
crosstalk were observed and just 5 percent of the packages
are received twice due to a collision between an acknowledge
byte and a ping. In none of the trials do M4 receive any
packages, but it does add to the IR noise and communication
load to the system since it is pinging the other modules. In
summary, the proposed algorithm eliminates the crosstalk
between ATRON modules.

C. Self-reconfiguration

The communication system has been applied in the context
of self-reconfiguration of several ATRON modules. For this
purpose the baud rate was increased to 38.4kbps which
reduces the chance of communication collision and therefore
resend of packages. At this baud rate we have found that it
takes on average approximately 30ms for a one byte package
to be send from a controller program on one module to
a controller program on a neighbor module (the package
passes through two RS485 as well as the IR channel in this
case). For a 5-byte package, the time has increased to 35ms.
The protocol has been tested with a payload of up to 40
bytes. Further, the communication protocol has been tested
in a self-reconfiguration scenario with four modules, where
it successfully detected appearing neighbor modules dozens
of times and eliminated crosstalk hundreds of times.

IX. FUTURE WORK

Relying on the current hardware platform, several im-
provements could be made to the ATRON communication
protocol. For example the throughput of the system could
be improved and noise reduced by replacing the current
randomized strategy with a self-organizing synchronization
mechanism, such as those used in the context of sensor
networks [6], [12].

Further, the proposed strategy for neighbor detection and
crosstalk elimination may have applications beyond self-
reconfigurable robots. Especially in the context of mobile
multi-robot systems with directional communication chan-
nels, the proposed crosstalk elimination algorithm may be



(a) Uncompensated (b) Compensated

Fig. 4. Theoretical strength of a neighbor channel as a function of the load on the listening channel (load is percent time not spend listening). (a) No
load compensation, note that under high loads neighbors will not be detected. (b) Load compensation is used (as in Algorithm 2) here neighbors will be
detected in spite of high loads. The time to detect a neighbor is 600ms. Error bars indicate one standard deviation.

Basic (no check) Strength Check Full Check
Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.)

Module 2 103%(32%) 62%(16%) 105%(3%)
Module 3 120%(9%) 63%(16%) 0%(0%)
Module 4 0%(0%) 0%(0%) 0%(0%)

TABLE I
CROSSTALK CHARACTERISTICS OF THREE VERSIONS OF THE COMMUNICATION PROTOCOL. PERCENTAGE OF PACKAGES RECEIVED IS REPORTED.

RESENT PACKAGES, DUE TO COLLISIONS, RESULTS IN HIGHER RECEIVE RATES THAN 100%. NOTICE THAT THE FULL IMPLEMENTATION

COMPLETELY ELIMINATES CROSSTALK.

used as one of several means to ensure nearest neighbor
communication. In such a scenario the degree to which the
algorithm can eliminate crosstalk is still an open question,
it is, however, a function of many parameters related to the
physical aspects of the communication channels.

X. CONCLUSION

This paper proposed a distributed and self-organizing
communication strategy for dealing with self-reconfiguration
and crosstalk, which is based on locally unique ID which
are reactively assigned, ping messages send with a fixed
time interval and the exchange of known neighbor IDs when
sending packages. The communication system was validated
on the physical ATRON modules. Result showed that the
communication system were able to detect/forget neighbor
modules in less than a second independent on communication
load and were able to eliminate crosstalk between modules
completely. In conclusion the system is simple to implement
and sufficient for ensuring reliable communication between
neighbor modules and may be general enough to be used on
other self-reconfigurable robots or mobile robots.

ACKNOWLEDGMENT

This work is partly funded by the EU FET project HY-
DRA, the Self-assembling Robotic Artefacts project spon-
sored by the Danish Technical Science Council, and the
Morphing Production Line project financed by the Danish
Agency for Science, Technology and Innovation. C. Ryberg,
D. Kyrping, E. Østergaard, J. Hallam, J. Mikkelsen, K.
Støy, K. Kassow, L. Dalgaard, L. Paramonov, R. Beck have
contributed to the ATRON.

REFERENCES

[1] D. Brandt, D. J. Christensen, and H. H. Lund. ATRON robots: Ver-
satility from self-reconfigurable modules. In Proceedings of the IEEE
International Conference on Mechatronics and Automation (ICMA),
pages 2254–2260, Harbin, China, August 2007.

[2] Z. Butler, K. Kotay, . Rus, and K. Tomita. Generic decentralized
control for a class of self-reconfigurable robots. In Proceedings of
IEEE International Conference on Robotics and Automation (ICRA),
2002.

[3] A. Castano, W.-M. Shen, and P. Will. Conro: Towards deployable
robots with inter-robot metamorphic capabilities. Autonomous Robots,
8(3):309–324, 2000.

[4] D. J. Christensen. Evolution of shape-changing and self-repairing
control for the ATRON self-reconfigurable robot. In Proceedings of
the IEEE Int. Conference on Robotics and Automation(ICRA), May
2006.

[5] D J. Christensen. Experiments on fault-tolerant self-reconfiguration
and emergent self-repair. In Proceedings of Symposium on Artificial
Life part of the IEEE Symposium Series on Computational Intelligence,
Honolulu, Hawaii, April 2007.

[6] J. Degesys, I. Rose, A. Patel, and R. Nagpal. DESYNC: self-
organizing desynchronization and TDMA on wireless sensor networks.
In Proceedings of the 6th International Conference on Information
Processing in Sensor Networks (IPSN), pages 11–20, Massachusetts,
USA, April 2007.

[7] M. W. Jørgensen, E. H. Østergaard, and H. H. Lund. Modular ATRON:
Modules for a self-reconfigurable robot. In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 2068–2073, 2004.

[8] A. Kamimura, H. Kurokawa, E. Yoshida, K. Tomita, S. Kokaji, and
S. Murata. Distributed adaptive locomotion by a modular robotic
system, M-TRAN II. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS2004), pages
2370–2377, 2004.

[9] K. Kotay, D. Rus, M. Vona, , and C. McGray. The selfreconfiguring
robotic molecule: Design and control algorithms. In Robotics: The
Algorithmic Perspective. AK Peters, 1998.

[10] J. Kubica, A. Casal, and T. Hogg. Complex behaviors from local
rules in modular self-reconfigurable robots. In Proceedings of IEEE



International Conference on Robotics and Automation (ICRA), pages
360–367, Seoul, Korea, May 2001.

[11] H. Kurokawa, A. Kamimura, E. Yoshida, K. Tomita, S. Kokaji, and
S. Murata. M-TRAN II: Metamorphosis from a four-legged walker
to a caterpillar. In Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2454–2459, 2003.

[12] D. Lucarelli and I-J. Wang. Decentralized synchronization protocols
with nearest neighbor communication. In Proceedings of the 2nd
international conference on Embedded networked sensor systems
(SenSys ’04), pages 62–68, New York, NY, USA, 2004. ACM Press.

[13] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji. A
3-d self-reconfigurable structure. In Proceedings, IEEE Int. Conf. on
Robotics & Automation (ICRA’98), pages 432–439, Leuven, Belgium,
1998.

[14] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and
S. Kokaji. M-TRAN: Self-reconfigurable modular robotic system.
IEEE/ASME Transactions on Mechatronics, 7(4):431–441, 2002.

[15] E. H. Østergaard. Distributed Control of the ATRON Self-
Reconfigurable Robot. PhD thesis, Maersk McKinney Moller Institute
for Production Technology, University of Southern Denmark, Odense,
Denmark, November 2004.

[16] E. H. Østergaard, D. J. Christensen, P. E. Hotz, T. Taylor, P. Ottery,
and H. H. Lund. Hydra: From cellular biology to shape-changing
artefacts. In Proceesings of International Conference on Artificial
Neural Networks (ICANN), pages 275–281, 2005.

[17] W.-M. Shen, M. Krivokon, M. Rubenstein, C. H. Chiu, J. E., and J. B.
Venkatesh. Multimode locomotion via superbot reconfigurable robots.
Autonomous Robots, 20(2):165–177, 2006.

[18] W.-M. Shen, B. Salemi, and P. Will. Hormone-inspired adaptive
communication and distributed control for conro self-reconfigurable
robots. IEEE Transactions on Robotics and Automation, 18:700–712,
2002.

[19] K. Støy, W.-M. Shen, and P. Will. Using role based control to
produce locomotion in chain-type self-reconfigurable robots. IEEE
Transactions on Mechatronics, 7(4):410–417, 2002.

[20] M. Yim. New locomotion gaits. In Proceedings, International
Conference on Robotics & Automation (ICRA’94), pages 2508 –2514,
San Diego, California, USA, 1994.

[21] M. Yim, D.G. Duff, and K.D. Roufas. Polybot: A modular recon-
figurable robot. In Proceedings of IEEE International Conference on
Robotics & Automation (ICRA), pages 514–520, San Francisco, CA,
USA, 2000.

[22] E. Yoshida, T. Arai, M. Yamamoto, J. Ota, and D. Kurabayashi.
Evaluating the efficiency of local and global communication in dis-
tributed mobile robotic systems. In IEEE International Conference
on Intelligent Robots and Systems (IROS96), page 16611666, Osaka,
Japan, November 1996.

[23] H. Zhou, M. W. Mutka, and L. Ni. Reactive id assignment for sensor
networks. International Journal of Wireless Information Networks,
13(4):317–328, 2006.




