
A Networked Robot System for Wireless Network
Emulation

Tzi-cker Chiueh Rupa Krishnan Pradipta De Jui-Hao Chiang

Computer Science Department
Stony Brook University

Abstract—A major barrier to advancing modern wireless net-
working research is the lack of an effective wireless network simu-
lation platform that simultaneously offers high fidelity, scalability,
reproducibility and ease of use. MiNT [8], [7] is an innovative
wireless network emulation platform that is specifically designed
to satisfy all these desirable properties. To support reconfigurable
network topology and wireless node mobility, MiNT is built
on a networked robot system that carries wireless networking
equipments and is designed to be completely tetherless, capable
of supporting 24X7 operation, and low-cost. This paper describes
the design, implementation and evaluation of this networked
robot system. Each robot node in MiNT is an iRobot’s Roomba,
which is modified to house an embedded PC equipped with multi-
ple wireless networking interfaces and to re-charge the embedded
PC through Roomba’s built-in self-charging mechanism. For
robot navigation and movement, MiNT’s networked robot system
supports a computer vision-based robot positioning mechanism
and a collision avoidance-driven trajectory planning component.
Finally, MiNT provides an interactive control interface and
visualization interface to give users real-time visibility into and
full control over the MiNT testbed.

I. I NTRODUCTION

An ideal wireless network simulation system should provide
high fidelity in the sense that results of simulation runs are as
accurate as measurements taken on real wireless networks,
should be able to scale to large wireless networks in terms
of the number of network nodes and network flows, should
produce the same results for repeated runs of the same exper-
iments, and finally should be easy to use in terms of simulation
run set-up and execution. The most prevalent approach to
wireless network simulation in the research community today
is software-based simulation based on simulator such as ns-2,
Glomosim, etc. Software-based wireless network simulators
in many cases fail to faithfully capture many real-world
radio signal propagation effects such as non-uniform path
loss, interference, and multi-path fading [11]. Because of this
fidelity limitation, some researchers turn to physical wireless
network testbed as an alternative. Although several on-going
efforts aim to construct a high-fidelity wireless network testbed
for wireless protocol experimentation, they share some of the
following weaknesses. First, these testbeds provide limited
flexibility in terms of specifying initial wireless network
topology with specific signal-to-noise ratios and node mobility
patterns at run time. Second, because the operation of these
testbeds requires non-trivial human intervention, for example,
run-time node mobility, they cannot serve as an autonomic
shared infrastructure that supports 24x7 availability, like a
standard supercomputer center. Finally, the management and
control interfaces of most existing wireless network testbeds

are put together in an ad hoc way and often rather primitive.
MiNT [8], [7] is a multi-hop mobile wireless network

testbed that (1) offers the flexibility of experiment-specific
network topology reconfigurability, (2) supports untethered
node mobility during simulation runs, (3) sustains 24x7 au-
tonomous operation, (4) provides comprehensive monitoring
and control of the testbed activity, (5) enables hybrid ns-2
simulations and (6) reduces significantly the testbed’s physical
space requirement using radio signal attenuation. The enabling
technology behind MiNT is a networked robot system that
carries wireless network nodes and supports network reconfig-
urability and node mobility. Though conceptually simple, there
are several technical challenges in designing and implementing
this networked robot system. First, the networked robot system
must be battery-operated and self-rechargeable so that it could
be completely tetherless and yet support 24x7 continuous
operation. Second, to set up a given wireless network topology
or to enforce a particular wireless node movement pattern, an
accurate robot positioning mechanism is required to track and
control the position of each robot. Finally, to grow a mobile
wireless network testbed to a large size, larger than 100 nodes,
the cost of each robot must be low, and the design of various
testbed control functions, such as node movement and position
tracking, must be scalable.

Each MiNT node is built on a low-cost commodity robotic
vacuum cleaner from iRobot Corporation called Roomba [19],
which supports a flexible application programming interface
(described later) for external control, is able to carry a
large payload, and comes with an effective auto-recharging
capability. Mounted on each Roomba is a wireless network
node supporting four 802.11 interfaces, each of which is
attached to an antenna through a radio signal attenuator to
reduce its signal coverage and therefore th testbed’s physi-
cal space requirement. Roomba’s auto-recharging circuitry is
modified to power up both a Roomba and the wireless network
node it carries. Moreover, arecharge scheduling algorithm
is developed to determine the next recharge time for each
MiNT node. Finally, MiNT incorporates acomputer vision-
basedpositioning system to track the position of each Roomba
robot. This positioning system accurately tracks the robots
with zero false positive, and requires only commercial off-
the-shelf webcams. The resulting position information is used
in both node monitoring and trajectory planning for collision-
free robot movement.

The rest of this paper is organized as follows. Section 2
reviews previous works in wireless network testbeds and net-
worked robot systems. Section 3 gives an overview of MiNT’s

peri
Typewriter
ROBOCOMM 2007, 14th–16th Oct 2007, Athens, Greece.
Copyright © 2011–2012 ICST
ISBN 978-963-9799-08-0
DOI 10.4108/ICST.ROBOCOMM2007.2167

networked robot system including its hardware components
and the systems software base on which it is built. Section 4
describes the computer vision-based positioning system used
in MiNT. Section 5 presents the navigation and control system
for robot movement in MiNT. Section 6 concludes this paper
with a summary of main research contributions and a brief
outline of future work.

II. RELATED WORK

Large physical space requirement not only makes man-
agement of a wireless testbed difficult, but also adds to its
operational cost significantly. This is true for most full-scale
wireless network testbeds, like CMU-DSR [15], APE [14],
RoofNet [4] and TAP [13]. The set-up cost of some wireless
network testbeds, such as Netbed [24], WHYNET [22] and
ORBIT [18] is very high, although their cost may be justified
if they are used as heavily as their designers hoped for. In this
work, we emphasize the flexibility of network topology recon-
figuration and node mobility support. Testbeds like Roofnet
used a fixed topology and therefore are less flexible. A shared
testbed must be rich in its applicability to diverse scenarios,
like live experimentation, emulation or simulation. WHYNET,
ORBIT and Netbed propose to address a truly diverse set of
scenarios compared with others.

Ideally, movements of mobile nodes should be remotely
controlled in a programmatic way. Mobile Emulab [9] uses 4
Acroname Garcia robots for mobility. These robotic platforms
cost over $1000 a piece, as opposed to the Roomba robotic
vacuum cleaners ($249 a piece) [19] that MiNT uses. More-
over, Netbed’s robots must be manually taken to their charging
bases every 2-3 hours for recharge. Roomba comes with an
auto-charging feature, which makes our mobile testbed truly
autonomous. The MiNT testbed also pioneers the use of radio
signal attenuators to miniaturize the testbed [8]. This greatly
reduces the arena of operation thus requiring a smaller number
of overhead cameras to track the nodes.

A key design issue in supporting node mobility is to ensure
collision-free movement of the robots through careful path
and motion planning. Existing literatures [5] have explored
robot motion planning for various complex scenarios. Since
our testbed offers a much controlled environment, we explore
a heuristic that is lightweight and computationally efficient.
In contrast to the motion planning algorithm used in Mobile
Emulab, because the Roombas do not have object sensor,
MiNT integrates obstacle detection into the object tracking
subsystem.

Associated with mobility feature is the use of a tracking
system for accurately determining the position and orientation
of each node. Several previous systems also used a vision-
based tracking method to track mobile nodes. Graham and
Kumar [10] use ceiling-mounted cameras and colored patterns
on toy cars to track them. They use 8 colors and an error-
correcting 3x2 colored pattern to track the cars’ position in
real time. Their system is designed to track up to 22 mobile
nodes and is able to uniquely identify nodes as well as provide
their position and orientation. MiNT’s robot position tracking
system used a similar color-based mapping technique, with ad-
ditional optimizations. Cremean et al. [6] use ceiling-mounted
monochromatic camera and binary (black/white) patterns to
compute the position and orientation of the nodes. Concurrent

to this work, Johnson et al. [24] have also implemented a
centralized object tracking system that uses ceiling mounted
camera and color patterns to determine the position and
orientation of the mobile nodes in their wireless testbed. Their
tracking system does not uniquely identify each tracked node,
instead locality and motion pattern information is used to
determine the identity of nodes.

III. SYSTEM ARCHITECTURE

A. Hardware Components

A MiNT testbed consists of a collection of wireless mobile
robots managed remotely by a central controller. In addition,
there is a position tracking server that determines the exact
location of each wireless robot. The overall interaction of the
hardware and software components of a MiNT testbed is
illustrated in Figure 1.

Mounted on each mobile robot is an embedded computer, an
RB-230 RouterBoard, which is a low-power battery-operated
small form-factor board equipped with 4 mini-PCI IEEE
802.11 a/b/g wireless LAN (WLAN) cards. Inserted between
each WLAN card and its antenna is a radio signal attenuator
that decreases the strength of transmitted/received signals and
thereby the testbed’s physical space requirement. The mobile
robot is a commodity robotic vacuum cleaner, Roomba from
iRobot. Several modifications were made to the Roomba to al-
low the central controller to control each Roomba’s movement
and to leverage Roomba’s self-charging capability to charge
the the wireless embedded computer’s battery. The central
controller is a PC that controls the movement of each wireless
robot and collects network simulation results in real time.
The positioning server is responsible for keeping track of the
position and orientation of each mobile robot in the testbed by
applying computer vision algorithms on video signals captured
from an array of video cameras hanging over the testbed.
Figure 2 shows a MiNT prototype that consists of 12 wireless
Roomba robots, with the charging stations at the top left corner
of the image.

B. Software Components

The key software components in MiNT are: (a) the control
daemon running on the central controller, (b) the robot daemon
residing on each testbed node, and (c) the interactive moni-
tor and control interface called MOVIE (MiNT cOntrol and
Visualization InterfacE). The control daemon collects position
updates of testbed nodes from the position tracking server,
as well as simulation event traces from the testbed nodes,
which it uses to update the visualization interface. It also
communicates user-issued control commands, in the form of
robot movements or configuration changes, to target robot
daemons. Based on the received commands a robot daemon
instructs its underlying robot to move accordingly. Because all
simulation events from the testbed nodes are routed through
the central controller, the control daemon maintains a complete
log of the testbed activities during a simulation run. Robot
daemons communicate with the central control daemon over
an IEEE 802.11g channel that is chosen at start-up time. Other
programs running on testbed nodes, for example, the ns-2
network simulator, the TCP load generator, and the RF mon-
itoring agent, go through the robot daemon to communicate

Node DaemonNode Daemon

Control Daemon

Telemetry
Data

RF Trace Motion Cmd

Start/Stop/Pause

RF Trace

Start/Stop/Pause

NS−2 Controller Agent NS−2 Controller

Motion Cmd

Application Trace Application Trace

AgentLocationing

Tracking System

Display trace

Mint cOntrol &
Visualization InterfacE

(MOVIE)

(x,y,orientation)

1. Motion Cmd Block
2. Execute Application/Agent

Agent

Node Location
Update Position

MonitorMonitor Roomba Roomba

User/
Experimenter

Dispaly/Inputs

Testbed Arena

Controller Node

Applications/Agents Applications/Agents

N
od

e−
1

N
od

e−
2

M
ov

e C
m

ds

M
ov

e C
m

ds

Webcams

Roomba Roomba

Log

Fig. 1. In a MiNT testbed, the control daemon running on the control server
collects inputs from the robot tracking server and the user, and controls the
movement of individual MiNT nodes. It also includes the MOVIE interface for
the user to monitor and control the testbed. Each testbed node is a wireless
embedded computer mounting on a Roomba robot and runs a node daemon
program that communicates with the control daemon over a dedicated wireless
control channel. Testbed nodes communicate with peers using wireless NICs
that are connected to low-gain antennas through radio signal attenuators. The
vision-based tracking server periodically captures images of the testbed area,
and processes them to derive the position/orientation of each testbed node.

Fig. 2. The current MiNT prototype consists of 12 Roomba robots, each with
a wireless computer mounted, and several charging stations for charging their
batteries.

with the central controller. MOVIE provides a comprehensive
monitor and control interface that offers real-time visibility of
the testbed activity and supports full interactive control over
testbed configuration and hybrid simulation runs. MOVIE is
derived from Network Animator (NAM), a well-known off-
line visualization tool for ns-2 traces. Several enhancements
were made to NAM to support real-time monitoring and
controlling simulation runs and for interactive debugging of
simulation results, such as protocol-specific breakpoints and
simulation state rollback.

IV. M INT NODE DESIGN

A. Miniaturization

Setting up a multi-hop wireless network for experimentation
is a grueling exercise mainly because the physical space

requirement entails a painful logistical effort. For example,
the communication distance between a pair of wireless nodes
operating in the 2.4 GHz frequency range and using off-
the-shelf IEEE 802.11b wireless NICs is around 300 feet;
any non-trivial multi-hop wireless network built on this radio
technology can easily span a geographical area with a 1000-
foot diameter. To set up such a multi-hop wireless network
with a specific signal-to-noise ratio between each pair of nodes
is not only painstaking and time-consuming, but also error-
prone. The logistic effort involved no doubt will have an
adverse impact on the number of experiments that researchers
can afford to run on such testbeds. Worse yet, simulation of
node mobility is also problematic in these testbeds, as they
require manual efforts, for example, putting a laptop on a car
and driving it around the campus, as in CMU-DSR [15], or
asking volunteers to carry mobile devices in an orchestrated
manner, as in APE at Uppsala University [14].

The simplest way to limit radio signal propagation distance
is to reduce the transmit power on the wireless network
interface. One can use a laptop or a PDA with a commercially
available wireless interface card that allows setting the transmit
power to different values, like 100mW, 50mW, 10mW, 5mW
and 1mW. However, experiments on commercial WLAN cards
such as Cisco Aironet 350 series show that even at 1mW, the
radio coverage, about two mid-sized rooms, is still too large
to fit the space budget of MiNT. Therefore, we switched our
attention toradio signal attenuators, which are designed to
decrease the power level of transmitted and received radio
signals. Radio signal attenuators are available in two types,
viz. fixed signal attenuators and programmable attenuators.
The fixed signal attenuators are priced in tens of dollars,
whereas the programmable attenuators usually cost $1000 a
piece. Therefore, we chose to use fixed signal attenuator in
the MiNT node design to reduce its per-unit cost. The extent
of attenuation (dB rating) is determined based on the desired
range of radio signal propagation.

Use of attenuator, which is external to a wireless interface
card, requires the use of an external antenna. The attenuator is
connected between the wireless interface card and the external
antenna using an RF cable with suitable connectors. The prob-
lem with this approach is that most commercially available
wireless interface cards come with an internal antenna, which
does get fully disabled even when the card is attached to
an external antenna and radiates enough RF energy to defeat
the goal of restricting each wireless interface’s radio signal
coverage. There are two ways to overcome this problem.
One option is to physically cut the internal antenna from
the radio signal path, which is reported to be used in the
wireless Emulab testbed project [12]. The other option is to
use a wireless interface card that does not have an internal
antenna. However, such cards are only available in miniPCI
and PCI format. Because the RouterBoard platform we chose,
RB-230, provides only 1 PCI slot, we opted for miniPCI
wireless interface cards and attached multiple of them to a
miniPCI to PCI converter, which in turn is plugged into RB-
230. Multiple wireless interface cards provide us the flexibility
to carry out experiments requiring multiple wireless interfaces
per node [17]. To further attenuate radio strength, we used
low-gain external antennas, whose power gain is 2dBi.

B. Support for Node Mobility

To support network topology reconfiguration and node mo-
bility requires each MiNT node to be mounted on a mobile
robot. The key criterion used in choosing MiNT’s mobile robot
platform are: (a) low cost, (b) minimal assembly effort, and (c)
remote controllability. Hobby robots provide an inexpensive
option, but demand substantial assembly efforts. Robots typi-
cally used in many commercial and robotics applications, like
AmigoBots [2], PatrolBots or Acroname Garcia [1] robots, are
very expensive, often going into thousands of dollars per unit.
Eventually, instead of choosing standard experimental robotic
platforms, we choose theRoomba robotic vacuum cleaner
from iRobot as the mobility platform for MiNT nodes, for the
following three reasons. First, Roomba is a consumer-grade
product that carries an inexpensive price tag: its retail price of
$200 at the time of our purchase. Second, Roomba can carry
a payload of up to 30 pounds, an essential capability to host
MiNT’s wireless computing platform. Third, Roomba supports
a auto-charging capability, which is essential to support one
of MiNT’s design goals: 24x7 autonomic operation.

Designed primarily to be a vacuum cleaner, Roomba origi-
nally did not provide any open API for controlling its move-
ments. We overcame this limitation through a clever use of
its IR-based remote control facility. More specifically, we
achieve arbitrary Roomba movement using two primitives:
(1) move the mobile robot forward, and (2) turn the robot
clockwise or counter-clockwise. A Roomba can be instructed
to perform these primitives through an out-of-the-box infrared-
based remote controller that comes with the Roomba. We
learned Roomba’s remote control codes using a programmable
remote controller called Spitfire [21]. To move a Roomba,
MiNT’s central control server sends a movement command to
the RouterBoard on the Roomba, which relays a corresponding
command to a Spitfire controller over a serial port, and
eventually the Spitfire controller issues the associated infrared
code to instruct the Roomba to move accordingly.

Since 2006, iRobot rolled out a new version of Roomba
that supports an electronic and software interface for remotely
controlling and modifying Roomba’s behavior and monitoring
its sensors. This interface is known as the Roomba Serial
Command Interface or Roomba SCI [20]. The SCI provides
commands to control all of Roomba’s actuators, such as its
motors, as well as retrieve internal sensor data such as residual
battery capacity. Roomba SCI simplifies several aspects in the
design of MiNT, with an associated reduction in the overall
cost. With SCI, a RouterBOARD is directly connected via
a serial cable to a Roomba’s serial port, which is a 7-pin
mini-din connector. Because this connector does not work on
the voltage levels of a standard RS232 connection, a RS232
level shifter is needed to convert RS232 voltage levels to those
accepted by Roomba.

The software interface in the SCI expose various internal
functionalities in Roomba, including move forward, move
backward, rotate a certain angle, dock to a charging station,
undock, report residual battery charge of the Roomba and
a host of other useful features. The following are the most
important primitives provided by SCI:
void command(char*, int): This function takes a string,
which specifies the command to execute, and an integer, which

is unused, as input. The command string could be one of the
following:

• forward: move forward by a single step or 20 cm
• right: turn by a angle of 10 degrees clockwise
• left: turn by a angle of 10 degrees counter-clockwise
• back: move backward by a single step or 20 cm
• power: turn on the power
• pause:stop Roomba from moving
• dock: seek the nearest docking station and dock
• undock: leave the current docking station and wait for

further commands
void getpacket3(): This function reads the third sensor data
packet that Roomba sends out. It contains information about
Roomba’s charging state, battery capacity, voltage and currents
of Roomba’s battery. This function sets the boolean variable
chargestate to true if Roomba is found to be charging and
sets it to false otherwise. The two integer variablescharge
andcapacity are populated with current battery charge and
total battery capacity, which is usually a constant 2700 for all
batteries and the current battery charge varies between 0 and
2700.
short int getdistance() This function returns the distance
traveled by a Roomba since the wheel sensors were last
polled usingmarkpoint() function, which essentially serves
as a reset. Because wheel sensor values are only 2-byte long,
Roomba can measure a maximum distance of -32,768 mm to
+32,767 mm.

SCI also contains a serial port module which is used to
establish a serial port communication channel with Roomba,
including the set-up of initial communication baud rate.

C. A Complete MiNT Node

The complete design of a MiNT node involves setting up an
embedded computer that serves as a wireless communication
node, and mounting it on a Roomba robot. Taking into account
cost, form factor, power consumption and I/O extensibility,
we chose RouterBoard’s RB-230 board as the embedded
computing platform for the MiNT node. RB-230 is a small-
form-factor PC with a 266-MHz processor and runs on an
external laptop battery. It also comes with a PCI extension
board (RB-14), which allows one to attach 4 Atheors-based
802.11 a/b/g mini-PCI cards, each of which is connected to a
2 dBi external antenna through a 22 dB radio signal attenuator.
This adds a total of 44 dB attenuation on the signal path from
transmitter to receiver and thus makes it possible to deploy
a 12-node MiNT prototype within a space of 132.75 inches
X 168.75 inches, as shown in Figure 2. In addition to the
fixed signal attenuators, MiNT also allow users to modify
the transmit power on the mini-PCI WLAN cards to provide
additional flexibility in tuning inter-node signal-to-noise ratio.

Figure 3 shows the current MiNT node prototype. There are
two shelves mounted on the Roomba. The laptop battery and
the Spitfire universal remote controller sit on the lower tier,
while the RouterBoard based wireless networking module sits
on the top tier. The four external antennas are mounted on
poles located at four corners.

V. V ISION-BASED ROBOT POSITIONING

A. Overview

The robot positioning system in MiNT is necessary to
maintain the location and orientation information of each

External Antennas

Roomba−based
Mobile Platform

RouterBoard 230

IR Transmitter

IR Receiver

Control NIC
802.11g

IR Remote Controller
Serial Port−based

Battery

802.11a Experimentation NICs

Radio
Attenuators

Fig. 3. A MiNT node comprises of a RouterBoard (RB-230) powered by an
external laptop battery, and a Roomba robotic vacuum cleaner whose movement
is controlled by a Spitfire Universal Remote Controller. The RouterBoard is
equipped with 4 wireless NICs each connected to a separate omni-directional
external antenna via a radio signal attenuator.

MiNT node in real time, and to display it through the control
GUI. One simple way to track the position of a mobile robot
is to use its odometry data, which tells the distance that
a robot travels from a starting point, and the angle rotated
with respect to a fixed direction. However, even the new
SCI from Roomba does not provide such information. In
theory, it is possible to maintain the odometry information
based on the movement commands sent to a mobile robot. In
practice, factors such as mechanical inaccuracies and differ-
ence in floor friction can lead to noticeable errors. Therefore,
MiNT needs a more accurate robot positioning system. One
option is to use RF/ultrasound-based indoor local positioning
systems such as Cricket [16]. However, this option increases
the per-node cost, and introduces additional RF interference.
Therefore, we choose an optical or computer vision-based
position/orientation tracking system that only requires off-the-
shelf webcams. The design goal of this tracking system is to
uniquely identify each MiNT node, and pinpoint its (X, Y)
position and orientation (θ).

Compared with general object tracking, the complexity of
MiNT’s object tracking system is inherently less demanding
because it can afford several simplifying assumptions. First,
the lighting condition in the room housing the MiNT testbed
does not change much. Consequently, it is not necessary to
dynamically account for fluctuation in lighting condition once
the color profiles have been calibrated for the initial lighting
condition. Secondly, color patterns used to identify individual
MiNT nodes can be chosen such that they are different from
the background color, in this case the floor’s color. Thirdly,
placement of webcams that periodically take snapshots of the
testbed nodes does not change once they are mounted.

MiNT assigns to each testbed node a unique ID, which
consists of multiple colors. Through a simple color recognition
algorithm, MiNT could reliably identify 8 distinct colors and

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

Head Patch

ID Patches

Tail P
atch

θ
Vector v2

V
ec

to
r v

1

Fig. 4. The color patch on every node has the same head and tail patch.
The vector from the centroid of the tail patch to the centroid of the head patch
is used to determine a MiNT node’s direction and thus its orientation in the
testbed arena. The node location and identification are done using the center
patches.

therefore could potentially support up to hundreds of testbed
nodes. Reliable and fast identification of unique colors is at the
heart of MiNT’s object tracking algorithm. We use the HSV
(Hue, Saturation, Value) space to represent colors because the
distribution of colors is more uniform in this space, and the
Hue and Saturation components are orthogonal to the Value
(or brightness) component. To determine the set of colors used
in node ID, MiNT first computes the HSV profiles for a
number of colors, and eventually arrives at 8 colors that can
be clearly distinguished based on at least one of the H, S, or
V components. Because the HSV profile for the same color
may change substantially from one camera to another owing
to subtle differences among CCD sensors in these cameras,
we profile each camera separately to arrive its corresponding
profiles for these eight colors.

It is possible to use high-resolution cameras with wide-angle
lens that support a larger viewport, but come at a cost on
the order of thousands of dollars. Similarly, to support high
frame rates, it is possible to use hardware decoders on the
tracking server. In the end, we decide for our application it is
sufficient to use commodity webcams and settle for Logitech
Quickcam Pro 4000, which costs $76 and supports a resolution
of 320x240 at up to 15 frames/sec.

B. Object Tracking

MiNT associates a four-color pattern with each testbed
node, as shown in Figure 4. The head and tail color patches
are the same for all testbed nodes. Only the center patch,
which consists of two colors, is used in node identification.
In particular, thelocation of a testbed node is the centroid of
the ID or center patch. Theorientation of a testbed node is
determined based on its direction, which in turn corresponds
to the vector connecting the centroid of its tail patch to that
of its head patch. Using the same colors for the head and tail
patches introduces redundancies that can guard against noises
and simplifies the determination of robot orientation. There
are two main steps in the identification and positioning of a
node: (a) finding the presence of a color patch in the snapshot
image, (b) reducing the parsing overhead of each image by
using inter-frame coherence in the images captured.

The color recognition algorithm used in MiNT is extremely
simple and thus scalable, and does not require any complicated
image processing techniques, such as edge detection. Once an
image is captured, its pixels are scanned one by one in the scan

Camera−2
Viewport

Camera−3
Viewport

Camera−4

Camera−1

Viewport

Viewport

Fig. 5. The schematic shows the placement of multiple cameras such that
viewport overlaps. The overlapped areas are such that at any point in time a
node must be fully covered by a camera; none of the camera captures a partial
image of the node.

line order. If a pixel of a known color is detected, then the
pixels in its immediate 1-pixel neighborhood are checked for
similarity and the pixel block is further expanded. It is possible
to detect multiple blobs of the same color in an image captured
by a webcam. This can happen if multiple nodes fall within the
coverage of one webcam, which could be easily identified by
multiple pairs of head and tail patches. It can also arise because
of optical noises, which in turn can result because some
portions of a color patch may fade, leading to disconnected
blobs within a single patch. MiNT uses a merging technique
to discern the noise case. For all the blobs of same color,
MiNT merges them into a larger blob if their centroids are
within a distance less than a pre-definedmerge threshold,
which is chosen so as to prevent merging same-color patches
from different nodes, while being able to accommodate blobs
that belong to the same patch.

MiNT exploits frame-to-frame coherence to further improve
the efficiency of its object tracking algorithm. Given the
knowledge of a node’s position/orientation at the time when
the last image is captured and the temporal distance between
the last and the current captured images, MiNT computes
a bounding box for that node and scans only pixels in
that bounding box to determine the node’s current posi-
tion/orientation. This optimization improves the tracking effi-
ciency because it eliminates the need to scan irrelevant pixels,
as well as the tracking accuracy, especially when multiple
nodes are close to each other, because it provides additional
hints to disambiguate uncertainties.

Because a single webcam cannot cover the entire testbed
arena, MiNT uses multiple webcams to fully cover the entire
testbed arena. As a node moves from the viewport of one
camera to that of another camera, the object tracking algorithm
needs to perform necessary ”handoff” to continue the node’s
tracking. Instead of using such handoff approach, MiNT solves
this problem by mounting the cameras such that the view ports
of adjacent cameras overlap and the overlapped area is large
enough to cover a node completely. Because each MiNT node
is always fully covered by at least one camera under this
camera arrangement, there is no need to coordinate adjacent
cameras, as shown in Figure 5.

C. Implementation Issues

In MiNT’s robot position system, whose software structure
is shown in Figure 6, there is a webcam server that processes
images captured by each webcam, and an integrator server
that merges node positioning results from webcam servers
to generate the corresponding coordinates in the 2D space

Tracking System

Control Node

Integrator

Webcam ServerWebcam Server

Fig. 6. MiNT’s robot position tracking system consists of a set of webcam
servers, which collect images captured by webcams, and an integrator server,
which translates node positions reported by webcam servers to global coordi-
nates and sends them to MiNT’s control server for display in the control GUI.

representing the testbed arena and and sends them to MiNT’s
control server Multiple webcam server instances can run on a
single machine along with the integrator server. As the number
of webcams increases, the webcam server instances can run
on a cluster of PCs instead.

There are several frame grabbing APIs for acquiring images
captured by webcams. The frame grabbing APIs on the
Windows platform suffer from poor scaling, and give a very
low frame rate even when only 2 webcams are plugged into a
webcam server machine. VideoForWindows API is unable to
support more than one webcam on a single machine, whereas
DirectShow API gives a low frame rate of 1.5 frames per sec-
ond with only 2 webcams. Eventually we chose Camstream [3]
to capture webcam images, which uses Video4Linux [23]
as the image grabbing API. The driver for the Logitech
Quickcam Pro 4000 webcam is Philips USB Webcam (PWC)
driver. As a result, the current MiNT prototype is capable of
capturing 320x240 frames at 15 frames per second even when
6 webcams are connected to a single machine with a 2.8-GHz
X86 processor.

When the integrator server starts, it first listens for a
connection request from the control server. Once it connects to
the control server, it establishes a connection to the webcam
servers, and starts collecting node positioning data periodi-
cally. It merges these node positioning data to compute their
global coordinates and sends them to the control server. When
a robot moves from one webcam’s coverage area to another’s,
the server communicates this transition to the webcam servers
associated with these two webcams. This communication
allows the webcam that sees the robot for the first time to
immediately leverage the bounding box information associated
with the robot.

D. Evaluation

In the current MiNT prototype, 6 webcams are mounted at
a height of about 9.1 feet with each covering a floor space of
87 inches X 66 inches, with the total testbed arena of 132.75
inches X 168.75 inches. Each webcam has a resolution of 320
x 240, thereby each pixel corresponds to 0.075 square inch
area. Factors that affect the accuracy of MiNT’s color-based
position/orientation tracking algorithm are the size of each
color patch, the number of distinct colors used, the stability of
lighting condition, optical noise in the patch boundaries, which
might distort centroid computation. Given the patch size and

the camera resolution used in the current MiNT prototype, a
1-pixel recognition error could potentially translate to 0.27
inch in location error, and 2.2 degrees in orientation. The
positioning accuracy of MiNT’s object tracking system is
measured in terms of the difference between the location and
orientation of a MiNT node as reported by the tracking system
and its true coordinates. The measured mean error in position
is 0.95 inches with a standard deviation of 1.17 inches, and
the measured mean error in orientation is 3.36 deg. with a
standard deviation of 2.77 deg.

Another important factor is the scalability of MiNTs object
tracking algorithm with respect to the number of robots being
tracked. This is measured by the end-to-end time required
for positioning each robot, including frame grabbing, node
identification, node positioning , and merging of position
data from multiple webcam servers. With 12 robots, MiNT’s
tracking system is capable of producing one position update
for every node once every 300 msec when it runs on a single
machine.

The current room hosting the MiNT testbed has a limited
height. If the mounting points of the webcams are moved
higher, each webcam could cover a larger area and the tracking
system can scale to a larger testbed size, although each robot’s
image is of lower resolution. To demonstrate that MiNT’s
tracking system can indeed work even with lower-resolution
images, we scaled down the size of the images captured from
the webcams, and ran the tracking algorithm on them. Even
when each webcam image is shrunken to 1/16th of its original
size (equivalent to placing the camera at 4 times the current
height), the tracking system works well. In particular, the
tracking systems positioning error just increased from 0.95
inches to 2.32 inches, while the error in orientation increased
from 3.36 deg to 4.11 deg.

VI. NAVIGATION AND CONTROL

To support node movement, MiNT’s control server needs
to compute the path for each robot, and sends the corre-
sponding movement commands to the robots at the proper
moment. In addition, MiNT constantly monitors each robot’s
position and orientation, and preemptively avoids collision.
More concretely, MiNTuses a static path planning algorithm
to compute each moving node’s path assuming the rest of
the world is static, and then resorts to a dynamic collision
avoidance algorithm to detect and avoid collision by fine-
tuning statically computed paths.

Given the current position and the target destination of a
testbed node (TN), the control server takes a snapshot of the
positions of other testbed nodes and treats them as obstacles
during the calculation of TN’s path. The static path planning
algorithm first checks if there is a direct path between TN’s
current position and its destination. If such paths do not exist,
the algorithm identifies the obstacle closest to the source
position, and finds a set of intermediate points that lie on the
line that passes through the obstacle and is perpendicular to
the line adjoining the source and destination, and have a direct
path to both the source and destination. If no such intermediate
points exist, the algorithm finds a random intermediate point
that isδ steps away from the obstacle closest to the source and
is directly connected to the source, and repeats the algorithm
from this new intermediate point as if it is a new source.

Node

L0

1

1

A_initial

A_final

P6

P4

P2

P1

P5

P3

Bounding Area

L3

L1

L2
3

5

6

2

4

Fig. 7. Finding the path from N1’s current position Ainitial to Afinal. As
nodes N2, N3 and N4 block the direct path, the algorithm tries to identify an
alternate 2-hop path to move N1 from its current source to its destination.

Figure 7 illustrates how the static path computation algo-
rithm works. NodeN1 is set to move fromAinitial to Afinal.
However, N2, N3 and N4 block the direct path between
Ainitial andAfinal. The path planning algorithm first figures
out that N3 is the obstacle closest toAinitial, and then
computes the intermediate pointsP1, P2, ..., P6 to search for
2-hop paths toAfinal. Because the pathsL1 and L2 are
partially blocked, the algorithm eventually chooses pathL3,
which passes through the intermediate pointP3.

In addition to static path planning, MiNT also requires
a dynamic collision avoidance algorithm because other
MiNT nodes could also be moving and the robot movement is
not perfect. Given a snapshot of the testbed at 15 frames per
second in the current prototype, MiNT performs a proximity
check for each testbed node. If any two nodes are closer than
a threshold distance, including when they already collide with
each other , the control server stops both of them, computes
a new path for each of them if necessary, and moves them on
their new pathone after the other.

The main reason why dynamic collision avoidance is still
needed is because the control server does not have a perfect
control over Roomba’s movement and there are tracking errors
in MiNT’s positioning system. As a result, the trajectory of
a MiNT node may deviate from its statically computed path,
and collision between nodes could still arise from time to time
even with perfect collision-free path planning.

VII. 24X7 AUTONOMOUSOPERATION

A major challenge in the design of MiNT is how to reduce
its administration and maintenance cost while supporting un-
interrupted 24x7 operation. Ideally each MiNT node should
be self-administered with respect to routine operations, such
as recharging the batteries; and self-healing in the face of
software/hardware failures.

Because each MiNT node is battery-powered, the batteries
must be recharged periodically. Typically charging a node’s
battery is a manual process that requires the administrator to
physically take the node to a charging station [12]. In contrast,
MiNT supports automatic recharging of node batteries and
thus completely does away with manual efforts in this process.
MiNT leverages Roomba’s ability to go to a docking station
to charge its battery when its battery runs low. A Roomba
docking station emits an IR beacon signal, which could be
received by any Roomba within a distance of 5 feet. When a

Diode

+ve −ve

Connector
Coaxial

Roomba RouterBoard
Battery

Fig. 8. The auto-charging circuit for charging a MiNT node Roomba and
RouterBoard battery when the mobile node docks itself into a docking station
for recharging.

Roomba’s battery capacity drops below a threshold, it starts
looking for any beacon signal emitted by a docking station and
uses the signal to home into the docking station and recharge
its battery.

Unfortunately, Roomba’s built-in battery cannot be used to
directly power the RouterBoard computer, which is powered
by a separate universal laptop battery. To recharge the Router-
Board battery along with the Roomba battery, we connect
the RouterBoard battery to the charging tip of the Roomba
battery as shown in Figure 8. This allows both batteries to
be charged simultaneously from the same docking station.
A diode connected between the Roomba battery and the
RouterBoard battery ensures that each of these batteries cannot
be drained by the other.

To initiate battery re-charging autonomically requires the
knowledge of the current residual battery capacity. Although
the new SCI interface provides the residual capacity of each
Roomba’s battery, it offers no information on the residual
capacity of the RouterBoard’s battery, which we estimated
using the following formula:

Rboard = Iboard−Tboard∗Uboard−Ndisk∗Udisk−Npacket∗Upacket

where Rboard and Iboard are the residual and the initial
charge on the RouterBoard’s battery.Tboard is the amount of
time RouterBoard has been on, andUboard is the measured
power consumption rate during idle time.Ndisk and Udisk

are the number of hard disk operations performed by the
RouterBoard and the energy consumed per disk operation
respectively. Finally,Npacket and Upacket are the number
of packets sent/received by the RouterBoard and the energy
consumed per network operation respectively. The energy
consumed by IR transmission is negligible.

VIII. C ONCLUSION

This paper describes the design and implementation of a net-
worked robot system called MiNT that is designed to support
high-fidelity wireless network emulation. The communications
among these robots are through IEEE802.11 wireless LAN
interfaces and mainly used to emulate wireless communica-
tions required in wireless protocol testing, experimentation
and evaluation. MiNT supports several unique features that
are rarely seen in other networked robot systems:

• Each MiNT node is completely tetherless and yet is capa-
ble of sustaining for a long period of time without human
intervention because of its self-charging capability.

• A computer vision-based robot positioning system that
is both efficient and scalable, because of it uses a color-
based ID scheme and it exploits frame-to-frame coher-
ence.

• Combination of static path computation and dynamic
collision avoidance strikes a good balance between im-
plementation complexity and effectiveness in supporting
node mobility.

• A self-monitoring mechanism exploiting watchdog timers
detects node crash/hang, and preemptively restarts failed
nodes without manual efforts.

REFERENCES

[1] Acroname Garcia Robot. http://www.acroname.com/garcia/tutorials/teademo
/teademo.html.

[2] AmigoBot from ActiveMedia Robotics.
http://www.activrobots.com/ROBOTS/amigobot.html.

[3] Camstream Webcam Application for Linux.
http://www.smcc.demon.nl/camstream/.

[4] Benjamin A. Chambers. The Grid Roofnet: A Rooftop Ad Hoc Wireless
Network. Technical report, MIT Master’s Thesis, Jun 2002.

[5] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E.
Kavraki, and S. Thrun.Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, 2005.

[6] Lars Cremean, William Dunbar, David van Gogh, Jason Hickey, Eric
Klavins, Jason Meltzer, and Richard M. Murray. The Caltech Multi-
Vehicle Wireless Testbed. InProc. of Conference on Decision and
Control, 2002.

[7] Pradipta De, Ashish Raniwala, Rupa Krishnan, Krishna Tatvarthi, Jatan
Modi, Nadeem Ahmed Syed, Srikant Sharma, and Tzi cker Chiueh.
MiNT-m: An Autonomous Mobile Wireless Experimentation Platform.
In Proceedings of Mobisys, 2006.

[8] Pradipta De, Ashish Raniwala, Srikant Sharma, and Tzi cker Chiueh.
MiNT: A Miniaturized Network Testbed for Mobile Wireless Research.
In Proceedings of Infocom, 2005.

[9] Emulab - Network Emulation Testbed Home. http://www.emulab.net/.
[10] Scott Graham and P. R. Kumar. The Convergence of Control, Com-

munication, and Computation. InProceedings of Personal Wireless
Communication (PWC), 2003.

[11] J. Heidemann, N. Bulusu, and J. Elson. Effects of Detail in Wireless
Network Simulation. InProceedings of the SCS Multiconference on
Distributed Simulation, January 2001.

[12] David Johnson, Tim Stack, Russ Fish, Dan Flickinger, Rob Ricci, and
Jay Lepreau. Mobile Emulab: A Robotic Wireless and Sensor Network
Testbed. InProceedings of Infocom, 2006.

[13] R. Karrer, A. Sabharwal, and E. Knightly. Enabling Large-scale Wireless
Broadband: The Case for TAPs. InProceedings of Hotnets Workshop,
Nov 2003.

[14] H. Lunndgren, D. Lundberg, J. Nielsen, E. Nordstrom, and C. Tscudin.
A Large-scale Testbed for Reproducible Ad Hoc Protocol Evaluations.
In Proceedings of WCNC, 2002.

[15] D. Maltz, J. Broch, and D. Johnson. Experiences Designing and Building
a Multi-Hop Wireless Ad-Hoc Network Testbed. InCMU TR99-116,
1999.

[16] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The
Cricket Location-Support System. InProc. 6th ACM MOBICOM,, Aug
2000.

[17] Ashish Raniwala and Tzicker Chiueh. Architecture and Algorithms for
an IEEE 802.11-based Multi-channel Wireless Mesh Network. InProc.
of IEEE Infocom, 2005.

[18] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh. Overview of the ORBIT
Radio Grid Testbed for Evaluation of Next-Generation Wireless Network
Protocols. InTo appear at the Wireless Communications and Networking
Conference (WCNC’05), Mar 2005.

[19] Roomba Discovery Robotic Vacuum Cleaner.
http://www.irobot.com/consumer/productdetail. cfm?prodid=18.

[20] Roomba Serial Command Interface.
http://www.irobot.com/images/consumer/hacker/
RoombaSCI Spec Manual.pdf.

[21] Universal Infrared Remote Control From Any PC.
http://www.innotechsystems.com/spitfire6001.htm.

[22] M. Takai, R. Bagrodia, M. Gerla, B. Daneshrad, M. P. Fitz, M. B.
Srivastava, E. M. Belding-Royer, S. V. Krishnamurthy, M. Molle,
P. Mohapatra, R. R. Rao, U. Mitra, C. Shen, and J. B. Evans. Scalable
Testbed for Next-Generation Wireless Networking Technologies. In
Proc. of IEEE Tridentcom, Feb 2005.

[23] Video for Linux (v4l) Resources. http://www.exploits.org/v4l/.
[24] Brian White, Jay Lepreau, and Shashi Guruprasad. Lowering the Barrier

to Wireless and Mobile Experimentation. InProceedings of Hotnets
Workshop, 2002.

	Introduction
	Related Work
	System Architecture
	Hardware Components
	Software Components

	MiNT Node Design
	Miniaturization
	Support for Node Mobility
	A Complete MiNT Node

	Vision-based Robot Positioning
	Overview
	Object Tracking
	Implementation Issues
	Evaluation

	Navigation and Control
	24x7 Autonomous Operation
	Conclusion
	References

