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Abstract—This paper considers the problem of computational 

resource allocation for a team of dynamic mobile robots subject 
to limited communication and processing bandwidth, and uncer-
tain state information. We describe a robot test bed, the Dynabot, 
that exhibits these constraints and characterize its information 
flow and state estimation accuracy. These models are used for 
simulating formation of a group of Dynabots, while illustrating 
resource allocation tradeoffs. 

Index Terms—Cooperative systems, Mobile robot dynamics, 
Mobile robot navigation.  

I. INTRODUCTION 
Distributed control requires each robot in a team to access 

information about the state of other robots.  Information is 
subject to delays and uncertainty due to the limited processing 
resources, communication resources, and imperfect state 
knowledge. These limitations lower system stability and per-
formance by increasing likelihood of collisions and time-to-
goal. Optimization of communication, state estimation, and 
control are generally considered separately in the literature. 
Yoshida et al. [1] address communication topology design to 
minimize transmission time between mobile robots.  Yook et 
al. [2] investigate the use of state observers at each node to 
estimate the state at other nodes, thereby trading computation 
and communication bandwidth. Sweeney et al. [3] examine 
the limits on scalability of a multi-robot system due to limited 
processing on individual robots.  They show that when the 
system operates at or near its maximum processing bandwidth, 
tradeoffs in the design of the system architecture become im-
portant. Therefore, issues of limited communication band-
width and uncertain state information must be considered to-
gether.  

We identify three fundamental tradeoffs in computational 
resource allocation for individual robots in light of limited 
processing, communication, and state information: 
1. State estimation reduces the uncertainty of shared infor-

mation at the expense of increased processing and lower 
update frequency. 

2. Increased control frequency reduces the delay between 
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when information is received and when it is used at the 
expense of computational bandwidth and thus reduces 
time for other tasks such as state estimation. 

3. Enhanced content of exchanged state information com-
pensates for aged information from other robots at the ex-
pense of increased communication error and delay. 

We investigate the first of these tradeoffs as a means of in-
forming the latter two.  The tradeoffs guide the development 
of a scheduling architecture for a low-cost, high-speed dy-
namic robot (Dynabot) test bed. The robots are used to charac-
terize communication latency empirically and to determine 
state estimation error for three estimator schemes. Using mod-
els developed from physical testing, we simulate formation 
control of a team of Dynabots using a potential function con-
troller to illustrate the effects of computational resource allo-
cation in state estimation on stability and performance. 

II. DYNABOT ROBOT 
The Dynabot is low cost mobile robot for studying high 

speed distributed control. The robot, described in detail in 
[4,5] and shown in Fig. 1, is a four-wheel drive, suspen-
sionless vehicle.  Sensors include motor currents and wheel 
speeds, 5 Hz GPS, and a nano-inertial measurement unit 
(nIMU) with 3-axes of acceleration, angular rates and mag-
netic bearing. An 802.11.b wireless communication card pro-
vides communication between robots and with human opera-
tors. The robot can achieve 10 m/s speed and 0.5g acceleration 
on hard surfaces. 

The custom software running on a Dynabot is divided into 
four parallel modules, with information asynchronously 
placed on a bus for use by other modules. The task progres-
sion for an individual robot is depicted in Fig. 2 along with a 
breakdown of the task time and update period parameter defi-
nitions. The Incoming Com Module processes incoming com-
munication -small UPD packets broadcast over an ad hoc 
802.11.b wireless network. The Control Module uses the in-
coming messages as they become available.  This module up-
dates the motor commands based on the current information 
(the robot's knowledge of its own state, the state of all other 
robots and the goal) according to an artificial potential control 
law described in Section IV. The Control Module is invoked 

Issues in Computational Resource Allocation in 
Cooperative Control  

John P. Murphy, Student Member, IEEE, Luke M. Wachter, and Laura E. Ray, Member, IEEE 

 
Fig. 1  Three Dynabots from a fleet of seven
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at a period Tc. The Sampling Module collects raw sensor data, 
computes a state estimate, and then broadcasts that estimate to 
the rest of the robot fleet every Ts ms. The GPS Module col-
lects the continuous stream of raw data from the GPS unit. It 
notifies the Sampling Module any time a complete sentence is 
received and parsed, which occurs every Tg = 200ms for the 
5Hz GPS unit. The time tg spent in this module is not continu-
ous but rather is distributed over a number of small tasks 
wherein a single character from the sentence is received.   

In order for these tasks to be schedulable, the sum of the 
time expenses of the tasks cannot exceed unity [6]: 
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nt is the number of tasks, tj and Tj are the execution time and 
period of the jth task, respectively, and U is the processor 
utilization. This relationship imposes a constraint on the val-
ues of sample period Ts and control period Tc.  Because each 
robot broadcasts state information during each sampling mod-
ule invocation, the incoming message period Ti = Ts defines 
the minimum time required to receive one state update from 
each robot, and ti = (n-1)tm where tm is the time to process one 
incoming message, and n is the number of robots in the sys-
tem. The time required to sample data, ts, can be broken down 
into its individual components ts = tsd + tse + tsb where tsd is 
the time to retrieve and convert data from the sensors, tse is the 
state estimation time, and tsb is the time required to broadcast 
state information. The control time tc depends on n because 
the potential function controller depends on the position of 
every other robot in the system. Specifically, tc = ntcp where tcp 
is the processing time required per potential field computation. 
Inserting these expressions into eq. 1 gives: 
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The worst-case values of the fixed timing parameters tcp, tg, 
Tg, tsb, tm, and tsd as well as U were measured from benchmark 
tests of the Dynabot and are given in Table I. The state estima-
tion time tse depends on the choice of state observer (section 
III). tsb and tm depend on which state elements are broadcast; 
Table I assumes Cartesian position is broadcast to meet re-
quirements of a potential function controller (section IV).  
While choosing Tc < Ts is possible, as information from some 
robots may be received between sample periods, we restrict 
our investigation to the case where Tc ! Ts such that the con-
troller is guaranteed to update on new information. Moreover, 

the only advantage of choosing Tc > Ts would be to allow for 
faster sampling rates. However, examination of eq. 2 reveals 
that increasing Tc from Ts to ' results in at most a 10% de-
crease in Ts. Therefore, we constrain Tc = Ts. Eq. 2 gives an 
expression for Tc and Ts that is dependent only upon the num-
ber of robots and the choice of state estimation scheme:  

   Tc "Ts "
tsd % tse % tsb % tm (n &1) % ntcp

U & tg Tg
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TABLE I TIMING PARAMETER VALUES FOR THE DYNABOT 
tm tsd  tsb tcp tg Tg U 
1.23 ms 8.86 ms 3.40 ms 0.7 ms 32.0 ms 200 ms 0.95 

III. TEST BED CHARACTERIZATION 

A. Communication 
Experiments were conducted using four Dynabot processors 

to produce empirical models of latency and packet loss ("er-
ror") rate.  Although the model is particular to the Dynabot 
hardware, any system using UDP over 802.11 should exhibit 
similar properties.  All communication is broadcast.  A simpli-
fying assumption is made that latency and error are direction- 
and distance-independent over the range used (roughly 150m).  
In testing to-date, this assumption has proven reasonable.  

Latency is modeled as a stochastic number of constant de-
lays generated by a Poisson distribution plus a non-stochastic 
offset time seen with every message.  Both the offset time and 
the expected value (()! are functions of packet length N and 
the number of robots n.  Through repeated experiments with 
different numbers of nodes and message lengths between 1 
and 125 bytes, an empirical model was found to characterize 
latency ),( NnLm of message m and ( as functions of N and n  
for N < 125 bytes and n < 7: 
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tk = 6.5 x 10-4s and is limited by the accuracy of the microcon-
troller clock. The delay km is modeled as a Poisson-distributed 
random variable  
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Latency is determined per-message, i.e., all receivers are con-
sidered to have received a given message at the same time if 
they receive it at all. 

The missed messages observed in experimentation were 
rarely missed by all of the nodes.   This suggests that buffer 
overflow and low-level localized noise are the predominant 
error sources, and so a receiver-side error model is used. Al-
though wireless communication is frequently modeled as 
bursty (due to RF noise), the error rates observed here, includ-
ing other sources of error, did not display strong burstiness.  A 
simple memoryless Bernoulli process is therefore used to de-
termine whether a message is received.  The probability of a 
given receiver r missing a given packet m is given purely in 
terms of the number of communicating nodes n , with n < 7, 
by the empirically-determined model 
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Fig. 2 Dynabot software architecture overview broken down into the funda-
mental modules with definition of timing parameters. 



 

B. State Estimation 
The basic state information of a given robot consists of ab-

solute position X and Y, body fixed velocities vx and vy, and 
bearing , . State uncertainty depends on fusion of inertial 
measurements and GPS data. Three data fusion strategies are 
considered to unearth tradeoffs between state estimation accu-
racy and processing time: GPS extrapolation, coupled Ex-
tended Kalman Filter (EKF), and decoupled EKF. 

In GPS extrapolation, X, Y, vx, and vy are set to GPS position 
and velocity measurements every time a new GPS reading is 
available (every 200ms). Between readings, the velocity is 
assumed to be constant and a two-state Kalman filter tracks ,  
based on noisy bearing and yaw rate measurements from the 
nIMU. The simplicity of this filter makes it very fast but limits 
its accuracy to that of the GPS measurement. 

The coupled EKF incorporates acceleration and inertial 
measurements with GPS to reduce state estimation error. In 
addition to X, Y, vx, vy, , , it tracks biases on the yaw rate ( ,!b ), 
accelerations (bax, bay) and GPS position measurements (bx, 
by), bringing the size of the state to 10. The large number of 
state variables makes this method computationally expensive. 

A decoupled EKF is developed to reduce processing time 
by breaking the full state into sub-states tracked by individual 
EKFs. This approach is similar to the method described in [7, 
8]. The choice of sub-states is guided by the magnitude of the 
filter gains within the coupled EKF. State variables with the 
largest associated Kalman gain for a given measurement are 
grouped together. The resulting state estimator preserves near-
optimality and reduces computational burden by separating 
state elements from measurements that do not significantly 
influence them. The estimator consists of three two-state Kal-
man filters and one four-state EKF. For Kalman filters with 
more state variables than measurements, the computational 
complexity is O(ns

3) where ns  is the size of the state [9]. 
Therefore, the decoupled EKF (ns = 4), is an order of magni-
tude less computationally expensive than the coupled EKF. 

In order to bound the uncertainty of each estimation 
scheme, the Dynabot was driven around a circular path (con-
strained by a tether) while sensor data were collected.  State 
estimates were computed offline using each algorithm. Trajec-
tories are shown in Fig. 3 for each estimation scheme. Trian-
gles along the trajectory indicate the estimated bearing.  In 
each case, the uncertainty is taken as the maximum error be-
tween the estimated path and the best-fit actual path.   The 
measured uncertainty is consistent with position covariance 
estimates derived from the EKF. 

TABLE II. SUMMARY OF ESTIMATOR ACCURACY AND TIMING 
Scheme Uncertainty (m) tse (ms) 

GPS interpolation 3.5 5.9 
Decoupled EKF 1.1 13.8 
Coupled EKF 0.7 114.2 

  

Table II summarizes the measured accuracy and computa-
tion time for each method.  The decoupled EKF improves 
state estimation accuracy over GPS interpolation by a factor of 
three.  The corresponding expense is an increase in estimation 
time by just over a factor of two.  In contrast, the coupled 
EKF offers a modest increase in accuracy at the cost of an 
increase in estimation time by a factor of over eight. 
 The communication and state estimation uncertainty mod-
els provide simple but useful models of the flow and uncer-
tainty of information within the Dynabot fleet.  

IV. SIMULATION METHODOLOGY AND RESULTS 
We treat the vehicles as particles in order to distinguish be-

tween the effects of vehicle dynamics and information dynam-
ics on computational resource allocation in cooperative con-
trol.  A dynamic vehicle can be made to behave similarly to a 
point-mass robot given local traction and steering control laws 
[4], thus rigid-body dynamics are neglected in the results that 
follow.   

The control method is based on artificial potential func-
tions, in which one or more leaders manage flocking behavior 
of a group of robots [10].  Each robot and each leader is the 
center of its own radially symmetric potential function with a 
circular well of radius h0 and d0, respectively, and an attractive 
radius of h1 and d1, respectively.  The force commanded on 
each robot is the gradient of the potential function plus a ve-
locity-dependent dissipative force.  For one robot and leader, 
the potential function hV is  
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:h is a scalar gain governing the gradient and the floor of the 
potential well is a ring of width 9 that accommodates position 
uncertainty. A gain :d governs inter-robot potentials. 

 Figure 4 shows trajectories in formation control of three 

 
Fig. 3 Estimated and actual path for (a) GPS interpolation estimation scheme, (b) decoupled EKF estimation scheme, and (c) coupled EKF estimation scheme. 



 

point-mass robots and one leader (diamond).  The potential 
well is marked by circles h0 + 0.59 around the leader, with h0 
= 3 m and 9 = 1 m.  The robots start at rest at a distance of 50 
m from the leader and 4 m from each other and come to rest 
equally spaced in the potential well at d0 = h0 3, clustering as 
they proceed towards the leader.  Potential function gains :h 
and :d are set to emphasize inter-robot interaction while limit-
ing applied force magnitudes to values that can be solicited 
with the Dynabot hardware. Fig. 4 shows best-case perform-
ance for the given control parameters when perfect, instanta-
neous position information is assumed.  Robots reach maxi-
mum speeds of 3.7 m/s along the ~50-m trajectory. 

We use the configuration of Fig. 4 to illustrate the relative 
stability and performance of potential function control with 
the three state estimation methods.   Ts = Tc according to eq. 3 
for each state estimation scheme.  :h and :d are determined 
for each Tc so as to maximize bandwidth given control rate 
and position uncertainty, while observing physical limits on 
force commands. Only the decoupled EKF can use the gains 
of the no-uncertainty case without adjusting for position un-
certainty, communication latency, or control rate. 

We simulate the state estimation error exk as a steady-state 
Gauss-Markov sequence driven by Gaussian white noise wk 
shaped so 22 ][ ;"xkeE , where ; is the uncertainty measured 
experimentally for each observer (Table II).  This model takes 
the place of simulating GPS and the EKFs in order to de-
couple observer dynamics from tradeoffs between perform-
ance and computational resource allocation.  Communication 
latency is modeled on the message level.  When position is 
estimated onboard each robot, the nodes that receive position 
information are determined with probability given in eq. 7.  
Then the latency is determined for all receivers using eq. 4-6, 
and the nodes receive the message after the delay has passed.  

 Table III presents settling time, collision rate, and comple-
tion rate for each observer based on 100 trials. Numbers in 
parentheses denote standard deviations.  Collision rate is the 
percentage of trials that end in collision and is a measure of 
stability. Settling time is the time to reach 1% of the steady-
state position averaged over the three robots and measures 
transient response.  Completion rate measures the frequency 
with which all robots settle within a radius of +; of the goal 
position, with ; from Table II for each method.  It measures 
ability to achieve a formation given the position uncertainty.  

For comparison, metrics are reported for no position uncer-
tainty and tse = 0.  In Table III, interpolated GPS exhibits poor 
stability, even with gains set for cautious navigation, which is 
the result of large position uncertainty. The decoupled EKF 
performance is modestly better than the coupled EKF, as con-
trol gains must be reduced for cT = 156 ms to avoid control 
saturation. The decoupled EKF best completes the task, as 
measured by the completion rate. 

V.  CONCLUSION 
For multi-robot systems subject to limited communication, 

processing and sensing, an improvement in formation control 
performance is achieved through consideration of computa-
tional resource allocation. In this paper, we have focused on 
the tradeoff between state estimation accuracy and processing 
time for a parallel task control architecture that seeks to maxi-
mize processor utilization. For a system based on empirical 
models from the Dynabot hardware, decoupled EKF provides 
the best balance of accuracy and update frequency of three 
state observers considered. While the differences in perform-
ance are subtle for a system of three robots, increasing the 
number of robots is expected to amplify these differences. 

For each method, it is possible that increasing the content of 
exchanged state information can compensate for aged infor-
mation from other robots, uncertainty, and control delay at the 
expense of increased communication latency and error.  In 
future work, we will investigate the stability and performance 
tradeoffs when the content of exchanged information (and 
corresponding communication delay) increase.   
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TABLE  III. COMPARISON OF ESTIMATION METHODS  
 

Estimation Method 
cT = sT  
(ms) 

Gains :h 
and :d 

1% set-
tling time 

(s)  
Collision 
rate (%) 

Comple-
tion  

rate (%) 
Perfect information 10 650, 300 33 0.0 100 
Interpolated GPS 27 300, 150 68 (11) 15(4) 42(5) 
Decoupled EKF 36 650, 300 37(8) 0 58(5) 
Coupled EKF 156 500, 300 41(4) 0 24(4) 

Fig. 4. Trajectories of three robots (in color) and one leader (diamond) 




