
 

  
Abstract—M-TRAN is a self-reconfigurable modular robot: each 
module has an independent battery, two-degree-of-freedom mo-
tion, six-surface-connection capability, and intelligence with in-
ter-module communication. The M-TRAN system can perform 
flexible and adaptive locomotion in various configurations using 
coordination control based on a central pattern generator (CPG). 
Various structures of several modules can perform metamorpho-
sis, such as that between a four-legged robot and a snake-like one. 
In addition to these self-reconfigurations with synchronous con-
trol, M-TRAN structures having regularity can move using par-
allel distributed control and message exchange via the network 
bus. Self-reconfiguration using infrared local communication has 
been attempted to improve the system’s scalability. 
 

Index Terms—Central pattern generator, Coordinated motion 
control, Distributed autonomous system 
 

I. INTRODUCTION 
everal modular robotic systems that can form various 
structures have been proposed. A module functions as an 

autonomous building block like an artificial cell, which in most 
cases has independent power, actuation and connection capa-
bility, and intelligence with inter-module communication. Most 
proposed modular robotic systems are classifiable as one of two 
types: a lattice type [1–5] or a chain type [6–9]. 

Chain-type and lattice type modular robots differ in their 
design and research objectives. A chain-type modular robot is 
suitable for locomotion. Manual connection of modules is 
sufficient, as has been the case with most systems. Rapid long 
distance communication facilitates motion coordination, espe-
cially for dynamic walking, although local communication is 
used in some cases because rapid communication is unneces-
sary for static locomotion such as snake-like, caterpillar-like, or 
crawler motion. A candidate communication method is a net-
work bus system of a multi-computer system, such as Ethernet, 
CAN, wireless LAN, and Bluetooth, which functions similarly 
to a living creature’s nervous system [6, 8]. On the other hand, a 

 
  Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura and Shigeru Kokaji 

are with the Intelligent Systems Research Institute at the National Institute of 
Advanced Industrial Science and Technology (AIST), Tsukuba, Japan (e-mail: 
{kurokawa-h, k.tomita, kamimura.a, s.kokaji} @aist.go.jp ). 

Takashi Hasuo is with the Graduate School of Systems and Information 
Engineering at the University of Tsukuba, Tsukuba, Japan (e-mail: 
hasuo@bcl.esys.tsukuba.ac.jp ). 

Satoshi Murata is with the Interdisciplinary Graduate School of Science and 
Engineering at Tokyo Institute of Technology, Yokohama, Japan (e-mail: 
murata@dis.titech.ac.jp ). 

lattice-type module is advantageous for self-reconfiguration. 
Automatic connection of modules is indispensable. Rapid long 
distance communication is not always necessary, depending on 
the algorithm used. 

A research objective of a self-reconfigurable modular 
robot is to realize self-organization of a distributed autonomous 
system. It is expected that self-reconfiguration and 
self-assembly based on self-organization can render the system 
more flexible, reliable, scalable, and adaptive than those using 
conventional top-down and model-based design approaches. 
Our Fractum [1] was aimed at autonomous shape formation 
based on a scalar field and diffusion dynamics. A similar line 
was sought with discrete dynamics (algorithms) using modules 
such as Molecule and Cristalline [10]. SlimeBot [11] uses 
coupled nonlinear oscillators to produce an adaptive coordi-
nated motion of a module cluster. All of those studies were 
intended for realization of global functions based on local 
coordinate-free dynamics. 

Some preliminary experiments involving the above sys-
tems, which are mostly two-dimensional (2D), have been 
successful. Difficulties arise in design and hardware realization 
of a three-dimensional (3D) system. Required actuation de-
grees of freedom tend to increase and the effect of gravity 
becomes severer for 3D systems than with 2D ones. Several 
designs such as ATRON [3] have been proposed to reduce 
modules’ symmetry; various trials have been made to relax 
constraints and difficulties, e.g., operation in a fluid or in space. 
However, 3D self-reconfiguration remains a challenge. 

The design of our modular robot, Modular TRANsformer 
(M-TRAN), is intended to provide advantages of both chain 
type and lattice type systems [12]. Because of this hybrid de-
sign, the M-TRAN system can perform both locomotion and 
self-reconfiguration. For locomotion, we have proposed a 
general design method of robust locomotion for various con-
figurations, which uses central pattern generators (CPGs) for 
coordinated motion control and a genetic algorithm (GA) for 
CPG network optimization. The real-time CPG controller is a 
robust controller that is adaptive to its environment [13]. 

On the other hand, self-reconfiguration using the 
M-TRAN system is less simple because an M-TRAN module 
has less symmetry than other lattice-type systems. Despite this 
fact, we have developed various programs for 
self-reconfiguration design, simulation, and controllers. Sub-
sequently, results of experiments of small-scale metamor-
phoses (self-reconfiguration) verified the outstanding capa-
bilities of the system [14]. In addition, we have proposed a 

Self-Reconfigurable Modular Robot M-TRAN: 
Distributed Control and Communication 

Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Shigeru Kokaji, Takashi Hasuo, and Satoshi Murata 

S 

peri
Typewriter
ROBOCOMM 2007, 14th–16th Oct 2007, Athens, Greece.
Copyright © 2011–2012 ICST 
ISBN 978-963-9799-08-0
DOI 10.4108/ICST.ROBOCOMM2007.2119

peri
Typewriter



 

method using module clusters, so-called meta-modules, for 
large-scale self-reconfiguration and for distributed control [15, 
16]; we also carried out experiments [17]. Because the system’s 
reliability increased and because various software tools were 
developed, experiments of large-scale parallel distributed 
self-reconfiguration have become more successful. 
(http://unit.aist.go.jp/is/dsysd/mtran3/ for movies.)  

The control of these experiments is still open-loop, but it 
is a basis for development of a self-organizing autonomous 
system. For inter-module communication, a wired network has 
been used, because circuit installation and programming were 
much easier than with a local communication method at the 
time of prototype design. A network bus system with ID 
numbering, however, is unsuitable for system scalability and 
parallelism. We have developed local communication among 
neighbors using infrared devices as a preliminary test; using it, 
we have started experiments of distributed self-reconfiguration. 

Basic design and hardware development of M-TRAN 
prototypes are described in Section II. In Sections III and IV, 
experiments of locomotion and self-reconfiguration by 
M-TRAN II and III are presented. Basic motion procedures, 
algorithms and communication protocols are detailed. Section 
V concludes the paper with descriptions of future works. 

 

II. M-TRAN SYSTEM 

A. Basic Design 
An M-TRAN module comprises two blocks and a link 

(Figs. 1 and 2). Both blocks have identical shape, comprising a 
half-cube and a half-cylinder. Two blocks can rotate inde-
pendently about their axes by ±90 deg. At any angle, their 
half-cylindrical parts always have mutual physical contact. 

The two blocks differ in gender: opposite gender blocks 
of two modules can connect mechanically with a counterpart by 
their three flat surfaces. Although the three surfaces’ shapes are 
not identical, they can all connect symmetrically in four pos-
sible orientations. Using this flexibility of connection, various 
structures that are suitable for locomotion can be constructed as 
a chain-type modular robot. 

As a lattice-type modular robot, the M-TRAN structure 
can self-reconfigure by controlling the module’s position and 
connection. All blocks align with a cubic lattice when all the 
modules’ angles in a structure are restricted to 0 or ±90 deg, 
which ensures that open-loop positioning control of each 
module is sufficient to align a pair of surfaces for reconnection. 

B. Mechanical Design 
For self-reconfiguration, an M-TRAN module must fit in 

two cubic blocks so that mechanisms, circuits, and wires are all 
installed inside the three block parts, as shown in Fig. 1. The 
passive (female) block contains a power circuit board, a battery 
and a controller board. The link block contains two geared 
motors and their controller circuit. The active (male) block 
contains three mechanisms for surface connection and their 
controller circuit. 

The connection mechanism was greatly improved by 
M-TRAN III. Instead of magnetic connection used of the two 
preceding prototypes, M-TRAN I and II, M-TRAN III uses 
mechanical connection, which is much faster, more reliable, 
and less power-consuming [17]. 

C. Controller and Communication Design 
Figure 3 shows controller diagrams of M-TRAN II and 

III; Table I shows specifications of controllers and communi-
cation media. The latest prototype, the M-TRAN III system, 
has five different communication channels. 

The first, not shown in Table I, is a three-wire serial 
channel (send, receive and ground; 19.2 kbps) among the main 
and the three sub CPUs inside a single module (Fig. 3(1)). The 
messages on this channel are commands of up to four bytes to 
one of the three sub CPUs for position control and connection 

 
Fig. 1  M-TRAN module 

 

 
 

Fig. 2  Three generations of M-TRAN 

 
 

Fig. 3   Computer and communication system of M-TRAN 



 

control, and sensing data. The sub CPUs work as intelligent 
peripheral devices of the main CPU, some of whose tasks are as 
follows. The sub CPU in the link controls two joint angles 
using either PID control, bang-bang control with braking by 
flywheel diodes, or an open loop control. Another one in the 
active block drives hooks for surface connection. That in the 
passive block acquires three-axis acceleration data for gravity 
direction detection. The sub CPUs in two blocks perform in-
frared (IR) transmission and detection, either for proximity 
sensing or for local communication. 

For inter-module communication, a network bus, the 
controller area network (CAN) bus for M-TRAN III, is used 
(Fig. 3(2)). In addition, each module has a Bluetooth device 
(Fig. 3(3)). Although the standard Bluetooth covers network 
communication called Piconet, M-TRAN III only equips 
one-to-one communication capability. This channel, therefore, 
is used mainly for command transfer from the host PC, except 
in experiments of docking by two separate module clusters 
[18]. 

The remaining two communication channels are between 
two facing surfaces. One is unidirectional and is used for con-
firmation of connection (Fig. 3(4)). The other uses infrared 
light (Fig. 3(5)). Both are described below. 

 

III. LOCOMOTION AND METAMORPHOSIS 

A. Locomotion 
Various structures were designed; locomotion experi-

ments were carried out using either feed-forward or feedback 
control. Feed-forward control using a lookup table is simple but 
sufficient for locomotion in various configurations such as 
snake-like or caterpillar-like ones or a crawler because such 
locomotion is stable and effective, even with some disturbance. 

In case of dynamic walking, however, coordination and 
feedback of the whole body motion are necessary. The con-
troller used for M-TRAN II is based on the central pattern 
generator (CPG) concept; CPGs are nonlinear neural oscillators 
observed in living creatures. We used a fourth-order oscillator 
that directly drives one joint motor. Local PID control is 
switched off but reading of the joint angle is fed back to the 

CPG dynamics so that the angle is regulated by a larger control 
loop (Fig. 4(b)). Two state variables of each CPG are input to 
other CPGs with weights of either 0, 1, or -1. Proper selection 
of the network weights realizes coordinated motion suitable for 
walking. 

In the experiments, each module’s main CPU calculates 
dynamics of two CPGs; two state variables are shared via 
network communication called “remote frame” function of 
CAN. Because the maximum number of modules in a con-
figuration for locomotion is 20 and because the CPU (SH-II) 
has sufficient message slots (8-byte buffers called mailboxes), 
8-byte information (two 4-byte state variables in our case) of 
each module is stored in each specific slot and is periodically 
broadcast to all other modules by a background process (remote 
frame transfer). Consequently, a user program of each module 
can access any other modules’ state variables without consid-
ering message exchanging via the CAN bus. 

This network mechanism and CPG locomotion control 
were successful in experiments by M-TRAN II, such as 
four-legged walking adaptive to variation of ground friction 
and inclination, and a rolling wheel regulated by global en-
trainment in Fig. 4(c) [13]. 

B. Metamorphosis 
Self-reconfiguration of M-TRAN I was controlled using a 

host PC via a serial communication line [12]. For 
self-reconfiguration of M-TRAN II, distributed but globally 
synchronous control was used [14]. 

A homogeneous system was sought for M-TRAN III, 
although self-reconfiguration of a few modules, such as those 
depicted in Fig. 5, was still made using centralized coordination 
control. At the startup, all modules have identical programs and 

TABLE I 
Microcontroller and communication medium of M-TRAN Series 

       main-CPU SUB-CPU Communication 

I Basic Stamp II 
(Parallax, Inc.) 

--- three wire serial with PC 

II-1 Neuron Chip 
(TMPN3120FE
5M; Echelon 
Corp.) 

PIC(PIC16F873; 
Microchip Tech-
nology) 

Lonbus (RS485, 39 Kbps) 
+ Wireless modem 

II-2 SH II 
(HD64F7047; 
Renesas Tech-
nology Corp.) 

PIC CAN (1 Mbps)  
 + Wireless modem 

III SH II H8 (HD64F3687; 
Renesas Technol-
ogy Corp.) 

CAN (1 Mbps) 
  + Blue tooth modem 
  + IR serial (333 bps) 

 

(a) Four legged walker            (b) CPG block diagram 
 

 
(c) Rolling wheel  

 
Fig. 4  Locomotion using CPG control 



 

data except for their identification numbers (IDs). The program 
uses fixed IDs, which are specified by each configuration. The 
actual IDs were different when the structure was assembled 
with arbitrary modules in arbitrary orientations. In the startup 
process, all modules identify the total configuration and change 
their ID numbers accordingly. Then one of the modules con-
ducts a self-reconfiguration procedure as a master and others 
follow it as slaves [17]. 

The self-reconfiguration procedure shown in Fig. 5 is 
almost identical to that produced by M-TRAN II [14]. Because 
the connection mechanism has improved and because com-
munication has become more reliable, as described below, the 
whole process has become much faster (8 min with M-TRAN II 
and 2 min with M-TRAN III) and much reliable. In addition, a 
reversal metamorphosis from a linear form to a four-legged 
robot has become possible. 

 

IV. PARALLEL SELF-RECONFIGURATION 

A. Experiments 
Parallel control is advantageous when the number of 

modules is large. We designed suitable self-reconfiguration 
procedures for parallel distributed control with three types of 
regular structures [15, 16]. The first type, type I, is a linear 
sequence of 4n modules, as portrayed in Fig. 6. The whole 
structure can move straight with pair-wise motions and 
switching of connections. A pair of modules on one side moves 
and steps forward by one module length. During this step mo-
tion, it is necessary to change connections among six surface 
pairs. Then another pair on the other side starts motion. Each 
pair synchronizes with its neighbors to avoid collision and 
separation of the whole structure. 

Several different pair-wise motions were designed and 
tested: two are shown in Fig. 6. We made experiments using 
from 4 (minimal number) to 20 modules, all with the same 
programs running in all modules. 

Type III in [16] is a 2D regular structure made of four 
module cross-shape building blocks (Fig. 7). Pairs of modules 
on one end ascend independently onto the backbone structure 
surface, travel along the surface, and finally descend to become 
part of the structure again. Other pairs follow them at a safe 
distance. The same program in all modules makes the rectangle 
arrangement of building blocks in any size move straight. The 
maximum rectangle in the experiments was of three lines by 
two block length; consequently, it comprises 24 modules. The 
whole structure moved about 400 mm in 16 min; connections 
between surfaces were changed more than 300 times. Conse-
quently, the reliability of the total M-TRAN III system was 
verified. The following are details of basic procedures and 
algorithms used for the experiments. 

B. Reliable Connection 
The joint angle control of M-TRAN is a local bang-bang 

and/or PID control using angle sensors in modules. Because no 
sensor measures the alignment between two modules’ surfaces, 

 
Fig. 5  Metamorphosis using centralized control 

  
(a) Eight modules (b) 16 modules 

Fig. 6  Linear structure 
A pair-wise motion resembles rolling in (a) and an inch-worm motion in (b). 

 

    
(a) 16 modules in a single line (b) 24 modules in three lines 

Fig. 7  Self-reconfiguration of a mesh structure 



 

feedback control cannot be made to align surfaces before their 
connection. Successful connection depends on the balance 
between open-loop positioning accuracy, geometric and me-
chanical precision of modules, and the misalignment margin of 
the connection mechanism. Misalignment depends on the con-
figuration and posture: it is greater with a long serial chain 
configuration or overhanging posture. Self-reconfiguration 
sequences were therefore designed to reduce misalignment. 

For confirmation and for retrial in cases of failure, com-
pletion of surface connections is checked as follows. Of the 
two modules to be connected, the male block starts the process: 
its connection hooks come out of its surface and stop at their 
respective limits. This process proceeds and finishes even if 
there is no female surface or if a connection is unsuccessful. 
After that, the male block sends a message containing its ID 
number via a pair of electric contact pins on the surface (Fig. 1 
and Fig. 3(4)) and awaits an answer from the counterpart via 
the CAN bus. Because the contact pins are connected only 
when the connection is successful, both modules can confirm a 
successful connection using this message exchange and share 
information such as the neighbor’s ID number and orientation. 
In case of failure, the connection hooks are retracted and the 
same process is repeated. 

C. Motion Sequence 
Both ascending and descending motions are not simple: 

they consist of more than 10 steps of joint angle positioning 
with reconnections. When a module on one end receives a 
message for wakeup, it becomes a master and starts an ascent 
procedure. As depicted in Fig. 8, the master and its specific 
neighbor (partner) move up with the help of their two neighbors 
(helper). A misalignment problem, which was serious in similar 
experiments in [17], was solved by a better design of this local 
self-reconfiguration. 

Once a module pair is on the surface, the pair (a walker) 
travels by a simple procedure conducted by the same master. 
This motion requires the assistance of other modules. For each 
walker’s motion, two ends of the walker connect with modules 
in the backbone structure. Such modules must make their 
connection surfaces face upward before the walker reaches 
them. This is made as in Fig. 9, by which two modules’ surfaces 
are prepared without separation of the whole structure and 
without collision. 

D. Signal Transfer for Collision Avoidance and Wakeup 
Collision avoidance of multiple walkers is achieved using 

signal transfer along the backbone. As a walker travels forward, 
a message is sent to a module of the backbone structure con-
nected to the walker. The message is then propagated to spe-
cific neighbors and reaches other walkers. Using a simple 
counting process, two succeeding walkers can maintain a safe 
distance. In addition, when the message reaches the end of the 
backbone structure, it serves as a wakeup signal. Currently, the 
first master module must be specified and awakened by an 
external command to start the whole process. 

E. Bus communication Protocol 
The CAN bus traffic is not heavy for locomotion and 

centralized self-reconfiguration because messages are either 
commands from a single master or responses to them. For 
parallel self-reconfiguration, however, several master modules 
function independently. For that reason, message collision 
tends to occur. For this problem, the CAN bus and its imple-
mentation in the main CPU (SH-II) have a built-in mechanism 
for message arbitration and for reliable communication in a 
multi-master system: Carrier Sense Multiple Access with Col-
lision Detection and Arbitration on Message Priority 
(CSMA/CD+AMP). 

This mechanism, however, is insufficient for reliable 
communication of the M-TRAN III. Six mechanical switches 
are installed in a module to isolate the contact pins electrically 
when the surface is not connected: one for each of two 
CAN-bus lines on each of the three connection surfaces of a 
male block (Fig. 3(6)). An unintended consequence is that no 
switch is sufficiently reliable; it temporarily switches to OFF, 
even when the surface is connected. This malfunction occurs 
when joint motors are moving. Such a failure sometimes causes 
a temporary cut of bus lines and communication errors. This 
state lasts from milliseconds to a second, and the sender module 
becomes isolated from the network with the mechanism of 
CAN. This bus-off state is not recovered automatically, though 
the mechanical failure is temporary and is recovered after all 
motors cease motions. 

We first introduced periodic null-message transfer similar 
to that of Heart-Beat in the Device Net Protocol to enable 
automatic recovery from the bus-off state and for failure de-
tection. This, however, repeatedly caused the same problem. 

Reliable one-to-one communication was finally achieved 
using a mixture of commonly used communication protocols: 
handshaking with an acknowledgement message (ensured by 
avoiding broadcast message transfer), retrial on message loss, 

 
Fig. 8  Ascending procedure 

 

 
Fig. 9  Motion of backbone structure 



 

forced reset of the CAN interface from a bus-off state, etc. 
During experiments portrayed in Figs. 6 and 7, several 

retrials of message transfer were observed. This makes up 
about 4–5 s of maximum delay with a 800 ms retrial period, 
which roughly coincides with the time constant of large angle 
positioning. 

F. Management of Neighbors’ IDs 
All modules have their unique IDs in the network bus and 

one-to-one communication relies on them. The network has no 
information related to the actual distance between modules and 
no difference pertains to communications depending on the 
distance. Because a master module and its neighbor modules 
make local coordinated motions for self-reconfiguration, each 
module needs IDs of other modules, mostly of its direct 
neighbors. 

All experiments described above are made using arbitrary 
modules with the same program. Neighbors’ IDs in each 
module are acquired and managed as follows. At startup, all 
modules start an initialization process similar to the process 
described in Sections III-B and IV-B, and acquire neighbors’ 
IDs. During self-reconfiguration, modules exchange their 
neighbors’ IDs accordingly after they change locations or 
connections. 

G. Local Communication 
As is often claimed, bus communication is inappropriate 

for system scalability. ID numbering might limit the maximum 
number of modules. In our case, the maximum is set as 60, i.e. 6 
bits, because we only have 50 M-TRAN III modules. Bus 
traffic is also dependent on the number of modules. It can 
therefore be a problem for a larger system. An alternative is 
local communication between each of two neighbor modules, 
which works in parallel and is independent of the system’s size. 
An infrared (IR) serial communication is an appropriate can-
didate [1, 3, 7, 9] because it is non-contact; devices for standard 
protocols such as IRDA are available. Its drawback is that 
many devices for all connections, e.g. six devices for M-TRAN, 
but bus communication requires only a single device. For that 
reason, M-TRAN III uses CAN and does not use an IRDA 
device. Both IR transmitters and detectors are implemented in 
M-TRAN III, but they are intended for proximity sensing. 
Nonetheless, serial communication is possible using these IR 
devices. Although we have made programs for them, they are 
as slow as 333 bps. 

Figure 10 shows a preliminary experiment in which a 
module moves along a flat surface made by other modules. 
Because the walker module can send a message directly to its 
neighbor without knowing the neighbor’s ID, a simple program 
in the walker module executes the process. Moreover, the 
backbone modules are not connected at all in this setup; this 
experiment cannot be done using CAN bus communication, as 
described above. 

Using a similar program, parallel self-reconfiguration 
similar to those in Fig. 6(b) was also made using IR commu-
nication alone. The experiment using eight modules was slower 

than the original one (not slower than 50%), but this slow IR 
communication will ultimately be beneficial in a very large 
system because of its parallelism and because of the delay of 
CAN communication described in Section IV-E. 

Self-reconfiguration in Fig. 7 has not been conducted 
using IR communication. It would require additional programs 
for message propagation along multiple modules. 

V. CONCLUSION 
We developed a self-reconfigurable modular robot, 

M-TRAN, and carried out various experiments of locomotion 
and self-reconfiguration using distributed control and message 
exchange by network. 

Near future works include various experiments of 
self-reconfiguration using CAN communication or IR com-
munication. The rectangular structure can move along a fixed 
direction using local self-reconfigurations. We will try ex-
periments by which such a structure changes its motion direc-
tion or changes its shape among various two-dimensional 
shapes. In such reconfigurations, maintenance of total connec-
tivity and separation avoidance is important. Such works will 
engender autonomous shape-shifting by introducing a sensing 
environment and distributed decision-making processes based 
on local dynamics and local interaction. 

In this study, IR communication is used only between 
direct neighbors, but it can function between distant modules. 
Another future work is self-assembly of multiple separate 
module clusters. 

REFERENCES 
[1] S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and S. Kokaji, 

“Self-repairing mechanical system,” Autonomous Robots, vol. 10, pp. 
7-21, 2001. 

[2] D. Rus, Z. Butler, K. Kotay, and M. Vona, “Self-reconfiguring robots,” 
Commun. ACM, vol. 45, no. 3, pp. 39-45, 2002. 

[3] M. W. Jorgensen, E. H. Ostergaard and H. H. Lund, “Modular ATRON: 
Modules for a self-reconfigurable robot,” Proc. IROS 2004, pp. 
2068-2073, 2004. 

[4] C. Gueganno, and D. Duhaut, “Distributed robotic: a language approach,” 
Distributed Autonomous Robotic Systems (DARS 7), pp. 12-14, 2006. 

[5] V. Zykov, S. Mytilinaios, M. Desnoyer, and H. Lipson, “Evolved and 
designed self-reproducing modular robotics,” IEEE Trans. Robotics, vol. 
23. no. 2, pp. 308-319, 2007. 

 
 

Fig. 10  Preliminary experiment using IR communication 



 

[6] M. Yim, D. Duff, and K. Roufas, “Polybot: A modular reconfigurable 
robot,” Proc. ICRA 2000, pp. 514-520. 

[7] A. Castano, A. Behar and P.M. Will, “The Conro modules for recon-
figurable robot,” IEEE/ASME Trans. Mech., vol. 7, no. 4, pp. 403-409, 
2002. 

[8] D. Marbach, and A. J. Ijspeert, “Online optimization of modular robot 
locomotion,” Proc. IEEE Int. Conf. Mechatronics and Automation (ICMA 
2005), pp. 248-253, 2005. 

[9] W. M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. 
Venkatesh, “Multimode locomotion via SuperBot robots,” Proc. ICRA 
2006, pp. 2552-2557, 2006. 

[10] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized 
control for lattice-based self-reconfigurable robots,” Intl. J. Robotics 
Research, vol. 23, no. 9, pp. 919-937, 2004. 

[11] M. Shimizu, A. Ishiguro, and T. Kawakatsu, “Slimebot: A modular robot 
that exploits emergent phenomena,” Proc. ICRA 2005, pp. 2982-2987. 

[12] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. 
Kokaji, “M-TRAN: Self-reconfigurable modular robotic system,” 
IEEE/ASME Trans. Mech., vol. 7, no. 4, pp. 431-441, 2002. 

[13] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and S. 
Kokaji, “Automatic locomotion design and experiments for a modular 
robotic system,” IEEE/ASME Trans. Mech, vol. 10, no. 3, pp. 314-325, 
2005. 

[14] H. Kurokawa, A. Kamimura, E. Yoshida, K. Tomita, S. Murata, and S. 
Kokaji, “M-TRAN II: Metamorphosis from a four-legged walker to a 
caterpillar,” Proc. IROS 2003, pp. 2452-2459. 

[15] H. Kurokawa, E. Yoshida, A. Kamimura, K. Tomita, S. Murata, and S. 
Kokaji, “Self-reconfigurable M-TRAN structures and their walker gen-
eration,” Robotics and Autonomous Systems, vol. 54, no. 2, pp. 142-149, 
2006. 

[16] E. H. Ostergaard, K. Tomita, and H. Kurokawa, “Distributed metamor-
phosis of regular M-TRAN structures,” Proc. Distributed Autonomous 
Robotic Systems, pp. 161-170, 2004, (DARS 6, Springer, in press). 

[17] H. Kurokawa, K. Tomita, A. Kamimura, S. Murata, Y. Terada, and S. 
Kokaji, “Distributed metamorphosis control of a modular robotic system 
M-TRAN,” Distributed Autonomous Robotic Systems (DARS) 7, 
Springer, pp. 115-124, 2006. 

[18] S. Murata, K. Kakomura, and H. Kurokawa, “Docking Experiments of a 
modular robot by visual feedback,” Proc. IROS 2006, pp. 625-630, 2006. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




