
Ethernet-based communication framework
for sensor integration on industrial robots

M.W. de Graaf, R.G.K.M. Aarts, J. Meijer and J.B. Jonker
University of Twente - Laboratory of Mechanical Automation

P.O. Box 217 - 7500 AE Enschede - The Netherlands
m.w.degraaf@utwente.nl

Abstract— This paper presents a communication framework
for integrating sensors in a robotic laser welding system. The
framework was originally developed for the application of sensor-
guided robotic laser welding, but the principles are generic,
making it useful in other application areas as well. To use the
sensor measurements during the robot motion, a synchronisation
mechanism is presented for an image-based seam-tracking sensor
that is integrated with an industrial 6-axis robot. The commu-
nication layer uses Ethernet TCP/IP communication and the
synchronisation mechanism uses Ethernet UDP communication.
Experimental validation is performed on industrial equipment
to determine the accuracy of the proposed synchronisation
mechanism.

I. I NTRODUCTION

Accurate path tracking of 3D trajectories using image-based
sensors has received considerable attention in recent years.
An application where this plays an important role is sensor-
guided robotic laser welding. Laser welding requires a high
accuracy of the position of the laser focal point with respect
to the seam trajectory. Accuracies down to 0.1 mm have to
be achieved at welding speeds up to 250 mm/s. Therefore
seam-tracking sensors, that measure the seam trajectory close
to the laser focal spot, are required [1]. To integrate such
sensors in a robotic system, they need to communicate with
the robot controller. Furthermore, time delays that occur and
synchronisation issues need proper attention.

Two strategies are distinguished for sensor-guided robotic
laser welding:

1) Teaching of the seam trajectory with the sensor in a first
step (seam teaching) and laser welding in a second step.

2) Real-time seam tracking during laser welding. When the
sensor is mounted some distance in front of the laser
focal point it can measure the seam trajectory and let
the laser focal point track the measured trajectory in the
same movement.

Seam teaching (method 1) has the advantage that it can be
performed using point-to-point movements, where the robot
stabilises after every step. This increases the accuracy as
dynamic robot behaviour and synchronisation errors can be
avoided.

In a production environment method 2 would be preferred as
it is faster and thus saves time and money. The seam-tracking
sensor measures relative to its own coordinate frame (which
is attached to the end-effector of the robot arm). Therefore
its measurements can not be directly used during a robot

movement. The sensor measurements will only be useful if the
Cartesian location of the sensor frame in the robot workspace
(computed from the robot joint angles) is known at the same
time. This can be accomplished in two ways:

• Let the robot make a movement and wait until it sta-
bilises. Because the robot is stabilised the location of the
sensor frame in the robot workspace does not change in
time. Then, a sensor measurement can be easily related
to the corresponding robot position.

• When a sensor measurement is obtained during the robot
motion, the time axes of the robot and the sensor need to
be synchronised. If these are synchronised the robot joints
can be interpolated to match the sensor measurement with
the robot joints or vice versa.

Robot-sensor synchronisation can easily be achieved for a sim-
ple external sensor (like a LVDT), where the sensor operates
continuously and is interfaced directly to the robot, because
the sensor data is immediately available when the robot needs
it. Synchronisation becomes more challenging when complex
sensor systems, like camera-based sensors with their own real-
time clock are used. This paper addresses the synchronisation
for such sensors.

The paper describes a communication framework between
a robot controller, a sensor and a user application. Section
II describes how typical components are connected. The
communication framework is described in section III. Section
IV gives an overview of the coordinate frames and trans-
formations in a sensor-guided robotic laser welding system.
Section V describes the synchronisation mechanism that is
used to synchronise the robot joint measurements with the
image acquisition of the seam-tracking sensor. Experiments
have been performed on industrial equipment to determine the
time delay of the synchronisation procedure (section VI).

II. CONNECTION TOPOLOGY

Common components in a sensor-guided robotic laser weld-
ing system are a robot controller, seam-tracking sensor, laser
source and a fiber to guide the laser light to a welding head,
where it is focussed on the product. Process gas protects the
melt pool from oxidation and a crossjet protects the focussing
lens in the welding head from process spatters. This section
shows how the components are connected and how they
interact. The connection topology of the system is shown in
figure 1.

peri
Typewriter
ROBOCOMM 2007, 14th–16th Oct 2007, Athens, Greece.

Copyright © 2011–2012 ICST

ISBN 978-963-9799-08-0

DOI 10.4108/ICST.ROBOCOMM2007. 2089

peri
Typewriter

Devicenet

Ethernet

Real-time
Execution

24-Laser
GUI

Laser
Source

Process gas
Crossjet

Seam-tracking
Sensor

Robot
Controller

Fiber

Robot

Camera

Seam trajectory

Fig. 1. Typical connection topology in a sensor-guided robotic laser welding
system

All the components inside the dotted box require real-time
execution. The robot controller not only controls the robot
motion but also the other equipment during laser welding. The
laser, crossjet and process gas have to be switched on and off
synchronously with the robot motion. An industrial Devicenet
bus system is used for this purpose. The seam-tracking sensor
is also located within the real-time execution box, as its
measurements must be synchronised with the measurements
of the robot joint angles. The synchronisation procedure uses
Ethernet UDP-communication and is explained in section V.

The operator can control the system using the 24-Laser
graphical user interface (GUI), which does not require real-
time guarantees. 24-Laser is located on a computer that is
connected to the robot controller using Ethernet. It is used
to prepare and process a laser welding job. Furthermore it
contains the implementations of tool calibration procedures
[2], [3], seam teaching algorithms [4] and seam tracking
algorithms [5].

III. C OMMUNICATION FRAMEWORK

The software architecture is schematically shown in figure
2. The software that was developed in this work is located
on three different computer systems: The robot controller,the
sensor system and the PC for the 24-Laser GUI. The software
is mainly written in C++.

Ethernet

Robot-Sensor
Synchronisation

Robot
Controller

Sensor
System

24-Laser
GUI

Robot hardware

Motion Control

Trajectory generation

RobotSocketRobotSocket

S
yn

ch
ro

no
us

A
sy

nc
hr

on
ou

s

Sensor hardware

Feature detection

Shared Memory

SensorSocketSensorSocket

Job processing

Tool calibration

Seam teaching

User Interface

Fig. 2. Software architecture

On the robot controller, the basic joint motion control is
performed in the Motion Control layer, which is developed
by Stäubli [6]. The Trajectory Generation layer computes
smooth reference setpoints for the Motion controller at fixed
times. Using this trajectory generator, the robot can be moved
in various modes (joint motion, Cartesian motion, etc). The
RobotSocket server is the communication layer that allows
clients to connect to the robot and use it (section III-A).

The image-processing of the seam-tracking sensor is per-
formed in the Image Processing layer. After a CMOS image
has been processed, the extracted features are stored in a piece
of shared memory. The extracted features are communicated to
clients that connect to the SensorSocket server (section III-B).

A user application can access the robot and sensor through
a RobotSocket client and a SensorSocket client respectively.
The 24-Laser GUI is an example of a user application that
is especially suited for sensor-guided robotic laser welding.
For other application areas, matching user applications can be
programmed. The communication between the robot, sensor
and user application is generic, different robots and sen-
sors providing the correct Application Programming Interface
(API) can be used as well.

A. RobotSocket

The RobotSocket communication layer is an Ethernet socket
communication layer to let the robot communicate with its
surroundings. It uses the client-server model: on the side of the
robot controller, a RobotSocket server waits for RobotSocket
clients that connect to it. The RobotSocket communication
layer is programmed as a C++ class.

The RobotSocket server listens on a specific port (default
4000) for incoming TCP request packets. Request packets
need to have a certain structure in which e.g. a Command
ID is included to specify the requested robot command. If
the request packet is identified as being a correct request
packet, the RobotSocket server performs the request based
on the Command ID. If the request was performed correctly,
the RobotSocket server responds with a reply packet. If an
error occurrs during processing of the request the RobotSocket
server responds with an error packet.

This approach has several major advantages:

• Ethernet communication is fast (100 Mbit/s) and cheap.
No additional I/O hardware is needed as the robot con-
troller and the computers are standardly equipped with a
network controller.

• Several error-checks are performed, which guarantees
correct packet delivery and prevents unexpected robot
behaviour.

• The system is robot-independent. Robots from different
manufacturers and with different controllers can be used
as long as they follow the specifications in the API as
defined in the RobotSocket class.

• Robot emulators can be used. Instead of real robot
hardware it is possible to connect to a robot emulator,
which follows the RobotSocket API. This is ideal for
testing and debugging purposes as no ”damage” can

occur. Furthermore, these robot emulators can contain
models of the robot and its surrounding. This way the
influence of different factors (kinematics, dynamics, tool
transformation errors,etc) on the path accuracy can be
predicted and visualised.

The API of the RobotSocket communication layer is developed
in a generic way, so different commands using a list of
different parameters can be sent and received. It can be
easily extended with different commands by adding additional
command ID’s and parameters.

The commands that are communicated in the RobotSocket
communication layer are similar to commands that can be
found in common robot programming languages (VAL3 [7],
V+, etc.). The RobotSocket API therefore provides remote
robot control from a user application that is located somewhere
on the network or even the Internet. Examples of commands
are:

• joints = Herej(). Returns the current joint position.
• loc = Here(tool, frame). Returns the current Cartesian

position and orientation of tool relative to frame.
• EnablePower(), DisablePower(). Enable or disable the

robot power.
• JointMove(joints). Perform a joint-interpolated movement

to the position in joints.
• ToolMovej(loc, tool, frame). Perform a joint-interpolated

movement from the current robot position to the Cartesian
location specified as tool relative to frame.

• ToolMovel(loc, tool, frame). Perform a Cartesian-
interpolated movement from the current robot position to
the Cartesian location specified as tool relative to frame.

B. Sensorsocket

The SensorSocket communication layer is an Ethernet
socket communication layer, used to let the sensor commu-
nicate with its surroundings. It is similar to the RobotSocket
communication layer, but now the SensorSocket server listens
on a default port 2000 for incoming TCP request packets.

Examples of commands are:

• data = GetData(). Returns the position and orientation of
a seam location relative to the sensor frame.

• image = GetImage(). Returns the complete sensor image.

C. 24-Laser

The 24-Laser GUI is the link between the robot operator and
the hardware and software. 24-Laser allows the robot operator
to perform a number of different tasks:

• Robot status and motion control. The status of the robot
can be visualised, e.g. the status of Emergency Stops,
Motion, Robot Power, Joint and Cartesian position. Fur-
thermore, motion commands can be given to the robot.

• Seam teaching using point-to-point movements. Both
manual teaching of locations and 3D seam teaching with
the aid of a seam tracking sensor can be performed from
the GUI.

• Tool Calibration using point-to-point movements. Auto-
matic tool calibration procedures for finding the transfor-
mations of the laser tool and sensor tool can be performed
from the GUI.

• Job preparation. This task consists of setting the param-
eters on a welding trajectory, e.g. velocity, laser on/off,
laser power, process gas on/off, crossjet on/off.

• Job processing. A welding job may consist of paths
(welding trajectories), via locations (in-between loca-
tions), stitch welds (spots) and pauses. During job pro-
cessing these are processed in a user-defined order.

Furthermore the GUI contains a database where different tool
transformations and frame transformations can be stored and
edited. Welding jobs are loaded and saved in an XML file-
format [8].

Fig. 3. Screenshot of the 24-Laser main window.

The 24-Laser GUI is developed using Trolltech’s Qt soft-
ware [9]. Qt is a C++ software framework used for pro-
gramming Graphical User Interfaces. It features cross-platform
capabilities as the source can be compiled for MS Windows,
Linux and Macintosh operating systems. A 24-Laser screen-
shot is shown in figure 3.

24-Laser uses the RobotSocket and SensorSocket commu-
nication libraries that were described in the previous sections.
Furthermore a number of dynamic libraries have been devel-
oped for use in 24-Laser:

• Seamtracking DLL. Used for real-time Seam-tracking.
Details of the used algorithms can be found in [5].

• LaserCalib DLL. Used for laser tool calibration. The used
algorithms and measurement method are described in [2].

• SensorCalib DLL. Used for sensor tool calibration. The
used algorithms and measurement method are described
in [3].

• ILC DLL. Used for Iterative Learning Control (ILC),
which is a control strategy used to increase the tracking
accuracy of the joint motion controller, by repeating the

trajectory and learning from errors made in previous runs.
ILC is described in [10].

As 24-Laser can communicate with the robot controller and
sensor it can combine measured seam positions with the
current robot configuration to correct for tracking errors as
will be addressed in the next section.

IV. COORDINATE FRAMES AND TRANSFORMATIONS

To describe the position and orientation of points or bodiesa
coordinate system or frame is attached to each body. Frames
are indicated by a bold capital. A transformation describes
the location (position and orientation) of a frame with respect
to a reference frame. Transformations are indicated by the
symbolT with a leading superscript, that defines the reference
frame they refer to. The leading subscript defines the frame
they describe, e.g. transformationA

BT describes frameB with
respect to frameA.

In literature, a 4x4 homogenous transformation matrix is
often used to describe a transformation. It consists of a 3x3
rotation matrix and 3D position vector. A transformationA

BT

can be written as

A
BT =

[

A
BR A

BP
0 1

]

, (1)

whereA
BR is the rotation matrix that describes the orientation

of frame B with respect to frameA and A
BP is the position

vector that describes the position of frameB with respect
to frameA. Homogenous transformation matrices have some
useful properties, e.g. different transformations can be added
using matrix multiplication.

An overview of the different frames and transformations
that are used in this work is given in figure 4. A more generic
description can be found in De Graaf et al [4].

B

N L S

G

B
NT

N
L T

N
S T

B
GT

L
ST

S
GT

Fig. 4. Frames in a sensor-guided robotic laser welding system

The following frames are distinguished:

• Base or world frameB. This frame is attached to the robot
base and does not move with respect to the environment.

• Null or flange frameN. The null frame is located at the
end of the robot flange. The null frame is described with
respect toB by coordinate transformationBNT, which is
a function of the joint angles of the robot arm.

• Laser tool frameL . The Laser tool is located at the Tool
Center Point of the focussed laser beam, where the z-axis

of this frame coincides with the laser beam axis. Because
the laser beam is axi-symmetric, the direction of the x-
axis is arbitrary. Its direction will be chosen as close as
possible towards the Sensor tool. The transformationN

L T

describes the laser tool frame with respect to the Null
frame. This is a fixed transformation determined by the
geometry of the welding head.

• Sensor tool frameS. The seam tracking sensor is fixed
to the welding head and therefore indirectly to the robot
flange. The transformationNS T describes the sensor tool
frame with respect to the Null frame, where the x-axis of
S is chosen in the welding direction. Note that, because
both transformations are fixed, this transformation can
also be described with respect to the laser tool frame
instead of the null tool by transformationLST.

• Robot tool frameT. A robot movement is more generally
specified by the movement of a robotic tool frameT,
which can be the sensor toolS or laser toolL .

• Seam frameG. Every location on a seam trajectory is
described with a different coordinate frame. The trans-
formation B

GT describes a seam frame with respect to
the base frame.

If the seam trajectory is within the field-of-view of the seam-
tracking sensor, it measures a locationS

GT on the seam
trajectory with respect to its own coordinate frameS. A
seam location with respect to the fixed base frameB can be
calculated by following the chain of transformations as

B
GT = B

NT · N
S T · S

GT. (2)

TransformationBNT represents the location of the robot flange
with respect to the base frame. It is calculated from the
measured robot joint anglesqm as

B
NT = DGM(qm), (3)

whereDGM(qm) depends on the geometry of the robot arm
(e.g. arm lengths, encoder offsets). In literatureDGM(qm) is
often called the Direct Geometric Model [11] or forward kine-
matics function [12], [13]. Khalil and Dombre have derived
symbolic expressions for equation 3 for the specific case of a
6-axes Stäubli robot.

TransformationSGT is computed from a sensor image using
image processing. If the robot is moving, both these transfor-
mations change in time. Therefore to accurately compute a
seam locationBGT, the robot joint measurements need to be
synchronised with the sensor image acquisition.

V. SYNCHRONISATION PROCEDURE

An important topic in a sensor-guided robotic laser welding
system is the synchronisation between the robot controller
and the sensor. In figure 5 the used synchronisation procedure
is shown. The robot controller and the seam-tracking sensor
have their own time axes. The measured robot joint angles are
available at fixed time intervalsTr (4 ms in our case). The
timestRk = k ·Tr and corresponding robot joint measurements
qm

k are stored in a cyclic buffer on the robot controller.

Tr

∆T

tT
i

tS
i

tR
k

tR
k+1

tR
k+2

Sensor Data
(UDP-packet)

Trigger
(UDP-packet)

Robot joint measurement

Image acquisition (∼3.5 ms) Image processing (∼1.5 ms)
Jitter (0-0.5 ms)

Send delay (? ms) Arrival of
Sensor data

Middle of
CMOS image

Robot
Controller

Seam
tracking
Sensor

time

time

Ethernet

Fig. 5. Synchronisation method

The acquisition of a single CMOS image is triggered, by
sending a trigger UDP (User Datagram Protocol) packet to
the sensor. The robot controller sends these trigger packets at
times tTi , wherei is the trigger packet index. On arrival of a
trigger packet at the sensor, the image acquisition is started.
The image acquisition takes (depending on the field-of-view)
a certain time. The image processing time depends strongly on
the chosen feature detection algorithm and CPU that is used
for image processing. After the image processing has been
completed, the sensor dataSGTi is transmitted to the robot
controller. Both the trigger packet and the sensor data packet
contain the indexi. So once a sensor data packet arrives at
the robot controller, the correspondingtTi is known.

During the robot motion, the sensor is normally positioned
symmetrically with respect to the seam, implying that the seam
point is located somewhere in the middle of the CMOS image.
Since the CMOS chip is read column-wise from one side to the
other, detection of the seam point will take place about half-
way during the image acquisition. In figure 5 it can be seen
that the estimated timetSi at which the sensor measurement
took place is computed as

tSi = tTi + ∆T, (4)

wheretTi is the time at which the trigger packet was sent to
the sensor and∆T is a time delay. In section VI experiments
are described to determine∆T .

Let qm
k and qm

k+1
be robot joint measurements at times

tRk and tRk+1
respectively andtSi lies in the interval between

tRk and tRk+1
. Then the robot joint anglesqm(tSi) can be

approximated using linear interpolation as

qm(tSi) =
(tSi − tRk)qm

k + (tRk+1
− tSi)qm

k+1

tRk+1
− tRk

. (5)

The synchronisation procedure is summarised as follows:

1) The robot controller sends trigger packets to the sensor
at timestTi .

2) On arrival of the sensor data at the robot controller, the
estimated timetSi when the image acquisition took place
is calculated using equation 4.

3) Find the interval, wheretSi lies betweentRk andtRk+1
.

4) Compute the interpolated joint anglesqm(tSi) using
equation 5.

5) A seam locationFGT can be calculated from the inter-
polated joint angles and the received sensor data using
equations 2 and 3. Only the order of incoming seam
locations needs to be known to construct the seam
trajectory.

The total time delay∆T depends on the equipment used,
but is expected to be constant with a certain amount of jitter
(variation in time delay). In our case,∆T consists of half the
image acquisition time, which takes (depending on the field-
of-view) about 3.5

2
= 1.75 ms for a full frame of 512 x 256

pixels. There is a communication delay, which is in the order
of 0.1 ms. Furthermore,∆T also accounts for the fact that
the timestRk at which the joint measurements are available
at the robot controller are different from the actual time that
the encoders are measured. Because∆T is experimentally
determined, this delay (and others that may exist) are also
taken into account.

The sensor checks at a rate of 4 kHz whether a trigger packet
has arrived, which gives a jitter of 0.25 ms. There is another
jitter of 0.25 ms before the image acquisition actually starts.
Therefore, the total jitter between receiving the trigger packet
and the start of the image acquisition is 0.5 ms. Although
the use of the UDP-protocol on a switched network does not
guarantee a fixed time delivery of packets on the network,
packet delivery time is low (less than 0.1 ms) compared to
the image acquisition time for a moderate network load and
therefore the jitter caused by the UDP communication is also
less than 0.1 ms. The total jitter in∆T is therefore about
0.6 ms.

The presented synchronisation procedure has the following
advantages:

• Only the arrival of the trigger packet is important, which
makes the procedure independent of a varying image
processing time after the image acquisition.

• The low jitter in the system makes it very suitable for the
high accuracy requirements of laser welding

• The trigger packets can be sent completely independently
of the robot sample time. It is not necessary to sent them
at fixed time intervals.

• The interpolation is calculated after arrival of the sensor
data at the robot controller. If a packet does not arrive
(e.g. due to a communication error) it is automatically
ignored.

VI. M EASURING THE TIME DELAY

To measure the time delay∆T , the following experiment
has been performed. An object with a straight seam has been
put in the middle of the field-of-view of the sensor. The sensor

0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

M
ea

su
re

m
en

t
[m

m
]

(a) Complete motion

Time [s]

M
ea

su
re

m
en

t
[m

m
]

1.995 2 2.005 2.01 2.015 2.02

−0.1

−0.05

0

0.05

0.1

(b) Zoomed around 2 s

Fig. 6. Measured displacement of a sine motion with a frequency of 1.5
Hertz (— yR(tR

k
), — yS(tT

i
))

is moved perpendicular to the seam trajectory using a sine-
motion with an amplitude of 2 mm. The measured displace-
mentsyR of the sensor tool frame should now correspond
to the measured displacementsyS of the sensor. The sensor
readingsyS are recorded with respect to the timestTi and the
sensor tool displacementsyR (calculated from the robot joints
measurements) are recorded with respect to the timestRk . In
figure 6(a), the result of this measurement for a frequency
of 1.5 Hz is shown. The time delay between the two sine-
measurements should correspond to the time delay∆T . As
expected both measurements closely fit. To see the time delay
figure 6(b) shows the same measurement, but is zoomed in
around 2 s.

The sensor measurementsyS(tTi) are known at timestTi
and the robot measurementsyR(tRk) are known at timestRk .
To be able to compare them, they need to be known with
respect to a common time or index. Therefore, both the sensor
measurements and robot measurements are upsampled to 5
kHz. The common times are denoted bytj = j · 0.2 ms. The
residual errorse(tj, ∆T) are defined as

e(tj , ∆T)2 =
(

yS(tj + ∆T) − yR(tj)
)2

, (6)

whereyS(tj) andyR(tj) are the upsampled sensor and robot
measurements respectively and∆T is a variable time delay.
The mean-squared error MSE is a function of∆T and is
defined as

MSE(∆T) =
1

n

n
∑

j=1

e(tj , ∆T)2, (7)

3 4 5 6 7
0

200

400

600

800

1000

∆T [ms]

M
S

E
[µ

m
2
]

Fig. 7. Mean-squared error as a function of the delay time fora sine motion
with a frequency of 1.5 Hertz

0 2 4 6 8 10
4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

Frequency [Hz]

D
el

ay
tim

e
[m

s]
Fig. 8. Computed delay time as a function of the frequency of the sine
motion

wheren is the total number of measurements. The value of∆T

is sought, where the mean-squared error MSE has a minimum.
For the sine motion at 1.5 Hertz the MSE as a function of∆T

is given in figure 7.
The value of∆T where the MSE has a minimum is found

with a resolution of 0.2 ms. To further increase the resolution
a second order polynomial has been fitted through the MSE
values to accurately find the minimum. For the sine motion
at 1.5 Hertz, the time delay is found to be 4.9 ms using this
method.

It should be noted that∆T can only be correctly calculated
if the robot measurements at the joint level correspond with
the sensor measurement at the robot tip. This is the case when
the robot accurately tracks the reference sine motion, but does
not apply when the robot shows flexible behaviour of the
joints and links, i.e. at high frequencies. On the other hand,
at low frequencies, the signal-to-noise ratio is expected to be
low as actually a phase shift is measured, which can not be
interpreted accurately as a time delay at these frequencies. To
see these effects, the time delay is calculated for sine motions
at different frequencies ranging from 0.1 Hertz to 10 Hertz.
In figure 8, the time delay is plotted as a function of the
frequency.

An almost constant time delay is found for frequencies
in the range of 1 Hertz to 4 Hertz. If the sine frequency
is increased the delay time increases due to elastic robot
behaviour. At low sine-frequencies the computed delay time
becomes inaccurate due to the lower signal-to-noise ratio.

0 1 2 3 4 5

−0.05

−0.025

0

0.025

0.05

Time [s]

e
[m

m
]

Fig. 9. Residual error of the sine motion at 1.5 Hertz after synchronisation

x

y

50

2
R=32

Fig. 10. Static sine motion translated to curved sine trajectory

To show the accuracy of the synchronisation method, a delay
time of∆T = 4.9 ms is used in the synchronisation procedure.
A sine motion at 1.5 Hertz is carried out and the residues
between the synchronised robot tip measurement and sensor
measurement have been plotted in figure 9.

The maximum value of the residues is about 30µm, which
is in the same order as the robot repeatability. No remaining
sine wave at 1.5 Hz can be observed, which shows that the
delay time is correctly applied.

The sine motions were performed on a static location on
the seam trajectory. The accuracies that were obtained in these
experiments can be translated to accuracies that occur during
measurements of curved seam trajectories with a robot that is
moving at typical laser welding speeds (figure 10).

For a sine motion of 5 Hertz with an amplitude of 2 mm,
the residues at this frequency are about 40µm, which is well
below the desired accuracy for laser welding. Suppose this sine
motion was performed at a linear velocity of 250 mm/s, then in
one period a distancex of 50 mm would have been travelled.
The distancey perpendicular to the welding directionx can
then be described as

y(x) = 2 sin
5 · 2π · x

250
. (8)

The radius of curvatureR for a curve written in the form
y = f(x) [14] can be computed using

R =
[1 + dy

dx

2

]
3

2

| d
2y

dx2 |
. (9)

The minimum radius of curvature is at the top (or bottom)
of the sine, atx=12.5 mm orx=37.5 mm. It is computed
as R ≈ 32 mm. Suppose a synchronisation accuracy of 40
µm is desired at a welding speed of 250 mm/s, the radius of

curvature should be larger than this. The computed radius of
curvature is much better than the radius of curvature (typical
value of 200 mm) that the robot can achieve, provided that
the dynamic tracking accuracy stays in the order of 40µm at
these speeds. For lower welding speeds the radius of curvature
that can be accurately measured is even better, which shows
the accuracy of the proposed synchronisation method is more
than sufficient for robotic laser welding.

VII. D ISCUSSION

In this paper, an Ethernet-based communication framework
has been described for sensor-guided robotic laser welding.
Although the framework aims at the application of laser
welding, its principles are generic, making it useful for dif-
ferent application areas where sensors and robots are used.
A well-defined extendible interface has been presented for
asynchronous high-level commands (Ethernet TCP) between
robots, sensors and a user application, which allows robots
and sensor from different manufacturers to be used through
the same interface.

To use sensor measurements in real-time during the robot
motion, a synchronisation method (Ethernet UDP) is pre-
sented. Experiments are performed to determine the time-
delay between the robot joint measurements and the sensor
measurements, which is found to be 4.9 ms in our particular
case. The jitter in the system is below 0.5 ms, which makes
the synchronisation method very suitable for laser welding.

REFERENCES

[1] J. P. Huissoon. Robotic laser welding: seam sensor and laser focal frame
registration.Robotica, 20:261–268, 2002.

[2] J. Van Tienhoven. Automatic tool centre point calibration for robotised
laserwelding. Master’s thesis, University of Twente, 2003. Internal
report WA-919.

[3] F. van der Velde. Development of an automatic calibration procedure
for the sensor tcp. Master’s thesis, University of Twente, June 2005.
Internal report WA-989.

[4] M. W. De Graaf, R. G. K. M. Aarts, J. Meijer, and J. B. Jonker. Modeling
the seam teaching process for robotic laser welding. In PaulDrews,
editor, Proceedings of the Mechatronics & Robotics 2004 conference.
APS - European Centre for Mechatronics, September 2004.

[5] M.B. Rensen. Development and implementation of a real-time seam
tracking algorithm. Master’s thesis, University of Twente, 2006. Internal
report WA-1044.

[6] F. Pertin and J. M. Bonnet-des-Tuves. Real time robot controller
abstraction layer. InProceedings of the International Symposium on
Robotics 2004, 2004.

[7] Stäubli. VAL3 Reference Manual version 4.0. Stäubli, Faverges, 2004.
[8] XML. Extensible markup language (XML), 2003.
[9] Trolltech. Qt - gui software toolkit, 2005.

[10] W. B. J. Hakvoort, R. G. K. M. Aarts, J. Van Dijk, and J. B. Jonker.
Iterative learning control for improved end-effector accuracy of an
industrial robot. InProceedings of Symposium on Robot Control. IFAC,
September 2006.

[11] W. Khalil and E. Dombre.Modeling, Identification & Control of Robots.
Hermes Penton Ltd, 2002.

[12] J. J. Craig. Introduction to robotics: Mechanics & Control. Addison-
Wesley publishing company, Inc., 1986.

[13] Richard P. Paul.Robot manipulators: mathematics, programming and
control. MIT Press, Cambridge, MA, USA, 1982.

[14] E. Kreyszig. Differential Geometry. New York: Dover, 1991.

	Introduction
	Connection topology
	Communication framework
	RobotSocket
	Sensorsocket
	24-Laser

	Coordinate frames and transformations
	Synchronisation procedure
	Measuring the time delay
	Discussion
	References

