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Abstract—This work deals with the problem of planning in
real-time, collision-free motions for multiple communicaing ve-
hicles that operate in the same, partially-observable envwonment.
A challenging aspect of this problem is how to utilize commun
cation so that vehicles do not reach states from which collisns
cannot be avoided due to second-order motion constraints. his
paper provides a distributed communication protocol for real-
time planning that guarantees collision avoidance with ok®cles
and between vehicles. It can also allow the retainment of a oo
munication network when the vehicles operate as a networked
team. The algorithm is a novel integration of sampling-base
motion planners with message-passing protocols for distbuted
constraint optimization. Each vehicle uses the motion planer
to generate candidate feasible trajectories and the messag
passing protocol for selecting a safe and compatible trajeory.
The existence of such trajectories is guaranteed by the ovalt
approach. Experiments on a distributed simulator built on aclus-
ter of processors confirm the safety properties of the approeh
in applications such as coordinated exploration. Furthernore,
the distributed protocol has better scalability properties when
compared against typical priority-based schemes.

I. INTRODUCTION

Autonomous vehicles have long been the focus of roboti
research. The progress in wireless networking allows te ¢

preassigned relative positions, which can be achieved with
potential-fields [2], [3], [4], leader-follower approachis], [6]

or local control laws [7]. Decentralized, navigation fupots

[8], [9] provide a feedback solution and can be used for
vehicles with independent goals. Most of these methodssfocu
on providing elegant stability proofs. Despite their elecs, it

is difficult to apply them in general state spaces (e.g. cempl
obstacle and robot shapes and dynamics) [10].

This paper investigates an alternative which is less de-
pendent on the system’s dynamics or the obstacle types.
It utilizes sampling-based [11], kinodynamic planning ][12
popularized by algorithms such &@RT [13], [14], [15].
Instead of constructing control laws given representatioh
the state space obstacles, such algorithms execute a search
in the state space, which is mostly a computational rather
than an analytical challenge. Their drawback is that thexeha
weaker completeness properties and optimality guaraatees
abandoned in favor of practical performance and generality

The original sampling-based planners were offline methods
gad assumed known workspaces. A way to deal with partial-

dppservability is to replan online and construct partialngla

sider groups of vehicles that operate in the same environmiyvards the goal given time limitations [16], [17]. When

and use communication to coordinate their motion. Moreovéf
it gives rise to the idea of networks of vehicles that jointl

solve a task while retaining connectivity. The control o€lsu

systems involves multiple research challenges. Here, aasfo
on motion planning issues. Given procedures for updati
a vehicle’s map, state and goal, the objective is to desift

feasible, collision-free trajectories for the vehicles.

planning with a sampling-based planner for a system with
econd-order dynamics, safety issues arise: a collisia-f
ut partial plan may lead a vehicle to a state from which

collisions cannot be avoided due to the dynamics (Inewtabl

rq;gollision States|(CS) [18], [15]). This problem is particularly

ute when multiple second-order vehicles operate in close
proximity in the same environment. Similarly, a partial pla

We are interested in a solution with the following charactef°uld also lead to states from which network connectivity wi

istics: (i) A general and abstract algorithm that is not tedi

be inevitably lost. A framework that deals wittCS and real-

to specific system dynamics or to specific types of workspadd8€ planning for a single vehicle has been recently deelop

and obstacles. (ii) A scalable, distributed solution tlespects

in the sampling-based planning literature [18], [15].

the physical limitations in sensing and communication and 'N€ use of sampling-based planners on multi-agent prob-

avoids centralized computation. (iii) A real-time algbnt,
since vehicles do not typically have global knowledge ofrth

workspace. This means that sensing, planning and execu
are interleaved and there is limited amount of time to comp

a partial plan towards the goal. (iv) A safe solution for syss

with second-order constraints. The algorithm must provid

lems is limited and it typically follows a centralized appoh

geven for networks of vehicles [19]. Decoupled approaches,

jch are incomplete but more efficient, can utilize sangplin

Jpased planners [20]. In previous work [21], a priority-tihse

scheme was employed where each agent employs plans given
pe paths computed by higher-priority agents. Instead of

guarantees for collision-avoidance and the retainment ofPHorities, this paper studies message-passing algositfon

communication network if desired by the team.

A. Related Literature
Multiple techniques exist for decentralized motion plamni

[1].
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coordination related to loopy belief propagation, a method
for distributed optimization in constraint networks [2223].

These message passing algorithms have been successfully
applied to solve distributed inference problems in wirgles

In formation control agents move while maintainingsensor networks [24].
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B. Contribution 5, | motion

Real Controller cPIar:_nim_:_&

This paper describes a novel integration of sampling-based | Robot | [#oton L
kinodynamic planners [10], [14] with message-passinggrot ot . Other
cols [23], [24] to distributedly control the motion of muydte Commands Vehicles
communicating vehicles. It is an extension of work on safe, Xy
i H H H i Sense| Model Task PU— >l
real-time sampling-based planning [15] to the case of iplelti Environmen Builder Planner
networked vehicles with limited communication range. Ihca "
Communication

guarantee safety in terms of avoiding inevitable collisam
loss of connectivity states. Compared to alternative aggres
for decentralized motion planning [7], [8] it is easily inepl
mentable on general workspaces and to systems with differgd High-Level Replanning Framework
dynamics. In contrast to existing work on motion planning fo
dynamic networks, where coordination is centralized [119,
approach is distributed.

The starting point for the method is the identification o?
the information that must be exchanged between the vehic
so as to plan safe trajectories. This information requirgse
dictate our communication protocol. Within the protocalclk
vehicle uses a sampling-based planner [15] to generatibfeas
trajectories that allow the existence of safe alternatiies
other vehicles. Then the vehicles coordinated through agess
passing [23], [24] to select their trajectory. The exiserd
safe, compatible solutions is guaranteed by the algorith
Among the safe solutions and given the available time, the :
asynchronous protocol optimizes a joint payoff function. the map)/;(t) and estimates future stag(t + dt).

The proposed method has been implemented on a multi-2' G!ven the map, a godF;(¢) is computed forV;.
processor simulator. Each processor models a vehicle and co 3. GivenlM;(t), G;(t) a planner must compute a pla(iit)
municates asynchronously with other processors. The exper bef(_)ret + dt. .
mental results confirm the theoretical guarantees of dmflis 4. Attimet + dt the planp(dt) is executed ak;(t + dt).
avoidance and network retainment for second-order vehicle In this work we focus on step 3, i.e. on how to uti-
jointly exploring an unknown workspace. The distributediZ€ communication so as to provide safety guarantees when

protocol has computational advantages when comparedsigaiultiple vehicles operate in close proximity. Each vehicle
prioritized schemes [21]. can only communicate with neighboring vehicles given the

communication constraints and exchange information. We wi
specify what kind of information has to be exchanged to
guarantee collision avoidance. In this work, we do not deal

Consider vehicled” — {V; V,} operating in a world with issues related to uncertainty in sensing and actioneds w
- IR A

with obstacles. Both obstacles and vehicles are rigidd.f}x)df’]ls unreliable communication.

and there are no restrictions on their shape. Each vehiclegis

able to sense a local region around it and can communicate o ] ]

with other vehicles within a limited range. Each vehitleis ~ 1he objective of the motion planner is to compute a

a dynamic system whose motion is governed by differenti}a" »(d?), which is a time sequence of controlstdt) =

equations of the form: {(ul’c.ltl)’ ooy (un, dty)}, wheredt = > dtl When a plan
p(dt) is executed at state(t), a vehicle will follow thetra-

(1) = flzit), ui), g(zi(t),25(t) < 0 1) jectory: w(z(t),p(dt)). A trajectory is feasible, if it respects

the constraint functiong andg from Eq. 1.

wherez;(t) € X, represents a state; € U, is a control,f,g A state along trajectory(«(t), p(dt)) attimet’ € [t : t+dt]

are smooth and is time. This paper focuses on systems witff denoted as:™( ¢' ). When a vehicle executes a plafyt)

bounds both in velocity and acceleration. The dynamics ef tfom statex(t) and consecutively executes plaf{dt’), then

systems we experimented with can be found in Section |v the resultingtrajectory concatenation will be denoted as:

Given the commun_ication Iimitatio_ns and _states 7 (w(z(t), pldt), p'(dt) ).

{z1(t), ...,z (t)}, the vehicles form dynamic communication

links represented by a grap@(t) = {V(¢), E(t)}, where If two vehicles V;, V; at time ¢t are not in collision with

ei; € E(t) as long asV;, V; are within range. The neighborseach other or with obstacles, then their correspondingstat

of V; in the graphG(t) are denoted ad/;(¢). x;(t), z;(t) arecompatible states z;(t) =< z;(t).

Fig. 1. The closed loop architecture and modules on a singféche.

The vehicles execute tasks which require motion. While
moving, the vehicles must avoid collisions both with obktac
nd with other vehicles. Since the workspace is only péytial
bservable, the vehicles must update their world model and
$ite estimate given new sensory information. In parahely
must replan in real-time trajectories towards their goats.
achieve this objective, a vehicle’s function is broken down
into a sequence of consecutive operational cycles. Thewsri
vehicle operations, shown in Fig. 1, are executed in a pipeli
over these cycles. For cyclg : ¢ + dt) vehicle V; executes
me following:

1. Up to timet: a localization and mapping routine updates

Il. PROBLEM SETUP

Motion Planning Notation



For the plan generation step, sampling-based, kinodynamic

vemaie v, || o]ln [ PLan | | serect | b of rian | | sececr || planners are particularly appropriate to search the statees
g Z .St‘;‘ﬁ;”“Xoow-m[l‘;t;"::.t',;x Tﬁ v ><I>< and produce multiple candidate valid plaRsthat are at least
I Tis collision-free with the workspace obstacles.
e G‘ PLav | | seect | . G‘ PLan | | “““L For the plan selection step, the exchanged plRpsare
g2§1‘£‘,?;°"><°°RD'NA“]EEf!‘é'.‘é}( o g§1‘£‘.?;°"><°°RD'~A*=1E':f!‘;'.‘éy< viewed as actions in a discrete action space. Two plans of
vnae, JEJE[ Pian | [seceer | [E[F] rian | [secr]| different vehicles are acceptable solutions if the comasing

trajectories are compatible. Then the problem of distadiyt
selecting compatible trajectories is reduced to a distebu
constraint optimization problem, for which message-pagsi
algorithms exist [23], [24].

A. Plan Generation: Sampling-based Planning

There are various alternatives on how to implement a
sampling-based, kinodynamic planner [13], [14], [15]. Ik A
gorithm 1 we present an abstract version of such algorithms.
The algorithm constructs a tree data structure (varidble:),
where nodes of the tree correspond to states and edges corre-
) . . . ) spond to trajectories. The tree is rooted at the stétet dt)

Compatible trajectories between vehicles may still lead igq sampling is used to propagate feasible trajectoriestiet
an inevitable collision state from which a collision canbet gigte space. The algorithms as described here searchéstthe s
avoided in the future due to second-order constraints HB]-space of a single vehicle given only workspace obstacles and
state;(¢) is an Inevitable Collision State (ICS)given the ignores the effects of other vehicles. We will later show tvha
states{z1(t), ...,z (t)} if V m;(2;(t), pi(00)): changes must be made so that collisions with other vehicles

3 (dt A j # i) so thatV 7, (z;(t), p;(c0)) are also avoided.
statesz™ (dt) andx™i (dt) are not compatible.

Tia T Tiva

Fig. 2. The operation that a single vehicle executes in twoeseoutive
planning cycles.

Two trajectoriesr; (z; (t;), pi(dt;)) andm;(x;(¢;), p;(dt;))
are compatible trajectories (r; =< ;) if the two trajectories
do not cause collisions with workspace obstacles and:

Ve [max{ti,tj} : min{ti + d/ti,tj + dtj}] :
27 () = i (1),

Algorithm 1 SAMPLING-BASED PLANNER
C. Problem Definition Tree «— Retain valid subset df'ree from previous cycle

Given the map)/;(¢) and a state estimate;(t + dt), the While (time < PlanningBudget) do
motion planning module of each vehicl must compute {
before time(t+dt) a planp; (dt') so that given the trajectories Select a state:(t') on the existingl'ree
of all other vehiclesr;(z;(t + dt), p;(dt")) (V] # i): Select valid plarp(dt’) given statex(t’)
o mii(t 4+ db), pi(dt')) = (i (t + dt), p;(dt))) Forwgrd propagate trajectqu(x(t’),p(dt’)
. StatezT(dt') is not ICS. if (7 is notcollision-free with obstacles)then

Vehicle V; can only communicate with vehicles in the set eISF;ejectw
N;(t). A secondary objective for the planner is to refine the
/ . . Add 7 to Tree
quality of the selected trajectory given a measure of pa;gh
quality and a goal7;(t).

lll. DISTRIBUTED PROTOCOL FOR In our implementation we have followed an approach where
SAFE, REAL-TIME MOTION PLANNING the expansion of the tree is biased so as to greedily expand th
There are two basic implementation choices in the proposggla structure towards the goal while still providing theawe
approach. Motion coordination is achieved in a decouple@mpleteness guarantees of sampling-based planning [15].
manner. This feature distinguishes our approach when cogince the algorithm is executed in a continuous replanning
pared against related work on planning for communicatingop, part of the tree data structure from the previous prann
vehicles [19], where the vehicles forming a temporary dyigamcycle may still be valid in the beginning of a new cycle. The
network solve a centralized problem. Moreover, the motiagalid part of the tree is retained as in many recent replannin
planning and coordination operation of each vehicle aré sphpproaches [16], [17] to accelerate performance and ingprov
into two separate steps as shown in Fig. 2: path quality. The planner is executed for a limited amount of
1) Generate Candidate Plans:During the first step, the time (variable PlanningBudget, which should be less than
algorithm searches the state space of veHi¢leo as to the total cycle duratiort) and then it is interrupted. At that
generate a set of candidate plahs point we can extract from'ree all the trajectories that are
2) Select Compatible Plans:During the second step,rooted at state:(¢ + dt) and which have duratiodt. These
neighboring vehicles communicate by exchanging sdtsjectories are by construction feasible and collisinrefwith
P; and evaluating their performance in terms of collisiomorkspace obstacles. We store these trajectories as etedid
avoidance and task execution. plansP;, for vehicleV;.
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Fig. 4. (left)A coordination graph for 10 vehicles. (rigl8afety assumption

Fig. 3. A simple coordination graph, the action sdts, A2, A3, the atomic

and pairwise payoffsf1, f2, f3, fi2, f23 and the global utility functior: In order to adapt this formulation in our framework, each
) _ vehicle can be viewed as a node in the coordination graph
B. Plan Selection: Message-Passing Protocol CG (see Fig. 4(left)). Two nodes share an edge in the graph

After the plan generation step, each agent has a discreteib#te corresponding vehicles can communicate or if they can
of actions to select from. The objective of the path selectigotentially collide. We want to avoid, however, the case iwhe
step is to distributedly assign trajectories to vehiclegtst two vehicles can end up in inevitable collision states hefor
there is no incompatible pair of trajectories and as a semgndthey have time to communicate. That is why we impose a
goal to select good quality trajectories. Such problems camximum velocity limit that depends on the duration of the
be modeled with coordination graphs [25] and can be solvegplanning cycle and the communication range. This limit
with distributed message passing algorithms basedeadief must guarantee that two non-communicating vehicles which
propagation[22], such as thenax-plusalgorithm [23]. move with maximum speed one towards the other will have

In this formalization, we assume we haweagents, and enough time to communicate, select contingenecy plans and
each agent has to select an actiom; out of a finite action stop before colliding. This scenario is described in Fig. 4.
set A;. Generally the goal is to find the optimal action vectoGiven the velocity limit, the edges of CG correspond to pairs
a* = (a},...,a*) that maximizes a global utility function of vehicles that can communicate during the entire cycle.
u(@). The utility has a structure captured by a coordination The discrete set of actions of the max-plus algorithm
graph CG = (V,E). On every node ofCG we define corresponds to the set of candidate plgPs The atomic
a function f;(a;) called atomic payoff An atomic payoff payoffs f;(p;), wherep; € P; can be computed by evaluating
describes how well each action serves the goal of the ag@olv close each trajectory takes vehidfgto its goalG;. In
corresponding to that node. On the edggsof CG we define the evaluation of the pairwise payoffs we must also express
pairwise payofffunctions f;;(a;,a;) that indicate how good whether two trajectories are compatible or not:
for the team are pairs of actions of interacting agents (sge F

3 for an example). The global utility is assumed to depeng onl fi(pi(dt),p;(dt)) = —oo if
on the unary and pairwise payoff functions as follows: (@i (¢ + db), pi(dt)) # mj(x; (¢ + dt), p; (dt)) ©)
u(@) :Zfi(ai)"" Z fij(ai, a;) wherep; € P, and p; € P;. If the two plansp; and
i ei; €B(CG) p; are compatible then the pairwise payoff can be assigned

Max-plus is a distributed message passing algorithm tratpositive value that depends on other properties that are
attempts to compute an optimal action vector using onlyllocgequired to be optimized. Consequently, it is necessargrbef
computations and communication for every agent. While tfiee coordination step for the neighboring vehicles to ergea
algorithm is running, each ageinthooses a neighboring agenthe sets of candidate plans so as to compute the pairwisdfpayo
j onCG, collects and adds all incoming messages from othignctions.
agents in its neighborhood, and sends a new messagthd The pairwise payoffs can be computed in a distributed
is computed by the following formula: way that balances the burden among vehicles. Each vehicle

computes one row for every pairwise payoff matrix that it
mij(a;) = Htlffx{fi(ai) + fijai, az) + Z meit (2) i in\F/)oIved in, in a cyclic ord):arFJ Then eallacr?/vehicle transmit
REN (D), k77 this row to its neighbors. In the computation §f if i < j
At any time during the execution, the agents can computetteen : computes rows;, 7o, ... and j computes in reverse

marginal function g;(a;) = fi(a;) + ZkeN(i) M. Maximiz- 4z, "mae—1, - - -, UNtil the whole array is completed. In this
ing g; provides the best possible actiat) for agent: with way, a vehicle that has many neighbors is not overwhelmed
respect to messages from other agen{s,...,a!,) is an and its computational overhead is outsourced to neighbitins w

approximation to the optimat. a smaller number of payoff matrices to compute.



C. Achieving Safety work the coordination step is achieved with a priority-lzthse
The two step approach we have described so far issgheme, while in the current work we show a fully distributed

distributed search technique, which has no guarantee afgind@PProach that does not use priorities. These requirements,
compatible plans. It can actually fail for multiple reaspns however, do not depend on the planning algorithm or the

. . S . coordination scheme used. In this work we have extended the
1) Imposing time limitations on sampling-based planners _ . o .
. . ; : . ~previous contribution [21] by showing that the full scheme

may result inP; being empty even if there is a solution.

. does not depend on a prioritized scheme for coordination,
2) The cycle may be completed before vehicles haye . . : e
. Ut that it can be also implemented with a fully distributed

enough time to exchange and evaluate plans. essage passing brotocol

3) Compatible trajectories may exist but they may not gep gp '

have been produced because decoupled coordinatiomis Algorithm

incomplete [20]. We describe here how we the overall proposed protocol can

4) Max-plus_ls also mcomplete wheflG is n_ot a tree_. satisfy the requirements in a distributed way. The algarith
Although it converges quickly to a near-optimal solution

[23], incompatible pairs may still be selected. provided in pseudocode in Algorithm 1.

. To satisfy the second requirement, each vehidlemust
5) The approach so far does not address the issu&sf be aware of the contingency plans of neighboring vehicles

All these safety concerns can be dealt with, if every. at statex(t + dt). These contingency plans have already
vehichle has available in the beginning of every planningseqp computed by each; during the previous step. This
cycle a contingency plan(oo) that avoids collisions with the jnformation can be communicated at the beginning of each
environment and other obstacles. For example, for syste@gle between neighbors. After exchanging contingencysla
with S(_acond order dynamics and stgtic workspace obstaql@% sampling-based, kinodynamic planner is invoked. The
a contingency plan can be a breaking maneuver that bringgnner now not only produces collision-free trajectoffies
a vehicle to a complete stop. In [21] a theoretical study @fyrationdt but also avoids ICS with obstacles (Eq. 4). The
avoidingl CS in the case of multiple communicating vehicleganner considers as colliding all the trajectories thegrsect
by using contingency plans can be found. That paper descrilge contingencies of other vehicles to satisfy Eq. 5.
the following sufficient requirements so as to guarantee theNext, the set of candidate plarg is constructed from
existence of a contingency plan in the beginning of every,... For each plan in this set, the corresponding contingency
replanning cycle: _ _ is attached to it and the unary payoff(p;) is evaluated.
Requirement 1: The concatenation of a plap(dt) with @ Then, neighboring vehicles exchange their candidate alads
contingency plany; (co) must be collision-free with respect tocompute pairwise payoffs. Instead of using Eq. 3, however,
workspace obstacles: for defining incompatibility, we must use Eq. 6, which takes
(4) the concatenation with contingency plans into accountef®iv

the definition of unary and pairwise payoffs the asynchr@nou
Requirement 2: The concatenation of plap;(dt) with a message-passing protocol is initiated and the vehiclas sta
contingency plany;(co) must be compatible with the currentexchanging messages. When the algorithm runs out of time,

7' (w(x(tn), pi(dt)), vi(oo) ) is collision-free.

contingency plansg;(co) of other vehicles: vehicle transmit to their neighbors their final action sttets.
o , Max-plus is incomplete, so if two neighboring vehicles have
Vi#i: m(mi(zi(tn), pi(dt)),vi(oo)) selected incompatible trajectories then one of the twoclesi
= (2 (tn),vj(00)) (5) switches to the contingency plan. This is a very fast adjastm

step, which guarantees that the third requirement is always
satisfied. In the experiments section we show that the cases
where max-plus has to resort to the contingency plan arerfewe
compared to priority-based schemes.
The secondary goal is to find among the safe solutions
Vi#i: mh( mi(@i(te), pi(dt)), vi(oo)) one that maximizes the global utility, within the allocated
I , , amount of time. Because the algorithm does not monotogicall
= 5 (m3(@5 (), 3 (d8)), 73 (o) © increase the global utility, it r%lust periodically compuge
These requirements are directives that decribe what kindd keep track of the action vector that produced the max-
of information needs to be exchanged between vehicles, amim value. However, no single agent has all the available
how the selection of future plans must be done. The firstformation to compute:. In order to achieve an efficient,
two requirements make sure that the planner will producistributed computation of the utility we use a minimum
plans that respect the other vehicle’s contingencies. find t spanning tree ofCG. There are asynchronous distributed
requirements ensures that the contingency plans attachegrotocols for computing minimum spanning trees on graphs
selected plans (as in Eq. 6) are also compatible. In [21] asing local information such as the distance between agents
inductive proof is provided that shows that if the requiremse [26]. Given the minimum spanning tree structure, an arbjtra
are satisfied then the vehicles will be moving safely. In thaghicle acting as a root of the tree initiates the process:

Requirement 3: The concatenation of selected plap(dt)
with a contingency plan;(co) must be compatible with the
concatenations of selected plamgdt) of other vehicles with
their contingency plans;(co):



Algorithm 2 DISTRIBUTED, SAFE PLANNER
Identify set of neighborsv;
(Exchange conti ngenci es)
forall j € N; do
Send contingencyy; (oo) to V;
Receive contingency,(co) from V;
(Pl anni ng: respects Req. 1,2)
Tree «— Retain valid subset df'ree from previous cycle
while (time < PlanningBudget) do
Select a state(¢') on the existingl'ree
Select valid plamp(dt’)
Propagate trajectory(z(t), p(dt’)
if ((w(w(z(t),p(dt"),v(c0)))) is notcollision-free) then
Rejectn
else
for all j € N; and whilewr not rejecteddo
it (m(a(t), p(dt')) # m;(z;(tn), 73(c0)) ) then
Rejectn
(Eval uate and exchange candi dat e pl ans)
P; — plans of durationdt from T'ree
for all p; € P; do
Attach contingency plan;(co) to p;(dt)
Evaluate unary payoff;(p;) for p; € P; givenG;
forall j € N; do
Send setP; to V;
Receive se®; from V;
(Take Req. 3 into account)
for all p; € P; do
for all p; € P; do
if (] (i (i (tn), pi(dt)), 7i(00)) =
75 ( 75 (25 (tn), pj(dt)), ~;(c0)) then
Compute payofff;;(p;, p;) given the goalss;, G,
else
fij(pi,pj) = —o0
( Coor di nati on)
Enter into asynchronous message-passing to optimize:
u(p) = Zl fi(pi) + ZeijeE(CG) fij (i, pj)
Stop protocol before time+ dt
Select plarp; that maximizedu(p)
for all j € N; do
if (p; incompatible withp;) then
Select contingency; as the next action

Down passThe root transmits a signal to compuie Each
node passes the signal down the tree.
Up passEach node:

J -
_———
& e o
= =y
= =
o 0

-=r-

Fig. 5. Two snapshots of 16 vehicles exploring the labyriativironment,
while retaining a vehicular network.

E. Extension to Vehicular Networks

So far we have assumed that the vehicles execute tasks
which do not require from the vehicles to retain a commu-
nication network. However, the same framework can be used
to produce trajectories that also provide safety guaraniee
terms of network connectivity. This can be easily achieved
by considering as incompatible every pair of trajectorhest t
breaks a communication link. In order to take the seconeord
dynamic constraints into account, we must also check tleat th
concatenation of the trajectories with contingency plalss a
retains the communication link similarly to Eq. 6.

Yet, trying to maintain all the communication links is
overly constraining. It is enough to try and maintain the
edges in a minimum spanning tree of the communication
graph. The minimum spanning tree structure can be computed
distributedly in the beginning of each cycle [26]. In thisea
only communication links along the minimum spanning tree
are required to remain connected. If only a spanning tree of
the communication graph is retained during each step, theen t
network is able to change the topology of its communication
graph so as to adapt to its workspace.

IV. EXPERIMENTAL RESULTS

Setup: We tested our algorithm on a distributed simulator that
we developed and ran on an XD1 Cray cluster. The planner for
each vehicle is running on a different processor and operate
under time limitations imposed by a server that simulates
ground truth. All data exchange is done via simple send and
receive messages using sockets.

The simulated vehicular networks have been tested in three
different environmentdfRoomsandRandomare seen in Fig. 6.
The first represents a structured environment with rooms and
corridors, while the second is an unstructured environment
Labyrinth (Fig. 5) is a difficult scene that contains multiple
narrow passages. Two types of vehicles have been tested, car
like robots, for which the dynamic equations are shown in

1) Collects partial payoff values and actions from children

2) Maximizes marginal; and chooses best actia.

3) Adds its contribution to the global payofif.

4) Sends new partial payoff and actions to its parent.
Down pass The root adds up all partial payoffs so as
compute and maximize. The optimal value of.* and actions
a* are transmitted down the tree.

Car-Like

cosf-coss-V -

_ n

T |
Y sinf - coss-V h V) <
6 = sins - v [

74 @ I

5 t L4

ROOMS RANDOM o <

This computation Is fast since the Ut'“ty computation me%ﬁl?. 6. The state update equations for the car-like vehieled scenes

sages can be interleaved with normal max-plus messages [2

oms” and “random”.



Req 1 Reql & Reqg2 Reql & Reg3 All Requirements
Nr Vehicles | 157 failure (sec) | success %| 1°7 failure (sec)| success %| 1°7 failure(sec) | success %| 1°5¢ failure(sec) | success %
2 287.10 10% 293.25 37.37% 113.10 0% N/A 100%
4 21.00 0% 141.07 12.00% 21.53 0% N/A 100%
8 3.67 0% 24.16 0% 4.31 0% N/A 100%
16 3.00 0% 23.10 0% 3.00 0% N/A 100%
TABLE |

PROBABILITY THAT NETWORKS OF CAR-LIKE VEHICLES SUCCEED TO EXPLORE WHEN DIFFERENT REQUIREMENS ARE MET.

1200,

900 —

Fig. 6, and differential drive robots with bounded accdlera

) K < ‘ .Rardon .Random
The car-like robots obey velocity bound§#| < 3.5m/s, ancé . looms fo00: —
acceleration bounds: < 0.8m?/s as well as steering boun(£ [tatrin %00 B [ casyein

500

|s| < ldeg/m, |t| < 4deg/s. Vehicles have limited sensiig
and communication ranges. For contingencies, deaccele g «

maneuvers were used. The framework allows for pluggir§ fzz II II I

other types of dynamics and having different contingenc . BE . : N . ’ - n
We present here results from an application that comb..... ~ Numberof dd vehicles Number of carike Vehicles
many_ of the ConSt_ramts we are interested ”? testing oHiE;. 8. Scalability results for three scenes: Random, Rotmisyrinth. Left:

algorithm. The vehicles have to solve a coordinated explep robots, Right: Car-Like robot
ration task while retaining a network and avoiding colliso
They are initially located at the bottom left corner of théontingency Plans:One important advantage of the max-plus
environment, close one to another, but at collision-fregest algorithm is that it avoids the use of priorities in coordina.
forming a network with a single component. During each priority-based schemes, lower priority vehicles arertye
replanning cycle a simulated model builder and a task planm@nstrainted by the choices of higher priority agents. This
transmit to the vehicles the updated map and set of goals. TRay lead to frequent selection of contingency plans. We have
goals correspond to frontiers of the unexplored space amd 8kperimented in scendsabyrinth and Roomsfor networks
assigned greedily so that large frontiers which are close With 16 and 32 vehicles. Table Il presents the number of
vehicles are being considered first. Experiments with up2to §mes contingencies were selected using the simple pzedt
vehicles have been conducted. scheme and max-plus. F@&2 vehicles, max-plus chooses
We compare the max-plus algorithm against a simpler pridiontingency plans considerably fewer times. Additionatig
itized scheme described in more detail in [21]. In that soenfeSults from the prioritized scheme have higher variation
the vehicles have unique global priorities. The plannirepst between d|fferen_t scenes and team sizes, while max-plus is
is the same as here. For the plan selection, each vehi#l#ch more consistent.
receives the choices of higher priority vehicles and thestr Scalability: The scalability properties of the algorithm are
to choose its own plan so that it is compatible the high&Fesented in Fig. 8, which provides the average runningstime
priority neighbors. If no such plan exists, the vehicle ke (10 runs per case) to complete exploration in the three scene
the contingency plan. At last the vehicle transmit its stbec for car-like and DD vehicles. Increasing teams size from
to its lower priority neighbors. 2 to 16 results in 5 to 6 times faster exploration. This is
Feasibility: Table | exhibits the importance of the safetft VETY encouraging result given that the simulated systems

requirements in decoupled replanning. We measure the tiff¢ V'Y constrained, both due to network and kinodynamic
(in seconds), that the vehicles can move without collidirigpw COnStraints. Moreover, there is no significant variatiorttia
each other when Requirements 2 and/or 3 (those necessarf@ﬁormance of the algorithm when applied to systems with
safe multi-vehicle planning) are relaxed. The numbersntego different dynamics. _

show the time at which the first collision or loss of networl€formance and Parameter Dependencerig. 7(left) shows
connectivity occurs. The problem is so constrained for ipleit the average activity profile of a vehicle during each cycle.

vehicles, that often collisions cannot be avoided past tie 21 "€ @lgorithm utilizes most of the replanning cycle in usefu
replanning loop. The results are averaged out®funs and COMPputations but the payoff computation takes up a non-

are shown in columns labelddilure. If either one of the two trivial amount of time. In the selection step, max-plus does
requirements is absent, the vehicles cannot avoid caiisioghot let the processor idle, and in most cases is able to find an
with each other. When all requirements are enabled, then@glimal or near optimal solution. The latter is confirmed by

expected, there is no failure. The columns labetedcess

800~

400+

Avg exploration time(sec)

200!

measure the percgntage of successful exploration of théewho ROOMS Cabyrinth
space without collisions. As we see, for small team8 of 4 16 32 16 32
vehicles, there were some cases where the vehicles comhplete Prioritized | 3.61 % | 24.5% | 1.35% | 8.42 %
. . . . - 0, 0, 0, 0,
the task without one or both of the requirements. This is to Max-plus | 0.98 % | 2.26 % | 3.04% | 4.84 %
TABLE II

be expected since the chances of an encounter are lower ljg/r

such small teams.

ERAGE PERCENTAGE OFCYCLES THAT V; EXECUTES CONTINGENCY
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the second figure where we see the probability of executing]
contingency plans as a function of the portion of the plagnin

cycle allocated to the motion plannePL(AN- Tl ME). This
probability is very low (.7 — 1.5%). Moreover, there is an
optimum value at aroun@5%. For smallPLAN- TI ME, the

and the contingency is selected for safety reasons. The thir

4 G

(5]
planner has little time to produce enough plans, while fOfﬁ]
larger ones max-plus has not enough time to make a selection

figure shows that increasing the duration of the plannindecyc

can result in performance deterioration. The last figurevsho

that as the communication range increases, four vehiclis fin (8]

the exploration faster, which is expected.

V. CONCLUSIONS

This paper presents a novel integration of sampling-ba:
namic constraints. It extends work on safe, real-time sargpl
collision avoidance as well as in terms of retaining a cotetec

acceleration constraints confirm the safety propertieshef il
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