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Abstract—This work deals with the problem of planning in
real-time, collision-free motions for multiple communicating ve-
hicles that operate in the same, partially-observable environment.
A challenging aspect of this problem is how to utilize communi-
cation so that vehicles do not reach states from which collisions
cannot be avoided due to second-order motion constraints. This
paper provides a distributed communication protocol for real-
time planning that guarantees collision avoidance with obstacles
and between vehicles. It can also allow the retainment of a com-
munication network when the vehicles operate as a networked
team. The algorithm is a novel integration of sampling-based
motion planners with message-passing protocols for distributed
constraint optimization. Each vehicle uses the motion planner
to generate candidate feasible trajectories and the message-
passing protocol for selecting a safe and compatible trajectory.
The existence of such trajectories is guaranteed by the overall
approach. Experiments on a distributed simulator built on aclus-
ter of processors confirm the safety properties of the approach
in applications such as coordinated exploration. Furthermore,
the distributed protocol has better scalability properties when
compared against typical priority-based schemes.

I. I NTRODUCTION

Autonomous vehicles have long been the focus of robotics
research. The progress in wireless networking allows to con-
sider groups of vehicles that operate in the same environment
and use communication to coordinate their motion. Moreover,
it gives rise to the idea of networks of vehicles that jointly
solve a task while retaining connectivity. The control of such
systems involves multiple research challenges. Here, we focus
on motion planning issues. Given procedures for updating
a vehicle’s map, state and goal, the objective is to design
feasible, collision-free trajectories for the vehicles.

We are interested in a solution with the following character-
istics: (i) A general and abstract algorithm that is not limited
to specific system dynamics or to specific types of workspaces
and obstacles. (ii) A scalable, distributed solution that respects
the physical limitations in sensing and communication and
avoids centralized computation. (iii) A real-time algorithm,
since vehicles do not typically have global knowledge of their
workspace. This means that sensing, planning and execution
are interleaved and there is limited amount of time to compute
a partial plan towards the goal. (iv) A safe solution for systems
with second-order constraints. The algorithm must provide
guarantees for collision-avoidance and the retainment of a
communication network if desired by the team.

A. Related Literature

Multiple techniques exist for decentralized motion planning
[1]. In formation control agents move while maintaining

preassigned relative positions, which can be achieved with
potential-fields [2], [3], [4], leader-follower approaches [5], [6]
or local control laws [7]. Decentralized, navigation functions
[8], [9] provide a feedback solution and can be used for
vehicles with independent goals. Most of these methods focus
on providing elegant stability proofs. Despite their elegance, it
is difficult to apply them in general state spaces (e.g. complex
obstacle and robot shapes and dynamics) [10].

This paper investigates an alternative which is less de-
pendent on the system’s dynamics or the obstacle types.
It utilizes sampling-based [11], kinodynamic planning [12]
popularized by algorithms such asRRT [13], [14], [15].
Instead of constructing control laws given representations of
the state space obstacles, such algorithms execute a search
in the state space, which is mostly a computational rather
than an analytical challenge. Their drawback is that they have
weaker completeness properties and optimality guaranteesare
abandoned in favor of practical performance and generality.

The original sampling-based planners were offline methods
and assumed known workspaces. A way to deal with partial-
observability is to replan online and construct partial plans
towards the goal given time limitations [16], [17]. When
replanning with a sampling-based planner for a system with
second-order dynamics, safety issues arise: a collision-free
but partial plan may lead a vehicle to a state from which
collisions cannot be avoided due to the dynamics (Inevitable
Collision States (ICS) [18], [15]). This problem is particularly
acute when multiple second-order vehicles operate in close
proximity in the same environment. Similarly, a partial plan
could also lead to states from which network connectivity will
be inevitably lost. A framework that deals withICS and real-
time planning for a single vehicle has been recently developed
in the sampling-based planning literature [18], [15].

The use of sampling-based planners on multi-agent prob-
lems is limited and it typically follows a centralized approach
even for networks of vehicles [19]. Decoupled approaches,
which are incomplete but more efficient, can utilize sampling-
based planners [20]. In previous work [21], a priority-based
scheme was employed where each agent employs plans given
the paths computed by higher-priority agents. Instead of
priorities, this paper studies message-passing algorithms for
coordination related to loopy belief propagation, a method
for distributed optimization in constraint networks [22],[23].
These message passing algorithms have been successfully
applied to solve distributed inference problems in wireless
sensor networks [24].
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B. Contribution

This paper describes a novel integration of sampling-based
kinodynamic planners [10], [14] with message-passing proto-
cols [23], [24] to distributedly control the motion of multiple
communicating vehicles. It is an extension of work on safe,
real-time sampling-based planning [15] to the case of multiple
networked vehicles with limited communication range. It can
guarantee safety in terms of avoiding inevitable collisionor
loss of connectivity states. Compared to alternative approaches
for decentralized motion planning [7], [8] it is easily imple-
mentable on general workspaces and to systems with different
dynamics. In contrast to existing work on motion planning for
dynamic networks, where coordination is centralized [19],the
approach is distributed.

The starting point for the method is the identification of
the information that must be exchanged between the vehicles
so as to plan safe trajectories. This information requirements
dictate our communication protocol. Within the protocol, each
vehicle uses a sampling-based planner [15] to generate feasible
trajectories that allow the existence of safe alternativesto
other vehicles. Then the vehicles coordinated through message
passing [23], [24] to select their trajectory. The existence of
safe, compatible solutions is guaranteed by the algorithm.
Among the safe solutions and given the available time, the
asynchronous protocol optimizes a joint payoff function.

The proposed method has been implemented on a multi-
processor simulator. Each processor models a vehicle and com-
municates asynchronously with other processors. The experi-
mental results confirm the theoretical guarantees of collision
avoidance and network retainment for second-order vehicles
jointly exploring an unknown workspace. The distributed
protocol has computational advantages when compared against
prioritized schemes [21].

II. PROBLEM SETUP

Consider vehiclesV = {V1, . . . , Vv} operating in a world
with obstacles. Both obstacles and vehicles are rigid-bodies
and there are no restrictions on their shape. Each vehicle is
able to sense a local region around it and can communicate
with other vehicles within a limited range. Each vehicleVi is
a dynamic system whose motion is governed by differential
equations of the form:

ẋi(t) = f(xi(t), ui), g(xi(t), ẋi(t)) ≤ 0 (1)

wherexi(t) ∈ Xi represents a state,ui ∈ Uu is a control,f, g
are smooth andt is time. This paper focuses on systems with
bounds both in velocity and acceleration. The dynamics of the
systems we experimented with can be found in Section IV.

Given the communication limitations and states
{x1(t), . . . , xv(t)}, the vehicles form dynamic communication
links represented by a graphG(t) = {V (t), E(t)}, where
eij ∈ E(t) as long asVi, Vj are within range. The neighbors
of Vi in the graphG(t) are denoted asNi(t).

Fig. 1. The closed loop architecture and modules on a single vehicle.

A. High-Level Replanning Framework

The vehicles execute tasks which require motion. While
moving, the vehicles must avoid collisions both with obstacles
and with other vehicles. Since the workspace is only partially
observable, the vehicles must update their world model and
state estimate given new sensory information. In parallel,they
must replan in real-time trajectories towards their goals.To
achieve this objective, a vehicle’s function is broken down
into a sequence of consecutive operational cycles. The various
vehicle operations, shown in Fig. 1, are executed in a pipeline
over these cycles. For cycle(t : t + dt) vehicle Vi executes
the following:

1. Up to timet: a localization and mapping routine updates
the mapMi(t) and estimates future statexi(t + dt).

2. Given the map, a goalGi(t) is computed forVi.
3. GivenMi(t), Gi(t) a planner must compute a planp(dt)

beforet + dt.
4. At time t + dt the planp(dt) is executed atxi(t + dt).

In this work we focus on step 3, i.e. on how to uti-
lize communication so as to provide safety guarantees when
multiple vehicles operate in close proximity. Each vehicle
can only communicate with neighboring vehicles given the
communication constraints and exchange information. We will
specify what kind of information has to be exchanged to
guarantee collision avoidance. In this work, we do not deal
with issues related to uncertainty in sensing and action as well
as unreliable communication.

B. Motion Planning Notation

The objective of the motion planner is to compute a
plan p(dt), which is a time sequence of controls:p(dt) =
{(u1, dt1), . . . , (un, dtn)}, wheredt =

∑
i dti. When a plan

p(dt) is executed at statex(t), a vehicle will follow thetra-
jectory: π(x(t), p(dt)). A trajectory is feasible, if it respects
the constraint functionsf andg from Eq. 1.

A state along trajectoryπ(x(t), p(dt)) at timet′ ∈ [t : t+dt]
is denoted asxπ( t′ ). When a vehicle executes a planp(dt)
from statex(t) and consecutively executes planp′(dt′), then
the resultingtrajectory concatenation will be denoted as:

π′( π(x(t), p(dt)), p′(dt′) ).

If two vehicles Vi, Vj at time t are not in collision with
each other or with obstacles, then their corresponding states
xi(t), xj(t) arecompatible states: xi(t) � xj(t).



Fig. 2. The operation that a single vehicle executes in two consecutive
planning cycles.

Two trajectoriesπi(xi(ti), pi(dti)) andπj(xj(tj), pj(dtj))
arecompatible trajectories (πi � πj) if the two trajectories
do not cause collisions with workspace obstacles and:

∀ t′ ∈ [max{ti, tj} : min{ti + dti, tj + dtj}] :

xπi(t′) � xπj (t′).

Compatible trajectories between vehicles may still lead to
an inevitable collision state from which a collision cannotbe
avoided in the future due to second-order constraints [18].A
statexi(t) is an Inevitable Collision State (ICS) given the
states{x1(t), . . . , xv(t)} if ∀ πi(xi(t), pi(∞)):

∃ (dt ∧ j 6= i) so that∀ πj(xj(t), pj(∞))
statesxπi(dt) andxπj (dt) are not compatible.

C. Problem Definition

Given the mapMi(t) and a state estimatexi(t + dt), the
motion planning module of each vehicleVi must compute
before time(t+dt) a planpi(dt′) so that given the trajectories
of all other vehiclesπj(xj(t + dt), pj(dt′)) (∀j 6= i):

• πi(xi(t + dt), pi(dt′)) � πj(xj(t + dt), pj(dt′))
• Statexπi

i (dt′) is not ICS.
Vehicle Vi can only communicate with vehicles in the set

Ni(t). A secondary objective for the planner is to refine the
quality of the selected trajectory given a measure of path
quality and a goalGi(t).

III. D ISTRIBUTED PROTOCOL FOR

SAFE, REAL-TIME MOTION PLANNING

There are two basic implementation choices in the proposed
approach. Motion coordination is achieved in a decoupled
manner. This feature distinguishes our approach when com-
pared against related work on planning for communicating
vehicles [19], where the vehicles forming a temporary dynamic
network solve a centralized problem. Moreover, the motion
planning and coordination operation of each vehicle are split
into two separate steps as shown in Fig. 2:

1) Generate Candidate Plans:During the first step, the
algorithm searches the state space of vehicleVi so as to
generate a set of candidate plansPi.

2) Select Compatible Plans: During the second step,
neighboring vehicles communicate by exchanging sets
Pi and evaluating their performance in terms of collision
avoidance and task execution.

For the plan generation step, sampling-based, kinodynamic
planners are particularly appropriate to search the state space
and produce multiple candidate valid plansPi that are at least
collision-free with the workspace obstacles.

For the plan selection step, the exchanged plansPi are
viewed as actions in a discrete action space. Two plans of
different vehicles are acceptable solutions if the corresponding
trajectories are compatible. Then the problem of distributedly
selecting compatible trajectories is reduced to a distributed
constraint optimization problem, for which message-passing
algorithms exist [23], [24].

A. Plan Generation: Sampling-based Planning

There are various alternatives on how to implement a
sampling-based, kinodynamic planner [13], [14], [15]. In Al-
gorithm 1 we present an abstract version of such algorithms.
The algorithm constructs a tree data structure (variableTree),
where nodes of the tree correspond to states and edges corre-
spond to trajectories. The tree is rooted at the statex(t + dt)
and sampling is used to propagate feasible trajectories into the
state space. The algorithms as described here searches the state
space of a single vehicle given only workspace obstacles and
ignores the effects of other vehicles. We will later show what
changes must be made so that collisions with other vehicles
are also avoided.

Algorithm 1 SAMPLING-BASED PLANNER
Tree ← Retain valid subset ofTree from previous cycle
while (time < PlanningBudget) do
{

Select a statex(t′) on the existingTree
Select valid planp(dt′) given statex(t′)
Forward propagate trajectoryπ(x(t′), p(dt′)
if (π is not collision-free with obstacles) then

Rejectπ
else

Add π to Tree
}

In our implementation we have followed an approach where
the expansion of the tree is biased so as to greedily expand the
data structure towards the goal while still providing the weak
completeness guarantees of sampling-based planning [15].
Since the algorithm is executed in a continuous replanning
loop, part of the tree data structure from the previous planning
cycle may still be valid in the beginning of a new cycle. The
valid part of the tree is retained as in many recent replanning
approaches [16], [17] to accelerate performance and improve
path quality. The planner is executed for a limited amount of
time (variablePlanningBudget, which should be less than
the total cycle durationdt) and then it is interrupted. At that
point we can extract fromTree all the trajectories that are
rooted at statex(t + dt) and which have durationdt. These
trajectories are by construction feasible and collision-free with
workspace obstacles. We store these trajectories as candidate
plansPi, for vehicleVi.



Fig. 3. A simple coordination graph, the action setsA1, A2, A3, the atomic
and pairwise payoffsf1, f2, f3, f12, f23 and the global utility functionu

B. Plan Selection: Message-Passing Protocol

After the plan generation step, each agent has a discrete set
of actions to select from. The objective of the path selection
step is to distributedly assign trajectories to vehicles sothat
there is no incompatible pair of trajectories and as a secondary
goal to select good quality trajectories. Such problems can
be modeled with coordination graphs [25] and can be solved
with distributed message passing algorithms based onbelief
propagation[22], such as themax-plusalgorithm [23].

In this formalization, we assume we haven agents, and
each agenti has to select an actionai out of a finite action
setAi. Generally the goal is to find the optimal action vector
a∗ = (a∗

1, . . . , a
∗
n) that maximizes a global utility function

u(a). The utility has a structure captured by a coordination
graph CG = (V, E). On every node ofCG we define
a function fi(ai) called atomic payoff. An atomic payoff
describes how well each action serves the goal of the agent
corresponding to that node. On the edgeseij of CG we define
pairwise payofffunctionsfij(ai, aj) that indicate how good
for the team are pairs of actions of interacting agents (see Fig.
3 for an example). The global utility is assumed to depend only
on the unary and pairwise payoff functions as follows:

u(a) =
∑

i

fi(ai) +
∑

eij∈E(CG)

fij(ai, aj)

Max-plus is a distributed message passing algorithm that
attempts to compute an optimal action vector using only local
computations and communication for every agent. While the
algorithm is running, each agenti chooses a neighboring agent
j on CG, collects and adds all incoming messages from other
agents in its neighborhood, and sends a new message toj that
is computed by the following formula:

mij(aj) = max
ai

{fi(ai) + fij(ai, aj) +
∑

k∈N(i),k 6=j

mki} (2)

At any time during the execution, the agents can compute a
marginal function gi(ai) = fi(ai) +

∑
k∈N(i) mki. Maximiz-

ing gi provides the best possible actiona′
i for agenti with

respect to messages from other agents.u(a′
1, . . . , a

′
n) is an

approximation to the optimalu.

Fig. 4. (left)A coordination graph for 10 vehicles. (right)Safety assumption

In order to adapt this formulation in our framework, each
vehicle can be viewed as a node in the coordination graph
CG (see Fig. 4(left)). Two nodes share an edge in the graph
if the corresponding vehicles can communicate or if they can
potentially collide. We want to avoid, however, the case where
two vehicles can end up in inevitable collision states before
they have time to communicate. That is why we impose a
maximum velocity limit that depends on the duration of the
replanning cycle and the communication range. This limit
must guarantee that two non-communicating vehicles which
move with maximum speed one towards the other will have
enough time to communicate, select contingenecy plans and
stop before colliding. This scenario is described in Fig. 4.
Given the velocity limit, the edges of CG correspond to pairs
of vehicles that can communicate during the entire cycle.

The discrete set of actions of the max-plus algorithm
corresponds to the set of candidate plansPi. The atomic
payoffsfi(pi), wherepi ∈ Pi can be computed by evaluating
how close each trajectory takes vehicleVi to its goalGi. In
the evaluation of the pairwise payoffs we must also express
whether two trajectories are compatible or not:

fi(pi(dt), pj(dt)) = −∞ if

πi(xi(t + dt), pi(dt)) 6� πj(xj(t + dt), pj(dt)) (3)

where pi ∈ Pi and pj ∈ Pj . If the two planspi and
pj are compatible then the pairwise payoff can be assigned
a positive value that depends on other properties that are
required to be optimized. Consequently, it is necessary before
the coordination step for the neighboring vehicles to exchange
the sets of candidate plans so as to compute the pairwise payoff
functions.

The pairwise payoffs can be computed in a distributed
way that balances the burden among vehicles. Each vehicle
computes one row for every pairwise payoff matrix that it
is involved in, in a cyclic order. Then each vehicle transmits
this row to its neighbors. In the computation offij if i ≤ j
then i computes rowsr1, r2, . . . and j computes in reverse
rmax, rmax−1, . . . , until the whole array is completed. In this
way, a vehicle that has many neighbors is not overwhelmed
and its computational overhead is outsourced to neighbors with
a smaller number of payoff matrices to compute.



C. Achieving Safety

The two step approach we have described so far is a
distributed search technique, which has no guarantee of finding
compatible plans. It can actually fail for multiple reasons:

1) Imposing time limitations on sampling-based planners
may result inPi being empty even if there is a solution.

2) The cycle may be completed before vehicles have
enough time to exchange and evaluate plans.

3) Compatible trajectories may exist but they may not
have been produced because decoupled coordination is
incomplete [20].

4) Max-plus is also incomplete whenCG is not a tree.
Although it converges quickly to a near-optimal solution
[23], incompatible pairs may still be selected.

5) The approach so far does not address the issue ofICS.

All these safety concerns can be dealt with, if every
vehichle has available in the beginning of every planning
cycle a contingency planγ(∞) that avoids collisions with the
environment and other obstacles. For example, for systems
with second order dynamics and static workspace obstacles,
a contingency plan can be a breaking maneuver that brings
a vehicle to a complete stop. In [21] a theoretical study of
avoidingICS in the case of multiple communicating vehicles
by using contingency plans can be found. That paper describes
the following sufficient requirements so as to guarantee the
existence of a contingency plan in the beginning of every
replanning cycle:
Requirement 1: The concatenation of a planpi(dt) with a
contingency planγi(∞) must be collision-free with respect to
workspace obstacles:

π′( π(x(tn), pi(dt)), γi(∞) ) is collision-free. (4)

Requirement 2: The concatenation of planpi(dt) with a
contingency planγi(∞) must be compatible with the current
contingency plansγj(∞) of other vehicles:

∀j 6= i : π′
i( πi(xi(tn), pi(dt)), γi(∞))

� πj(xj(tn), γj(∞)) (5)

Requirement 3: The concatenation of selected planpi(dt)
with a contingency planγi(∞) must be compatible with the
concatenations of selected planspj(dt) of other vehicles with
their contingency plansγj(∞):

∀j 6= i : π′
i( πi(xi(tn), pi(dt)), γi(∞))

� π′
j( πj(xj(tn), pj(dt)), γj(∞)) (6)

These requirements are directives that decribe what kind
of information needs to be exchanged between vehicles, and
how the selection of future plans must be done. The first
two requirements make sure that the planner will produce
plans that respect the other vehicle’s contingencies. The third
requirements ensures that the contingency plans attached to
selected plans (as in Eq. 6) are also compatible. In [21] an
inductive proof is provided that shows that if the requirements
are satisfied then the vehicles will be moving safely. In that

work the coordination step is achieved with a priority-based
scheme, while in the current work we show a fully distributed
approach that does not use priorities. These requirements,
however, do not depend on the planning algorithm or the
coordination scheme used. In this work we have extended the
previous contribution [21] by showing that the full scheme
does not depend on a prioritized scheme for coordination,
but that it can be also implemented with a fully distributed
message passing protocol.

D. Algorithm

We describe here how we the overall proposed protocol can
satisfy the requirements in a distributed way. The algorithm is
provided in pseudocode in Algorithm 1.

To satisfy the second requirement, each vehicleVi must
be aware of the contingency plans of neighboring vehicles
Vj at statex(t + dt). These contingency plans have already
been computed by eachVj during the previous step. This
information can be communicated at the beginning of each
cycle between neighbors. After exchanging contingency plans,
the sampling-based, kinodynamic planner is invoked. The
planner now not only produces collision-free trajectoriesfor
durationdt but also avoids ICS with obstacles (Eq. 4). The
planner considers as colliding all the trajectories that intersect
the contingencies of other vehicles to satisfy Eq. 5.

Next, the set of candidate plansPi is constructed from
Tree. For each plan in this set, the corresponding contingency
is attached to it and the unary payofffi(pi) is evaluated.
Then, neighboring vehicles exchange their candidate plansand
compute pairwise payoffs. Instead of using Eq. 3, however,
for defining incompatibility, we must use Eq. 6, which takes
the concatenation with contingency plans into account. Given
the definition of unary and pairwise payoffs the asynchronous
message-passing protocol is initiated and the vehicles start
exchanging messages. When the algorithm runs out of time,
vehicle transmit to their neighbors their final action selections.
Max-plus is incomplete, so if two neighboring vehicles have
selected incompatible trajectories then one of the two vehicles
switches to the contingency plan. This is a very fast adjustment
step, which guarantees that the third requirement is always
satisfied. In the experiments section we show that the cases
where max-plus has to resort to the contingency plan are fewer
compared to priority-based schemes.

The secondary goal is to find among the safe solutions
one that maximizes the global utilityu, within the allocated
amount of time. Because the algorithm does not monotonically
increase the global utility, it must periodically computeu
and keep track of the action vector that produced the max-
imum value. However, no single agent has all the available
information to computeu. In order to achieve an efficient,
distributed computation of the utility we use a minimum
spanning tree ofCG. There are asynchronous distributed
protocols for computing minimum spanning trees on graphs
using local information such as the distance between agents
[26]. Given the minimum spanning tree structure, an arbitrary
vehicle acting as a root of the tree initiates the process:



Algorithm 2 DISTRIBUTED, SAFE PLANNER
Identify set of neighborsNi

(Exchange contingencies)
for all j ∈ Ni do

Send contingencyγi(∞) to Vj

Receive contingencyγj(∞) from Vj

(Planning: respects Req. 1,2)
Tree ← Retain valid subset ofTree from previous cycle
while (time < PlanningBudget) do

Select a statex(t′) on the existingTree
Select valid planp(dt′)
Propagate trajectoryπ(x(t), p(dt′)
if ( (π(π(x(t), p(dt′), γ(∞)))) is not collision-free) then

Rejectπ
else

for all j ∈ Ni and whileπ not rejecteddo
if ( π(x(t), p(dt′)) 6� πj(xj(tn), γj(∞)) ) then

Rejectπ
(Evaluate and exchange candidate plans)
Pi ← plans of durationdt from Tree
for all pi ∈ Pi do

Attach contingency planγi(∞) to pi(dt)
Evaluate unary payofffi(pi) for pi ∈ Pi given Gi

for all j ∈ Ni do
Send setPi to Vj

Receive setPj from Vj

(Take Req. 3 into account)
for all pi ∈ Pi do

for all pj ∈ Pj do
if (π′

i(πi(xi(tn), pi(dt)), γi(∞)) �
π′

j( πj(xj(tn), pj(dt)), γj(∞)) then
Compute payofffij(pi, pj) given the goalsGi, Gj

else
fij(pi, pj) = −∞

(Coordination)
Enter into asynchronous message-passing to optimize:
u(p) =

∑
i fi(pi) +

∑
eij∈E(CG) fij(pi, pj)

Stop protocol before timet + dt
Select planpi that maximizedu(p)
for all j ∈ Ni do

if (pi incompatible withpj) then
Select contingencyγi as the next action

Down passThe root transmits a signal to computeu. Each
node passes the signal down the tree.
Up passEach nodei:

1) Collects partial payoff values and actions from children.
2) Maximizes marginalgi and chooses best actionai.
3) Adds its contribution to the global payofffu.
4) Sends new partial payoff and actions to its parent.

Down pass The root adds up all partial payoffs so as to
compute and maximizeu. The optimal value ofu∗ and actions
a∗ are transmitted down the tree.

This computation is fast since the utility computation mes-
sages can be interleaved with normal max-plus messages [23].

Fig. 5. Two snapshots of 16 vehicles exploring the labyrinthenvironment,
while retaining a vehicular network.

E. Extension to Vehicular Networks

So far we have assumed that the vehicles execute tasks
which do not require from the vehicles to retain a commu-
nication network. However, the same framework can be used
to produce trajectories that also provide safety guarantees in
terms of network connectivity. This can be easily achieved
by considering as incompatible every pair of trajectories that
breaks a communication link. In order to take the second-order
dynamic constraints into account, we must also check that the
concatenation of the trajectories with contingency plans also
retains the communication link similarly to Eq. 6.

Yet, trying to maintain all the communication links is
overly constraining. It is enough to try and maintain the
edges in a minimum spanning tree of the communication
graph. The minimum spanning tree structure can be computed
distributedly in the beginning of each cycle [26]. In this case,
only communication links along the minimum spanning tree
are required to remain connected. If only a spanning tree of
the communication graph is retained during each step, then the
network is able to change the topology of its communication
graph so as to adapt to its workspace.

IV. EXPERIMENTAL RESULTS

Setup: We tested our algorithm on a distributed simulator that
we developed and ran on an XD1 Cray cluster. The planner for
each vehicle is running on a different processor and operates
under time limitations imposed by a server that simulates
ground truth. All data exchange is done via simple send and
receive messages using sockets.

The simulated vehicular networks have been tested in three
different environments.RoomsandRandomare seen in Fig. 6.
The first represents a structured environment with rooms and
corridors, while the second is an unstructured environment.
Labyrinth (Fig. 5) is a difficult scene that contains multiple
narrow passages. Two types of vehicles have been tested, car-
like robots, for which the dynamic equations are shown in

Fig. 6. The state update equations for the car-like vehiclesand scenes
“rooms” and “random”.



Req 1 Req1 & Req2 Req1 & Req3 All Requirements
Nr Vehicles 1st failure (sec) success % 1st failure (sec) success % 1st failure(sec) success % 1st failure(sec) success %

2 287.10 10% 293.25 37.37% 113.10 0% N/A 100%
4 21.00 0% 141.07 12.00% 21.53 0% N/A 100%
8 3.67 0% 24.16 0% 4.31 0% N/A 100%
16 3.00 0% 23.10 0% 3.00 0% N/A 100%

TABLE I
PROBABILITY THAT NETWORKS OF CAR-LIKE VEHICLES SUCCEED TO EXPLORE WHEN DIFFERENT REQUIREMENTS ARE MET.

Fig. 6, and differential drive robots with bounded acceleration.
The car-like robots obey velocity bounds :|V | ≤ 3.5m/s, and
acceleration bounds:α ≤ 0.8m2/s as well as steering bounds:
|s| ≤ 1deg/m, |t| ≤ 4deg/s. Vehicles have limited sensing
and communication ranges. For contingencies, deacceleration
maneuvers were used. The framework allows for plugging in
other types of dynamics and having different contingencies.

We present here results from an application that combines
many of the constraints we are interested in testing our
algorithm. The vehicles have to solve a coordinated explo-
ration task while retaining a network and avoiding collisions.
They are initially located at the bottom left corner of the
environment, close one to another, but at collision-free states
forming a network with a single component. During each
replanning cycle a simulated model builder and a task planner
transmit to the vehicles the updated map and set of goals. The
goals correspond to frontiers of the unexplored space and are
assigned greedily so that large frontiers which are close to
vehicles are being considered first. Experiments with up to 32
vehicles have been conducted.

We compare the max-plus algorithm against a simpler prior-
itized scheme described in more detail in [21]. In that scheme,
the vehicles have unique global priorities. The planning step
is the same as here. For the plan selection, each vehicle
receives the choices of higher priority vehicles and then tries
to choose its own plan so that it is compatible the higher
priority neighbors. If no such plan exists, the vehicle chooses
the contingency plan. At last the vehicle transmit its selection
to its lower priority neighbors.
Feasibility: Table I exhibits the importance of the safety
requirements in decoupled replanning. We measure the time
(in seconds), that the vehicles can move without colliding with
each other when Requirements 2 and/or 3 (those necessary for
safe multi-vehicle planning) are relaxed. The numbers reported
show the time at which the first collision or loss of network
connectivity occurs. The problem is so constrained for multiple
vehicles, that often collisions cannot be avoided past the 2nd
replanning loop. The results are averaged out of10 runs and
are shown in columns labeledfailure. If either one of the two
requirements is absent, the vehicles cannot avoid collisions
with each other. When all requirements are enabled, then as
expected, there is no failure. The columns labeledsuccess,
measure the percentage of successful exploration of the whole
space without collisions. As we see, for small teams of2 or 4
vehicles, there were some cases where the vehicles completed
the task without one or both of the requirements. This is to
be expected since the chances of an encounter are lower for
such small teams.

Fig. 8. Scalability results for three scenes: Random, Rooms, Labyrinth. Left:
DD robots, Right: Car-Like robot

Contingency Plans:One important advantage of the max-plus
algorithm is that it avoids the use of priorities in coordination.
In priority-based schemes, lower priority vehicles are overly
constrainted by the choices of higher priority agents. This
may lead to frequent selection of contingency plans. We have
experimented in scenesLabyrinth and Roomsfor networks
with 16 and 32 vehicles. Table II presents the number of
times contingencies were selected using the simple prioritized
scheme and max-plus. For32 vehicles, max-plus chooses
contingency plans considerably fewer times. Additionally, the
results from the prioritized scheme have higher variation
between different scenes and team sizes, while max-plus is
much more consistent.
Scalability: The scalability properties of the algorithm are
presented in Fig. 8, which provides the average running times
(10 runs per case) to complete exploration in the three scenes
for car-like and DD vehicles. Increasing teams size from
2 to 16 results in 5 to 6 times faster exploration. This is
a very encouraging result given that the simulated systems
are very constrained, both due to network and kinodynamic
constraints. Moreover, there is no significant variation inthe
performance of the algorithm when applied to systems with
different dynamics.
Performance and Parameter Dependence:Fig. 7(left) shows
the average activity profile of a vehicle during each cycle.
The algorithm utilizes most of the replanning cycle in useful
computations but the payoff computation takes up a non-
trivial amount of time. In the selection step, max-plus does
not let the processor idle, and in most cases is able to find an
optimal or near optimal solution. The latter is confirmed by

Rooms Labyrinth
16 32 16 32

Prioritized 3.61 % 24.5 % 1.35 % 8.42 %
Max-plus 0.98 % 2.26 % 3.04 % 4.84 %

TABLE II
AVERAGE PERCENTAGE OFCYCLES THAT Vi EXECUTES CONTINGENCY.



Fig. 7. Average activity profile during a cycle (left) and dependence on (from second to forth):CYCLE_DURATION, PLAN_TIME, and maximum
communication range.

the second figure where we see the probability of executing
contingency plans as a function of the portion of the planning
cycle allocated to the motion planner (PLAN-TIME). This
probability is very low (0.7 − 1.5%). Moreover, there is an
optimum value at around55%. For smallPLAN-TIME, the
planner has little time to produce enough plans, while for
larger ones max-plus has not enough time to make a selection
and the contingency is selected for safety reasons. The third
figure shows that increasing the duration of the planning cycle
can result in performance deterioration. The last figure shows
that as the communication range increases, four vehicles finish
the exploration faster, which is expected.

V. CONCLUSIONS

This paper presents a novel integration of sampling-based
planners with message-passing protocols for the distributed
solution of planning problems that involve vehicles with dy-
namic constraints. It extends work on safe, real-time sampling-
based planning to the case of multiple communicating ve-
hicles. The method provides safety guarantees in terms of
collision avoidance as well as in terms of retaining a connected
communication network. The algorithm has been implemented
on a distributed simulator and the results on vehicles with
acceleration constraints confirm the safety properties of the
approach in a worskspace exploration application. A compar-
ison over priority-based schemes shows that the distributed
protocol offers improved scalability.

The proposed method allows for plugging in other types of
dynamic constraints and can also be integrated with higher-
level approaches for distributed task assignment and dis-
tributed state estimation. Two important directions for improv-
ing the current framework is to study the effects of sensing
uncertainty and limited communication reliability. We hope to
address these issues and possible extensions in future work.
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