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Abstract—Path planning for mobile robots is a well researched
problem for over three decades. In this paper, we test and evaluate
a new approach based on Shi and Karl Level Sets for mobile
robot path planning. The evolution speed of these level sets is
the fastest available implementation of level sets till date that
prompted us to test the algorithm in the path planning domain.
Level Sets have the advantage that they can support multiple
robots and multiple goals in a single framework. This approach
is similar to the Pixel Level Snakes but much faster and the
resulting paths are different for some obstacle courses using
these two approaches. To keep experiments simple we consider a
holonomic point robot moving amidst stationary obstacles. The
visual results presented in this paper are preliminary and tested
in simulations only.

I. INTRODUCTION

Path planning for mobile robots is a well researched
problem for over three decades. Solutions to path planning
problems broadly involve either direct optimization based or
heuristics based approaches. Most of the practical applications
require a process that produces a reasonable result with the
cost of the solution increasing with longer solve time. Very
rarely, if ever is the globally optimal path ever required in
practice.

Global path planning takes into account all the information
in the environment whereas local path planning (reactive)
algorithms are designed to avoid obstacles within a close
vicinity of the robot. In this only information from on-board
sensors and nearby obstacles is used.

The goal of path planning is to compute a collision free
path between two configurations of a given robot. At a broad
level, prior algorithms for path planning can be classified into
roadmap methods, exact cell decomposition, approximate cell
decomposition, potential field methods, randomized sampling-
based methods etc. [1][2][3][4][5][6][7].

Recent work on robot path planning include [8] where
the author has compared the three path planning approaches
which include the older A* path planning [9] and the Distance
Transform approach [10] and the newer Rapidly Exploring
Random Trees (RRT) approach [11].

The paper is organized as follows. Section 2 discusses
related research in global path planning methods that use
level sets or marching propagating interface. Section 3 defines
the Karl and Shi level sets that we will use for the path

planning problem. In section 4 we present our results of the
path planning experiments on different obstacle courses. Few
application scenarios are detailed in section 5. We give our
conclusions and some directions for proposed future work in
section 6.

II. RELATED RESEARCH

Jahanbin and Fallside [12] first introduced a wave propa-
gation algorithm in the Configuration Space on discrete maps
(Distance Transform). The distance transform is similar to a
wave front expansion [13] where all the free cells take on the
lowest value of their neighbour cells increased by one. Another
novel approach to the problem of findpath using distance
transforms was presented by [14]. This approach considers
path planning to be finding all paths from the goal location
back to the start location. This planning approach propagates
a distance wave front through all free space from the goal.
From any starting point in the environment the shortest path
to the goal is traced by following path of steepest descent.
If no downhill path exists then we can conclude the goal is
unreachable. Despite the disadvantage of computing all paths
from the goal location the distance transforms have a number
of advantageous properties. They can support multiple robots
and multiple goals in addition to supporting different types
of findpath. For example paths which favour or avoid certain
areas in the environment and paths of complete coverage of
the environment. In [15], the author reported work that is also
similar to distance transforms. A grid representation was used
where each grid cell stores the lowest cost to the goal. From
the grid a circulation map is derived which is represented with
gradient fields to show all paths to the goal. Both the [14]
and [15] approaches suffer the “too close” problem since they
only consider the shortest path to the goal.

In [16], an extension to the distance transform called the
“path transform” was presented. Using the path transform
approach to findpath, instead of propagating a distance wave
front from the goal, another wave front is propagated which
is a combination of the distance from the goal together with
a measure of the discomfort of moving near obstacles. This
has the effect of producing a distance transform which has the
properties of potential fields without local minima.
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In [17], the authors present a dynamic wave expansion neu-
ral network (DWENN) model for path generation in a dynamic
environment for both mobile robots and robotic manipulators,
the model is parameter-free, and its complexity does not
explicitly depend on the dimensionality of the configuration
space.

In [18], path planning for robots was studied using level
sets where there were objects to be avoided in the domain.
The method of solution was to construct a weighted distance
function over the entire domain and then, from a final position,
back propagate the solution perpendicular to the level sets of
the distance function, resulting in an optimally shortest path.

In [19], the authors use the level sets to determine both
the shortest as well as the paths with the minimum costs.
They extended this approach in [20], where they propose a
robust path planning method comprising of two wave fronts
traveling at different speeds. The first front propagates with a
moderate speed to capture the map topology, while the second
one propagates much faster at medial points such that the
safest paths intersect the propagating fronts at those points of
maximum positive curvature, which are identified by solving
an ordinary differential equation (ODE). The motion of the
front is governed by a nonlinear partial differential equation
(PDE). There is a tuning parameter α by which planned paths
can be made safer or shorter. No values for the speed of
evolution of the wave fronts or the no. of iterations to reach
the goal are given.

In [21] the path planning problem has been solved as the
problem of visibility that involves the determination of regions
in space visible to a given observer when obstacles to that sight
are present. When the observer is replaced by a light source
in the simplified geometric optics without reaction setting, the
problem translates to that of finding illuminated regions.

In [22], a novel approach for solving the shortest path
problem in 2D binary labyrinths based on cellular neural
network (CNN) computation is proposed. Pixel level snakes
(PLS) are a topographic and iterative active contour technique
based on a pixel level discretization of the contours and on a
massively parallel processing on every contour cell. According
to this strategy, a labyrinth under study is explored by a
traveling wave with constant speed initiated at the source point
in such a way that the wavefront evolving along the shortest
path will reach the target point without collisions. Any waves
initiated at a junction located on the shortest path will reach
the end of the branch or collide with other wave(s). In order to
obtain the shortest path the paths are cut at the collision points
destroying the closed loops. Finally, all branches are pruned
in such a way that if there is a unique solution the result will
be the shortest path. The PLS approach is the closest to our
approach in terms of the shortest path found.

III. PROPOSED METHODOLOGY

The path planning problem is solved by first initializing the
level set from the point which is the starting point of the robot.
The level set is originated from this point and the wave front
is propagated until it has reached the goal or the whole of the

obstacle course has been covered. We find the shortest path
by finding the shortest path backwards between two iterations
of the level set and finally to the starting point of the level set.

A. Shi and Karl Level Sets

The level set method, originally introduced by Osher and
Sethian [23] is a general framework for the computation of
evolving interfaces using implicit representations. We refer
the interested reader to the monograph by Osher and Fedkiw
[24] for a general introduction to the level set method and an
overview of applications in several areas. The Shi and Karl
level sets [25] implementation does not involve solving for
the ODEs and PDEs that arise in the level sets domain. They
demonstrate that their algorithm is approximately two orders
of magnitude faster than even the optimized narrow band level
set [26] algorithm for image segmentation tasks. The speed of
these level sets is what prompted us to test the algorithm in
the path planning domain.

In their implementation the object boundary is represented
uniquely by two 1-pixel wide lists of points, Lout and Lin.
Lout and Lin are formally defined as follows:

Lout = {x | φ(x) > 0 and∃y ∈ N(y) s.t. φ(y) < 0} (1)

Lin = {x | φ(x) < 0 and∃y ∈ N(y) s.t. φ(y) > 0} (2)

where N(x) is a discrete 4-neighborhood of x.
The propagation of the wave is obtained by addition,

deletion or switching of the point x between Lout and Lin.
The interested reader is referred to the paper of Shi and Karl
[25] for the implementation details.

IV. EXPERIMENTS

The path planning problem is solved by first initializing the
level set from the point which is the starting point of the robot.
In this, the starting point becomes the central pixel which is
the only pixel in Lin and the 4-neighbors are put in Lout.
The wave front is propagated until it has reached the goal or
the whole of the obstacle course has been covered. In normal
level sets, the shortest path to goal from any starting point
in the environment is traced by following path of steepest
descent. We find the shortest path by finding the shortest path
backwards between two iterations of the level set and finally
to the starting point of the robot.

We highlight the difference between the normal level sets
and the Shi and Karl level sets by an example. Fig. 1 shows the
expanding wave front of normal level sets and Fig. 2 shows the
Shi and Karl level sets for the same problem. The normal level
set also takes into consideration the curvature of the expanding
wave front and hence is slower but accurate description of the
flow than the Shi and Karl level sets.

Fig. 3 shows 7 robots converging on a pre-defined goal
point. Please note here that we need only one level set starting
from the goal point for all the robots to find their way back to
the goal. Another way to extend the overall approach is to pre-
define “way points” which the user wants the robot to visit.
The robot can be made to visit the way points by initiating



Fig. 1: Expanding wave front of Level Sets

Fig. 2: Expanding wave fronts of Shi and Karl level sets (every
10th iteration is shown) for Fig. 1

the level sets from the starting point until it reaches the next
way point. Different level sets have to be initiated at each way
point for this to accomplish. In general, we need N − 1 level
sets for N way points. The result for this is shown in Fig. 4.

V. APPLICATION SCENARIOS

We detail few application scenarios where our work will
be helpful. The multi robot rendezvous problem [27]; the
context of the rendezvous is an unknown environment, with

Fig. 3: Multi robots converging to a single goal

Fig. 4: Robot traveling through pre defined way points

Fig. 5: Multi robots emerging out of obstacles and converging
on the goal

no shared spatial information between agents, and there is
no communication until rendezvous. This problem can be
separated into two separate sub-problems. The first is how
to select points in the environment for potential rendezvous.
The second subproblem that can greatly help from our work is
how to reach the potential rendezvous point once it has been
identified and selected. A practical application of our approach
can be in the future battle field scenario where a flying robot
is helping multiple ground robots to converge and attack. We
extended the level sets approach to also include the scenario
where a robot is stuck inside the obstacle. In this case, the
robot first moves out of the obstacle. The path it takes inside
the obstacle is the minimum path to the nearest level set. Once
the robot comes out of the obstacle, it then moves towards the
goal point as shown in Fig. 5. In this figure, robots 1–5 are
stuck in the obstacle and manage to meet at the goal point.

Another area where our approach can be useful is in the
domain of circuit path planning for PCBs layout and VLSI
designing. Lee [28] presents a good survey for techniques
available for rectilinear path planning among rectilinear ob-
stacles. Mitchell [29] proposes an approach called 45 degree
wave front propagation that is very similar to our approach.
Applying the Shi and Karl level sets to this domain will
certainly make the process faster. Fig. 6 shows the rectilinear



Fig. 6: Way Points in rectangular Domain

paths obtained with the help of way points.

VI. CONCLUSIONS AND FUTURE WORK

Shi and Karl Level Sets are the fastest approximate im-
plementation of the Level Sets as proposed by Osher and
Sethian [23]. In this paper, we investigated the possibility
of use of these Level Sets for multi-robot path planning in
simulated environment. The algorithm was successfully imple-
mented in a computer simulation, demonstrating its speed and
efficacy. From our implementation we conclude that these level
sets are the fastest available implementation of the level sets
but cannot be directly applied for solving the path planning
problem for obtaining optimal paths. We will next consider
their implementation using circular level sets. However, the
Shi and Karl level sets can be used as a preliminary simple
test to check for path non-existence for a robot among static
obstacles. This can be of use to randomized sampling methods
such as probabilistic roadmap planners (PRMs) as they do not
terminate when there is no collision-free path.

We have used Level Sets instead of fast marching method
because the propagation wave can travel in both inward as
well as outward direction, this property of the level sets will
be later exploited for path planning in the domain of moving
and movable obstacles. Fast marching methods wave can travel
in only one direction. Finally, the algorithm will be ported to
robots and tested in real world.
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