
VCGG: A Varying Cone Distributed Topology-Control
Algorithm for Wireless Ad Hoc Networks ∗

Jianxin Wang,Yuhong Luo,Jiawei Huang
School of Information Science

and Engineering,
Central South University

Changsha,China
{jxwang,yhluo,jwhuang}@mail.csu.edu.cn

Xi Zhang†
Networking and Information Systems Labs.

Dept. of Electrical and Computer Engineering
Texas A&M University

College Station, TX 77843, U.S.A.
xizhang@ece.tamu.edu

ABSTRACT
In order to increase node lifetime and system throughput,
the topology of wireless Ad Hoc networks can be controlled
by changing the transmission power at each node. In this
paper, we propose an energy-efficient distributed topology-
control algorithm, Varying Cone on Gabriel Graph (VCGG).
By selecting logical neighbor nodes through deleting the far-
thest node, VCGG builds a degree-bounded, power spanner
and planar sub-graph using the merits of a varying cone.
The simulation results show that our proposed VCGG out-
performs the existing SΘGG and SYaoGG algorithms in
terms of power efficiency, the number of communication
neighbors and interference reduction.

1. INTRODUCTION
Wireless Ad Hoc networks have received much attention in
recent years due to their potential applications, such as the
emergency disaster relief. Nevertheless, the limited battery
power characteristic of wireless Ad Hoc networks limits the
lifetime of wireless devices and the networks. A communi-
cation session is achieved either through single-hop trans-
mission if the recipient is within the transmission range of
the source node, or by relaying through intermediate nodes
[1,2]. For the purpose of energy conservation, each node in
a wireless Ad Hoc network can change the network topology
by adjusting its transmission range and/or selecting specific
nodes to forward its messages, controlling its neighbor set.
The primary goal of topology control in wireless Ad Hoc
networks is to maintain network connectivity, prolong net-
work lifetime, and increase throughput, and thus achieve
power-efficient routing [3,4].
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To simplify the problem, we make the following assumptions:

(1) Each node has an omni-directional antenna and a single
transmission of a node can be received by any node within
its vicinity which is a disk centered at this node.

(2) Each node knows its location information.

(3) The nodes are quasi-static for a period of time.

(4) In the power-attenuation model [5], the signal power
falls as γβ , where γ is the distance between the source and
destination, and β (2 ≤ β ≤ 4) is a real constant dependent
on the wireless environment. The transmission range is large
enough such that the emission power is the major component
and the receiving power is negligible.

Based on these assumptions, the topology-control problem
is formulated as follows:

A graph UDG(V ) (Unit Disk Graph), briefly UDG, is com-
posed of a set V with n nodes. Each node is randomly
located in the plane and has maximum transmission power
of 1 unit, i.e., G = (V, E), E = {(u, v) | ||uv|| 6 1}, where
‖uv‖ denotes the Euclidean distance between nodes u and v.
Our goal in performing topology control is to find an undi-
rected subgraph G′ of G, such that G′ consists of all the
nodes in G but has fewer edges. G′ satisfies the following
properties:

(1) If G is a connected graph, G′ is still a connected graph.

(2) t-spanner: G′ has a stretch factor t if and only if for any
link u, v ∈ G, pG′(u, v) ≤ t · pG(u, v), where pG(u, v) is the
total power consumption of the shortest path between u and
v in G. The G′ is called a t-spanner of the G and t is the
power stretch factor. If we use length instead of power in
pG(u, v), t is the length stretch factor.

(3) Degree Bounded: the degree of G′ is small and bounded
by a constant, i.e. {degree(v) | degree(v) ≤ c, ∀v ∈ G′} ,
where c is a small constant. A small node degree reduces
the MAC-level contention and interference, it may also help
to mitigate the well known hidden and exposed terminal
problems [6,7].

(4) Planar: there are no edges crossing each other. This
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enables several localized routes, such as GPSR [8], GOAFR
[9], to be performed on top of this structure to guarantee
the packet delivery without a routing table.

The rest of the paper is organized as follows. Section 2 de-
scribes the related works. Section 3 proposes the VCGG
algorithm and characterizes its properties. Section 4 eval-
uates our proposed VCGG algorithm and compare it with
the other existing algorithms through simulations. The pa-
per concludes with Section 5.

2. RELATED WORKS
Several geometrical structures have been studied recently
both by computational geometry scientists and network en-
gineers [10]. The relative neighborhood graph(RNG) [11]
consists of all edges uv such that there is no point w ∈ V
with uw and wv satisfying ‖uw‖ < ‖uv‖ and ‖wv‖ < ‖uv‖.
The Gabriel graph (GG) [12,13] contains an edge uv from
G if and only if disk(u, v) contains no other vertex w ∈ V
inside, where disk(u, v) is the disk with edge uv as a diam-
eter. The Yao graph (Y Gk) [14], in which at each node u,
any k equally-separated rays originated at u define k cones.
In each cone, we choose the shortest edge −→uv, if there is one,
and add a directed link. Ties are broken arbitrarily or by
the smallest ID. The final directed graph is called the Yao
graph.

Bose et al. proposed a centralized method, Cdel, with run-
ning time O(n log n) to build a degree-bounded planar span-
ner for a two dimensional point set [15]. It has been noted
in [10, 16-20] that the distributed algorithms are more suit-
able for wireless Ad Hoc networks because a centralized al-
gorithm needs global knowledge, which may introduce high
communication overhead especially in large scale networks.

Wang and Li proposed the first efficient localized algorithm
to build a degree-bounded planar spanner BPS for wireless
ad hoc networks [18]. Its theoretical bound on the node
degree, however, is a large constant and the communication
cost of their method is high due to the collection of 2-hop
information for every wireless node. In [20], a distributed
algorithms is proposed to construct a degree-bounded planar
structure of both RNG and GG.

Song et al. proposed two methods OrdYaoGG and SYaoGG
to construct degree-bounded power spanner, by applying the
ordered Yao structures on the Gabriel graph [19]. They
achieved better performance with much lower communica-
tion cost, compared with the method in [18]. SYaoGG costs
3n messages for its construction, and guarantees that there
are at most one neighbor node in each of the k = 9 equal-
sized cones.

Li et al. proposed SΘGG to further reduce the medium
contention than SYaoGG by selecting fewer communication
neighbors and more widely θ-separated neighbors [10]. SΘGG
does not rely on the absolute cone partition by adopting the
θ-separated and has a smaller average node degree, interfer-
ence and transmission range than SYaoGG.

Li et al. also proposed the Cone-based Topology Control
(CBTC) algorithm to decrease the node transmission power
and maximum node interference [17]. Basically, it is similar

to the Yao structure for topology control. The traditional
Yao structure has the constant k cones, but the number of
cones that could be considered in CBTC is 2n.

Table 1 shows that SΘGG has preferable metrics in the
power spanner, degree bound and planar than prior algo-
rithms. However, the simulation results in [10] show that
both SΘGG and SYaoGG did not efficiently decrease the
node transmission power and the maximum node interfer-
ence compared to Gabriel graph.

In this paper, we propose an energy-efficient distributed
topology-control algorithm, Varying Cone on Gabriel Graph
(VCGG). Using a new mechanism for selecting logical neigh-
boring nodes by first deleting the farthest node, the VCGG
algorithm builds a degree bounded, power spanner and pla-
nar subgraph by using the merits of the varying cone.

Table 1: The Characteristics of Current Approaches

t-spanner Degree Planar Cost
Bounded

RNG n− 1 n− 1
√

O(n)
GG 1 n− 1

√
O(n)

YG 1
1−(2 sin π

k
)β k, n− 1 O(n)

Cdel* (1 + π)Cdel, 27
√

O(n2)

Cdel ≤ 4
√

3π
9

BPS* max(π
2
, π sin α

2
+ 1)· 19 + d 2π

α
e, √

O(n)
Cdel(1 + ε) 0 < α < π

3

SYaoGG ρ = (
√

2)β

1−(2
√

2 sin π
k

)β k
√

O(n)

SΘGG ρ = (
√

2)β

1−(2
√

2 sin π
k

)β k − 1
√

O(n)

*Use length stretch factor, where n is the number of nodes
and k is the number of equal-sized cones

3. VCGG ALGORITHM
3.1 The selection of the varying cone
The varying cone of the VCGG algorithm uses the concept
of θ-Domination Region, in the definition given below we
follows the one given in [10].

Definition 1 θ-Domination Region: For each neighbor node
v of a node u, the θ-domination region of v is the 2θ-cone
emanated from u, with the edge uv as its axis.

We use firstly deleting the farthest node (FDFN) to select
logical neighbors on a Gabriel graph as follows:

(1) Each node u, assuming it has some BLACK logical neigh-
bors in GG (a node is marked BLACK if it is processed and
is marked WHITE if it is unprocessed), selects its closest
BLACK neighbor, say w, and removes all links to all neigh-
bors in the θ-domination region of w. It then repeats the
above procedure until no processed logical neighbors in GG
are left.

(2) Assume that node u also has some unprocessed logical
neighbors and node v is the farthest node of them. The



node u firstly selects node w on condition that node w is
the closest node among the remainder WHITE neighbors in
the θ-domination region of the node v. The node u removes
all links which connects node u with the remainder WHITE
neighbors in the θ-domination region of w (of course includ-
ing node v). It then repeats the above procedure until no
WHITE neighbors in GG are left, or the distance of the re-
mainder WHITE neighbors to node u is smaller than that of
selected neighbors. If node u also has some WHITE neigh-
bors, it deals with them using the same way as processing
BLACK logic neighbors.

Lemma 1 The Subgraph constructed by the FDFN is t-
spanner if the θ-domination region of node u satisfies the
following two conditions:

(1) If node w selected by node u is BLACK, the θ-domination
region of node w is less than π/3 for all WHITE nodes, say
v (dw ≤ dv), where dw is distance between node u and w),

π/4 for all WHITE nodes (dw > dv) and 2 arcsin 2
− 1+β

β for
all BLACK nodes.

(2) If node w selected by node u is WHITE, the θ-domination

region of node w is less 2 arcsin 2
− 1+β

β than for all WHITE
nodes, say v (dw ≤ dv) , and π/6 for all WHITE nodes
(dw > dv).

Proof. As shown in Figures 1-2, we suppose node w , v
are the neighbors of node u and θ = ∠wuv, node x, u are the
neighbors of node w and γ = ∠uwx. Node u selects logical
neighbors according to FDFN as follows:

1) Node w is BLACK, node v is WHITE and ‖uw‖ ≤ ‖uv‖
(See Figure 1(a)). Node u selects w as its logical neighbor
and deletes the link uv. The power stretch factor is:

‖uv‖β = ‖uw‖β + p(w, . . . , v) ≤ ‖uw‖β + t · ‖wv‖β

≤ ‖uv‖β + t · (2 sin θ
2
· ‖uv‖)β ≤ t · ‖uv‖β

t ≥ 1

1−(2 sin θ
2 )β ,

t = 1

1−(2 sin θ
2 )β , where θ = π

3
− ε(ε > 0).

2) Node w is BLACK, node v is WHITE and ‖uw‖ >
‖uv‖(See Figure 1(b)), Node u selects w as its logical neigh-
bor and deletes the link uv. Letting η = ∠wvu, we can
get η < π/2 from Gabriel graph property. Also notice that
‖uw‖ = ‖uv‖ · sin η

sin(θ+η)
and ‖wv‖ = ‖uv‖ · sin θ

sin(θ+η)
, and then

the power stretch factor is:

‖uv‖β ≤ ‖uw‖β + t · ‖wv‖β

= ‖uv‖β · ( sin η
sin(θ+η)

)β + t · ‖uv‖β · ( sin θ
sin(θ+η)

)β ≤ t · ‖uv‖β

t ≥ sinβ η
sinβ(θ+η)−sinβ θ

t ≥ 1
cosβ θ−sinβ θ

, when η → π
2
,

t = 1
cosβ θ−sinβ θ

, where θ = π
4
− ε (ε > 0).

3) Node w is WHITE and ‖uw‖ ≤ ‖uv‖, node x is BLACK
and ‖wx‖ ≤ ‖uw‖ (See Figure 2(a)). Firstly, node u selects
w as its logical neighbor and deletes the link uv, then node
w selects x as its logical neighbor and deletes the link uw.
The power stretch factor is:

(a) ‖uw‖ ≤ ‖uv‖ (b) ‖uw‖ > ‖uv‖

Figure 1: Link uw is kept in the final structure

(a) ‖uw‖ ≤ ‖uv‖ (b) ‖uw‖ > ‖uv‖

Figure 2: Link uv is removed when processing u and
link uw is then removed by node w later

‖uv‖β = p(u, . . . , x) + ‖wx‖β + p(w, . . . , v)
≤ t · ‖ux‖β + ‖wx‖β + t · ‖wv‖β

≤ t · (2 · sin γ
2
· ‖uv‖)β + ‖uv‖β + t · (2 · sin θ

2
· ‖uv‖)β

≤ t · ‖uv‖β

t ≥ 1

1−(2 sin θ
2 )β−(2 sin γ

2 )β

t ≥ 1

1−2(2 sin θ
2 )β , let θ = γ

t = 1

1−2(2 sin θ
2 )β , where θ = 2 arcsin 2

− 1+β
β − ε (ε > 0).

4) Node w is WHITE and ‖uw‖ > ‖uv‖, node x is BLACK
and ‖wx‖ ≤ ‖uw‖ (See Figure 2(b)). Firstly, node u selects
w as its logical neighbor and deletes the link uv, then node
w selects x as its logical neighbor and deletes the link uw.
The power stretch factor is:

‖uv‖β = p(u, . . . , x) + ‖wx‖β + p(w, . . . , v)
≤ t · ‖ux‖β + ‖wx‖β + t · ‖wv‖β

≤ t · (2 · sin γ
2
· ‖uw‖)β + ‖uw‖β + t · ‖wv‖β

≤ t · (2 · sin γ
2
· ‖uv‖

cos θ
)β + ( ‖uv‖

cos θ
)β + t · ( sin θ

cos θ
· ‖uv‖)β

≤ t · ‖uv‖β

t ≥ 1
cosβ θ−sinβ θ−(2 sin γ

2 )β

t = 1
cosβ θ−sinβ θ−(2 sin γ

2 )β ,

where γ = 2 arcsin 2
− 1+β

β − ε, θ = π
6
− ε(ε > 0).

Definition 2 Cone α is the cone of degree α defined by two
rays originated at u and aimed to two uninterrupted logical
neighbors respectively, as shown in Figure 3.

Figure 3 shows that node u selects two uninterrupted logical
neighbors w and v, cone α is the cone of angle ∠wuv. Sup-
pose cone α > 2θ, if there is at least a node, say x, in the
shadow of angle ∠α−2θ, then node u needs to add node x as
its logical neighbor due to maintaining power spanner of the



Figure 3: A α-cone between node w and v

subgraph. The cone α varies because θ-domination region
changes with processing state of logical nodes and distance
between logical nodes and node u. Only if cone α ≤ 2θ or
there has no logical nodes in the shadow of angle ∠α − 2θ,
the subgraph is a t-spanner.

3.2 The VCGG algorithm
The VCGG algorithm uses varying cone and FDFN mecha-
nism to select logical neighbors as follows:

1. First, each node self-constructs the Gabriel graph locally
according to the algorithm in [19]. Initially, all nodes mark
themselves WHITE.

2. Once a WHITE node u has the smallest ID among all its
WHITE neighbors, it uses the following strategy to select
neighbors:

(1) Node u first sorts all its BLACK neighbors (if available)
in Nb(u) in the distance-increasing order, then sorts all its
WHITE neighbors (if available) in Nw(u) similarly.

(2) Node u scans the sorted list Nb(u) from left to right.
In each step, it keeps the current pointed neighbor w in the
list, while deleting every conflicted node v in the remainder
of the Nb(u) list and in the whole of the Nw(u) list. Here
a node v conflicting with w means that node v is in the θ-
dominating region of node w according to condition (1) of
the θ-dominating region given in Lemma 1.

(3) If the sorted list Nw(u) is not empty and the distance
between the first node from right in the Nw(u) list and node
u is bigger than distance between every node in the Nb(u)
list and node u. Node u search a node x from left to right in
the Nw(u) list, which the first node from right in the Nw(u)

list is in the θ-dominating region (θ = 2arcsin 2
− 1+β

β ) of
node x. If such node x exists, node u deletes every conflicted
node v in the remainder of the Nw(u) list and moves node
x to the Nb(u) list. Node v is in the θ-dominating region of
node w according to limit (2) of the θ-dominating region in
lemma 1, of course including the first node from right in the
Nw(u) list. Repeat step (3) until no such node x is exists.

(4) If the sorted list Nw(u) is not empty, Node u scans the
sorted list Nw(u) from left to right. In each step, it keeps
the current pointed neighbor w in the list, while deleting
every conflicted node v in the remainder of the Nw(u) list.

Node v is in the θ-dominating region (θ = 2 arcsin 2
− 1+β

β )
of node w. Node u moves all remainder nodes in the Nw(u)
list to the Nb(u) list after scanned the Nw(u) list.

(5) Node u then marks itself Black, and notifies each deleted

neighbor v by a broadcasting message UpdateN.

3. Once a node v receives the message UpdateN from a
neighbor u, it checks whether itself is in the nodes set for
deleting: if so, it deletes the sending node u in its neighbor
lists, otherwise, marks u as BLACK.

4. When all nodes are processed, all selected links {uv|v ∈
N(u); v ∈ GG} form the final network topology, denoted by
VCGG. Each node can shrink its transmission range as long
as it sufficiently reaches its farthest neighbor.

3.3 Properties of the VCGG algorithm
Theorem 1 The VCGG is t-spanner.

Proof. The VCGG algorithm uses varying cone and FDFN
mechanism to select logical neighbors. It is obvious that the
VCGG is t-spanner according to Lemma 1 and definition
2.

Corollary 1 The VCGG algorithm has better power stretch

factor than SYaoGG and SΘGG when ε = 2 arcsin 2
− 1+β

β −
2π
k

, where k ≥ 9 and 2 ≤ β ≤ 4 in the θ-domination region.

Proof. The power stretch factor of SYaoGG or SΘGG

is t = (
√

2)β

1−(2
√

2 sin π
k

)β ,(k ≥ 9, 2 ≤ β ≤ 4)[10,19]. The power

stretch factor of the VCGG is only relative to ε in the θ-
domination region according to Lemma 1. Based on our

derivations, if setting ε = − 2π
k

+ 2 arcsin 2
− 1+β

β , (k ≥ 9 and
2 ≤ β ≤ 4), then we need to consider the following four
cases for different values of θ:

CASE 1. θ = π
3
− ε:

t = 1

1−(2 sin θ
2 )β = 1

1−(2 sin( π
k

+ π
6−arcsin 2

− 1+β
β ))β

We only need to prove the following inequality:

1

1−(2 sin( π
k

+ π
6−arcsin 2

− 1+β
β ))β

≤ (
√

2)β

1−(2
√

2 sin π
k

)β ,

which is equivalent to f(β) , (
√

2)β(1 − (2 sin(π
k

+ π
6
−

arcsin 2
− 1+β

β ))β) + (2
√

2 sin π
k
)β ≥ 1.

Taking the first derivative of f(β), we can get f ′(β) > 0.
Thus the function f(β) is an increasing function. Therefore,
we have 2(1−4 sin2(π

k
+ π

6
−arcsin 2−1.5))+8 sin2 π

k
> 2(1−

4 sin2(π
9

+ π
6
− 20.7◦) + 8 sin2 π

k
> 1.01 > 1.

CASE 2. θ = π
4
− ε:

Using the similar way in CASE 1, we get t = 1
cosβ θ−sinβ θ

=
1

cosβ( π
4−2 arcsin 2

− 1+β
β + 2π

k
)−sinβ( π

4−2 arcsin 2
− 1+β

β + 2π
k

)

≤
(
√

2)β

1−(2
√

2 sin π
k

)β .

CASE 3. θ = 2arcsin 2
− 1+β

β − ε = 2π
k

:



t = 1

1−2(2 sin θ
2 )β = 1

1−2(2 sin θ
k

)β < (
√

2)β

1−2(2 sin θ
k

)β .

CASE 4. θ = π
6
− ε and γ = 2arcsin 2

− 1+β
β − ε:

Using the similar way in CASE 1, we get

t = 1
cosβ θ−sinβ θ−(2 sin γ

2 )β = 1
cosβ θ−sinβ θ−(2 sin π

k
)β

≤ (
√

2)β

1−(2
√

2 sin π
k

)β .

In the above four cases, the power stretch factor of VCGG
is smaller (better) than that of SYaoGG or SΘGG, when
k ≥ 9 and 2 ≤ β ≤ 4.

By introducing varying cone, VCGG can get more agile than
k equally-separated cone in SYaoGG or θ-domination region
in SΘGG. It decreases efficiently the node power, number of
communication neighbors and node interference.

Theorem 2 Let M = 2π/(π/6 + 2 arcsin 2
− 1+β

β − 2ε). If
value M is a decimal fraction, the degree of VCGG is bounded
by 2bMc. If value M is integer, the degree of VCGG is
bounded by 2M − 1.

Proof. The proof of Lemma 1 shows that degree of VCGG
may achieve the maximum value in case (4) when selecting
WHITE nodes. The worst case is that the minimum θ-

domination region is π/6− ε and 2 arcsin 2
− 1+β

β − ε, (ε > 0)
in each side of the logical neighbors respectively. So, it is at

most M = 2π/(π/6 + 2 arcsin 2
− 1+β

β − 2ε) such regions in
a circular area. It at most adds one node as logical neigh-
bor between two such regions, like the shadow in Figure 3.
Thus, if value M is a decimal fraction, the degree of VCGG
is bounded by 2bMc. If value M is integer, the degree of
VCGG is bounded by 2M−1 because there is at least a pair
overlapped region of logical neighbors.

Theorem 3 If the UDG is a connected graph, the VCGG
is still a connected graph.

Proof. We prove the connectivity by contradiction. As
shown in Figures 1-2, we assume that link uv is the shortest
link in UDG whose connectivity is broken by VCGG algo-
rithm. Without loss of generality, we assume the link uv is
removed while processing node u, because of the existence
of another node w.

(1) As shown in Figure 1, it happens when node w is pro-
cessed and node v is unprocessed. Hence, ‖wv‖ < ‖uv‖
(otherwise ∠uvw > π/2 violates the Gabriel graph prop-
erty). Since node w is a processed node and node u decides
to keep link uw, the link uw will be kept in VCGG. Ac-
cording to assumption that u and v are not connected in
VCGG, w and v are not connected either. That is to say,
uv is not the shortest link whose connectivity is broken. It
is a contradiction.

(2) As shown in Figure 2(a), ‖uw‖ < ‖uv‖. Notice that
∠vuw < π/4, hence ‖wv‖ < ‖uv‖. In other words, both

link wv and uw are smaller than link uv. Since there are
no paths p(u, . . . , v) according to the assumption, either the
path p(u, . . . , w) or p(v, . . . , w) is broken. That is to say,
either the connectivity of wv or uw is broken. Thus, uv is
not the shortest link whose connectivity is broken, it is a
contradiction.

(3) As shown in Figure 2(b), notice that ∠vuw < π/4,
hence ‖wv‖ < ‖uv‖. In other words, link wv is smaller
than link uv. Notice that ‖wx‖ < ‖uw‖ and ∠xwu < π/4,
hence ‖xu‖ < ‖uw‖. It does not break the connectivity of
uw while node u selects node x as its logical neighbor and
deletes the link uw according to the above (2). Since there
are no paths p(u, . . . , v) according to the assumption, the
path p(v, . . . , w) is broken. That is to say, the connectivity
of wv is broken. Thus, uv is not the shortest link whose
connectivity is broken, it is a contradiction.

Then we can get that if the UDG is a connected graph, the
VCGG is still a connected graph.

Theorem 4 The VCGG is a planar graph.

Proof. The VCGG construction does not add any edges
to the original graph. On the contrast, it only deletes edges.
The planar property is inherited from GG graph.

Theorem 5 Assuming that both the ID and the geome-
try position can be represented by log n bits each, the total
number of messages of the VCGG is upper-bounded by 3n.

Proof. First, building GG in VCGG can be done using
only n messages [19]: each message represented by log n bits
contains the ID and geometry position of a node. Second, to
build VCGG, initially, the number of edges in Gabriel Graph
is [n, 3n−6] since it is a planar graph. We will remove some
edges from GG to bound the logical node degree. Clearly,
there are at most 2n such removed edges since we keep at
least n − 1 edges from the connectivity of the final struc-
ture. Thus the total number of messages used to inform the
deleted edges from GG is at most 2n. So, the total number
of messages of the VCGG algorithm is upper-bounded by
3n.

Corollary 2 The FDFN mechanism of selecting logical neigh-
bors in VCGG algorithm can efficiently decrease the node
power and node interference.

Proof. As shown in Figure 4, node x, w, y, v are WHITE,
and ‖uw‖ < ‖ux‖ ≤ ‖uy‖ < ‖uv‖, ∠wuy < θ, ∠xuy > θ,
∠wuv > θ. The FDFN mechanism of selecting logical neigh-
bors firstly selects node y as the logical neighbor of node
u due to the farthest node v is in the θ-dominating re-
gion of node y. Node u deletes conflicted node w and v
by removing link uw and uv. Then node u selects node
x as its logical neighbor. The power of node u is ‖uy‖β .
However, SΘGG algorithm selects logical neighbors in the
distance-increasing order, the power of node u is ‖uv‖β .
We know that ‖uy‖ ≥ ‖uv‖ · cos 2π

k
(k ≥ 9) according the

Gabriel graph property, in the worst, the power of node u



in the SΘGG algorithm is 1.3β than that of in the VCGG
algorithm. Clearly, the FDFN mechanism can efficiently
decrease the node power and node interference, this fact
is demonstrated by the simulation results given in Section
4.

Figure 4: The method of node u selecting logical
neighbors

Corollary 3 The varying cone in the VCGG algorithm
makes selecting logical neighbors more agile and decreases
the node power and number of communication neighbors
efficiently.

Figure 5: The bigger power and number of logical
neighbors due to k-equally cones

Proof. As shown in Figure 5, node x and w are BLACK,
node v is WHITE, and ‖uw‖ ≤ ‖ux‖ < ‖uv‖, ∠wux <
2π/3, ∠xuv > θ, ∠wuv > θ. Node u selects node w and x
as its logical neighbors and deletes the link uv due to cone
∠wux < 2π/3 and node v in the cone ∠wux. The power
of node u is ‖ux‖β . Node u selects node w, v and x as its
logical neighbors in k equally-separated cone of SYaoGG
or θ-domination region of SΘGG, the power of node uis
‖ux‖β . We know that ‖uv‖ ≤ √

2‖ux‖ (k ≥ 9) accord-
ing the Gabriel graph property. The node power reduces by
about (

√
2)β .

4. PERFORMANCE EVALUATIONS
In the simulation, we compare the performance of VCGG
with that of MST (Minimum Spanning Tree), GG, SΘGG
and SYaoGG. We generate n random wireless nodes in a
16 × 16 unit squares. We set power attenuation constant
β = 2, and the parameter k = 9 in SYaoGG and SΘGG,
ε = 2 arcsin 2−1.5 − 2π/9 ≈ 1.4◦ in VCGG. The transmis-
sion range of each node is set to 4 units. We test the aver-
age power spanning ratios of all pairs of nodes, the average
(and the maximum) (physical and logical) node degree of all
nodes, and the node power by changing the node number n
from 30 to 360. For each number n = 30i, 1 ≤ i ≤ 12, we
generate 500 vertex sets.

(1) Power Efficiency

Figure 6 summarizes the experimental results of power stretch
factors of all these topologies as the average power spanning
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Figure 6: Average power spanning ratio of various
structures

ratio. The average power panning ratio GG, SYaoGG or
SΘGG is less than 1.021, that of VCGG is less than 1.03,
and that of MST is maximum. The power stretch factor
of VCGG can be controlled in a constant by limiting and
controlling θ-domination region. The average power span-
ning ratio of VCGG has a little increase (<0.01) due to
VCGG reducing node power efficiently and moving more
links of neighbors. But length stretch factor of MST is at
least Ω( log n

log log n
), and its power stretch factor is n − 1. So

MST has bigger power spanning ratio than others, its power
spanning ratio increases with the number of nodes.

(2) Number of communication neighbors
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(a) Average communication
neighbors
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(b) Max communication
neighbors

Figure 7: The communication neighbors of various
structures

Figures 7(a) and (b) show the average communication neigh-
bors and maximum communication neighbors of various struc-
tures. VCGG makes use of merits of varying cone and FDFN
mechanism. The varying cone makes selecting logical neigh-
bors more agile than k equally-separated cone in SYaoGG
or θ-domination region in SΘGG. The FDFN mechanism
can efficiently decrease the node power. Thus, VCGG can
efficiently decrease the node power and number of commu-
nication neighbors. The average number of communica-
tion neighbors of VCGG decreases about 0.2 than that of
SΘGG, the maximum number of communication neighbors
of VCGG decreases about 0.5 than that of SΘGG.

(3) Interference

The node interference is defined as the number of nodes
within its transmission range. Figures 8(a) and (b) show
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(a) Average node interference
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Figure 8: The node interference of various struc-
tures

the average node interference and the maximum node in-
terference of various structures. By using merits of vary-
ing cone and FDFN mechanism, VCGG can efficiently de-
crease the node power and node interference. The average
node interference of VCGG decreases about 0.5 than that
of SΘGG, and the maximum node interference of VCGG
decreases about 1.3 than that of SΘGG.

(4) Node power
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(a) Average node power
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Figure 9: The node power of various structures

Figures 9(a) and (b) show the average node power and the
maximum node power of various structures. As shown in
Figure 9, the VCGG algorithm can efficiently decrease the
node power because of using merits of varying cone and
FDFN mechanism. The average node power of VCGG de-
creases about 0.4 than that of SΘGG, the maximum node
power of VCGG decreases about 1.0 than that of SΘGG. It
can efficiently decrease energy consumption and node inter-
ference and extend the lifetime of nodes.

5. CONCLUSIONS
The topology of a wireless Ad Hoc network can be controlled
by changing the transmission power at each node. The pri-
mary goal of topology control is to design power-efficient al-
gorithms that maintain network connectivity and optimize
performance metrics such as nodes lifetime and through-
put. In this paper, we proposed a varying cone distributed
topology-control algorithm on Gabriel graph. The VCGG
algorithm builds a degree bounded, power spanner and pla-
nar subgraph by making use of merits of varying cone and
a FDFN mechanism of selecting logic neighbor nodes. The
varying cone makes selecting logical neighbors more agile
than k equally-separated cone in SYaoGG or θ-domination

region in SΘGG. The FDFN mechanism can efficiently de-
crease the node power. The simulation results show that
our proposed VCGG algorithm performs better, in terms of
power efficiency, number of communication neighbors and
interference, than the existing SΘGG and SYaoGG algo-
rithms.
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