
Towards Low-Redundancy Push-Pull P2P Live Streaming

Zhenjiang Li, Yao Yu, Xiaojun Hei and Danny H.K. Tsang
Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
lzjiang@ust.hk, eeallan@ust.hk, heixj@ece.ust.hk, eetsang@ece.ust.hk

ABSTRACT
P2P live streaming systems are developed in two major approaches:
tree-push versus mesh-pull. The hybrid push-pull streaming, as
an emerging and promising approach, offers a good tradeoff be-
tween traffic overhead and system throughput. In this paper, we
demonstrate that video redundancy is a large contributor of the
traffic overhead in push-pull systems. To reduce the traffic over-
head, we propose simple but effective sub-stream scheduling and
re-scheduling mechanisms, implemented in a push-pull streaming
prototype called Low-redundancy Streaming (LStreaming). To
demonstrate its effectiveness on reducing the traffic overhead, we
conduct both simulation and prototype experiments and compare
the proposed LStreaming with random mesh-pull and GridMedia.
The simulation results show that LStreaming significantly reduces
the total traffic overhead, i.e., up to 33% and 37% reduction com-
pared with mesh-pull and GridMedia in dynamic P2P environments,
respectively. LStreaming also achieves the throughput, more close
to the optimal value than the other two schemes, and sustains a bet-
ter video playback quality. The prototype experiments show that
LStreaming is practical and achieves the expected performance.

Keywords
Peer-to-Peer live streaming, push-pull, tree-push, mesh-pull

1. INTRODUCTION
The emerging peer-to-peer (P2P) networks have appeared to be

the most promising driving force for video streaming over the In-
ternet [1, 2, 3]. To date, P2P video streaming systems have enjoyed
a number of large-scale deployments, notably, CoolStreaming [2],
PPLive [4] and many others. P2P streaming architectures have
advanced significantly in two major approaches: tree-push versus
mesh-pull. The mesh-pull systems apply a simple design principle
and achieve inherent robustness particularly desirable adaptability
for highly dynamic, high-churn P2P environment [5]. However,
these mesh-pull systems often suffer from high traffic overhead,
long start-up delays, significant video channel switching delays and
large peer playback time lags [6]. Unlike mesh-pull systems, tree-
push systems may achieve high throughput, low overhead and small

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QShine08 July 28-31, 2008, Hong Kong, China

delay if the tree structure does not break down due to peer churn and
peers at the higher level of the tree have sufficient upload capacities
to support streaming for their children peers.

Recently, researchers are exploring a new class of hybrid push-
pull architecture, promising to offer a good tradeoff among system
throughput, scheduling overhead, and the delay performance [7, 8].
In this paper, we study this push-pull streaming architecture in de-
tail. We find that this emerging push-pull streaming approach may
incur significant video redundancy if the system is not carefully
designed.

An ideal live streaming system should be practical and robust, in
addition to high throughput and low overhead. Mesh-pull and tree-
push are complementary in some aspects and a joint design may
lead to meet these system requirements. A small number of push-
pull streaming systems have achieved some success. GridMedia [7]
and CoolStreaming+ [8] are enhanced with the push-pull stream-
ing feature. In [7], the simulation results have showed the push-
pull approach has the potential to achieve the optimal throughput
and reduce the signaling overhead compared with the mesh-pull
scheme. We examine the traffic overhead of GridMedia and find
that the traffic overhead may reach as high as 10% of the effec-
tive video traffic. Due to the large video traffic volume, we believe
that 10% overhead is quite large and this overhead may be reduced
significantly. The total traffic overhead consists of signaling traffic
and redundant video traffic. Among the total traffic overhead, we
find that the redundant video traffic contribute the major portion in
push-pull systems.

A generic push-pull streaming system works as follows. Each
peer starts with the mesh-pull mode. After some initial time, it re-
quests certain neighbors to push chunks of sub-streams; then, the
tree-push mode is enabled. To achieve high throughput, low over-
head and robustness, the mesh-pull mode is still working to serve
as a backup to download those missing chunks when their play-
back deadline is approaching. To combat network dynamics and
peer churn, each peer should select the most “powerful" peers to
push sub-streams and switch from one “bad” neighbor to a “good”
neighbor. Different push-pull systems may vary significantly in
peer switching. We call this behavior “push-neighbor switching".
We find that this push-neighbor switching is the dominating factor
of redundant video traffic. The essential reason behind the push-
neighbor switching is the signaling asynchronization between the
peer and its push-neighbors, due to the propagation delay and the
chunk buffering delay. This asynchronization cannot be completely
avoided and is not a problem by itself if there is no push-neighbor
switching. Therefore, the key issue is to reduce the frequency of
the push-neighbor switching in push-pull systems.

In order to reduce the total overhead especially the video redun-
dancy, and to achieve an optimal throughput, we propose two sim-

peri
Callout

peri
Callout

peri
Callout

peri
Typewriter
QShine 2008, July 28-31, 2008, Hong Kong, Hong Kong.
Copyright 2008 ICST ISBN 978-963-9799-26-4
DOI 10.4108/ICST.QSHINE2008.3942

peri
Typewriter

peri
Typewriter

ple but effective mechanisms, implemented in a prototype system
called Low-redundancy Streaming (LStreaming). Our contribu-
tion in this paper can be summarized as follows.

• We demonstrate that video redundancy is an important issue
in push-pull P2P live streaming. The solution is to reduce the
frequency of push-neighbor switching.

• We propose simple but effective learning-based sub-stream
scheduling and re-scheduling mechanisms to reduce the video
redundancy in LStreaming.

• We evaluate the performance of LStreaming using simulation
and prototype. The simulation results show that LStream-
ing reduces the total overhead significantly by reducing the
video redundancy. At the same time, LStreaming maintains
an optimal throughput in both static and dynamic P2P envi-
ronments. The prototype experiments show that LStreaming
is practical and achieves the expected performance.

The rest of this paper is organized as follows. In Section 2, we
outline the system components of LStreaming. We present its de-
sign and implementation in Section 3 and report the performance
evaluation using simulation and prototype in Section 4. Finally, the
concluding remarks are made in Section 5.

2. ARCHITECTURE OVERVIEW

2.1 Peer management
In LStreaming, a video is divided into data chunks. Each chunk

is indexed with a unique increasing identifier and is streamed out
from a source server for distribution. Chunks, which are cached
in a peer’s buffer, are depicted using buffer maps. A buffer map
includes the smallest ID of the cached chunks, the width of the
buffer map, and a string of zeroes and ones, which indicate the
cached chunks available for sharing. All the peers, who are inter-
ested in this video, form a channel group and help each other to de-
liver the video. The peers of one channel are managed by a tracker
server. When a new peer joins a channel, it first contacts the tracker
server to report its arrival, obtains a peer list of this channel and
randomly selects some peers as its neighbors. Between two peers,
buffer maps are exchanged periodically in LStreaming. Based on
the buffer maps, a peer downloads missing video chunks from its
neighbors.

2.2 Sub-stream creation
In mesh-pull streaming, video is downloaded in a chunk-by-

chunk fashion. The basic streaming process follows a repeating
pattern of exchanging buffer maps and then downloading missing
chunks [7]. Significant signaling overhead may incur during this
process. To download one chunk, potentially at least one pull-
based request is issued. One possible method to reduce the sig-
naling overhead is to request one sub-stream instead of one chunk
on each request. As shown in Fig. 1, the original video stream
is segmented into S sub-streams. As long as the connection be-
tween two peers does not break up, the sending peer continuously
pushes chunks of one (or multiple) sub-stream(s) to the receiving
peer without further signaling messages.

In LStreaming, we combine two video streaming modes: tree-
push and mesh-pull. In the tree-push mode, video sub-streams are
pushed from the source to each peer. The delivery path of each sub-
stream forms a delivery tree. In the mesh-pull mode, video chunks
are retrieved by a peer from its neighbor individually. If a chunk
is downloaded in the tree-push mode, we call it a pushed-chunk.

0

1

S-1

Sub-Stream 0

Sub-Stream 1

Sub-Stream S-1

Psub[0]

S

S+1

2S-1

2S

2S+1

Figure 1: Video segementation into sub-streams

Similarly, if a chunk is downloaded in the mesh-pull mode, we call
it a pulled-chunk.

2.3 Buffer Management
To enable the tree-push mode and mesh-pull mode seamlessly

at the same peer, the buffer of a LStreaming peer is organized as
shown in Fig. 2. The total buffer is divided into three parts: push
window, tolerance window and pull window. In the push window,
chunks are expected to be pushed from other neighbors by request-
ing one or multiple sub-streams from one neighbor. Those miss-
ing chunks are downloaded in the mesh-pull mode in the pull win-
dow. In Fig. 2, the local peer requests three sub-streams from three
neighbors. The tolerance window is introduced to avoid duplicate
download in the tree-push mode and the mesh-pull mode. We ap-
ply a threshold-based heuristic to evaluate the push performance of
a neighbor peer. If a neighbor cannot push a sub-stream quickly
enough, the local peer may shift the download of this sub-stream
from this neighbor to another neighbor.

Pplay

Pull Window

: Received Chunk

: Missing Chunk

Tolerence
 Window

Ppush Phead

L x U

: Sub-Stream 3

Push Window

: Sub-Stream 2

: Sub-Stream 1

 L : Offset (i.e. 2s)

 U : Number of chunks in 1 second video (i.e. 30)

Figure 2: Buffer Management of LStreaming

In Fig. 2, Pplay and Phead are the playback pointer and the head
pointer, respectively. Pplay indicates the chunk being played back.
Phead indicates the downloaded chunk in the buffer with the largest
ID. Note that some chunks between Pplay and Phead may be still
missing. In the current LStreaming implementation, when the peer
downloads the first 10×U (i.e. 300) successive chunks after Pplay ,
Pplay starts to advance at the playback rate.

Related to Phead, the head chunks of sub-streams are denoted
by a vector Psub. Psub[i] points to the downloaded chunk of sub-
stream i with the largest ID. This vector is included in the buffer
map and sent to neighbors in order to avoid loops when construct-
ing sub-stream trees. The starting point for the push window is
L × U chunks (i.e. 60 chunks) behind Phead. Ppush is computed
as max{0, Phead − L× U}.

Up to now, the tree-push and mesh-pull modes are stiffly com-
bined together. We introduce the tolerance window to seamlessly
separate the chunk download into two modes. There exist unavoid-

able delays due to the chunk delivery and the signaling process
between senders and receivers. If there is no tolerance window be-
tween the push window and the pull window, a peer may download
duplicate chunks from neighbors. For example, suppose one chunk
is near the boundary of the push window and the pull window. One
neighbor may have already been pushing it to a peer; however, the
download has not been finished. Nevertheless, due to the advance
of Phead, this chunk may fall into the pull window and this peer
may initiate another pull request to download this chunk again. As
a result, this chunk is downloaded twice. This toleration time in-
terval is set to the average value of the RTT estimation between the
local peer and its neighbors in LStreaming.

3. SYSTEM DESIGN AND IMPLEMENTA-
TION

In this section, we present the system design and implementation
details of LStreaming. In particular, we will illustrate the design
considerations to reduce video redundancy. To facilitate the discus-
sion, some notations are explained in Table 1. The default values
are used in our simulation and prototype if not specified explicitly.

Table 1: Notation
R playback rate (i.e. 300kbps)
vi upload rate of peer i (chunks / sec)
ti task token no. for neighbor peer i
Pplay playback pointer of the player
Phead largest ID of the downloaded chunks in the buffer
Ppush starting ID of push window
Psub[i] head of sub-stream i
L offset from Phead to Ppush (i.e. 2s)
Tre period of sub-stream re-scheduling (i.e. 10s)
Ts initial buffering time (i.e. 20s)
U number of chunks in 1 second video (i.e. 30)
S total number of sub-streams (i.e. 15)

3.1 Design consideration
The tree-push streaming is able to maintain high throughput and

low overhead when peer churn is low. However, the tree structure is
sensitive to network dynamics and does not work well in a dynamic
environment. The throughput and overhead of a hybrid push-pull
system highly depends on the tree-push component. A good hybrid
system must have the ability to adapt to peer churn quickly, and
further maintain the stable state. LStreaming achieves this adapt-
ability via a closed-loop feedback control.

In Fig. 3, the feedback module in LStreaming consists of two
mechanisms, the sub-stream scheduling and the re-scheduling. This
module is not complicated but has the ability to catch up the net-
work dynamics, schedule the sub-stream download to combat the
network fluctuation, and eventually achieve the rapid convergence.
The design philosophy behind the LStreaming is to adopt simple
strategies to achieve this goal. Sharing the same design philosophy
in [7], [8], we believe that a simple design is the most efficient in
the running systems.

3.2 System initialization
When a peer first joins the channel, only the mesh-pull mode is

enabled during the initial buffering time Ts. This peer exchanges
buffer maps with other peers. Based on the harvested buffer maps,
for missing chunks in the pull window, this peer sends the pull re-
quests to download these chunks. After the initial buffering time

The fluctuation (i.e. peer
churn) of the system is

observed over
10-second intervals

Feedback Module
(sub-stream scheduling

or re-scheduling)

Original
system
condition

Figure 3: The closed-loop feedback control in LStreaming

(Ts), the tree-push mode will be enabled as well. For the chunks in
the push window, this peer requests sub-streams from its neighbors.
In order to reduce the startup delay, the player can start to play the
video before the tree-push mode is enabled.

3.3 Sub-stream scheduling
In LStreaming, the original video stream is divided into a number

of sub-streams with the same bit rate. The distribution of each sub-
stream forms a delivery tree. A potential problem in the tree-push
streaming is that peers may arbitrarily join a distribution tree with-
out considering whether the upload capacity of a parent peer can
support the streaming rate for its children. To avoid this problem,
we propose a learning-based mechanism to assist peers to select an
appropriate parent and join a sub-stream tree. This is the first step
in the feedback module to adapt to network conditions.

After a peer issues a sub-stream request to a neighbor, this neigh-
bor essentially pushes a series of chunks of this sub-stream with-
out further notification. The goal of the sub-stream scheduling is
to select an appropriate neighbor to push sub-streams. Suppose S
sub-streams in the system. When a peer schedules sub-stream re-
quests in the tree-push mode, it considers two issues: 1) how many
sub-streams should one neighbor push? 2) where does this neigh-
bor start to push chunks for one sub-stream? This whole process is
called sub-stream scheduling.

During the initial buffering time, the peer has pulled some chunks
from its neighbors. The download rate of these chunks from these
neighbors can be used to estimate the upload rate for each neighbor.
Suppose peer k has n neighbors and their estimated upload rates to
peer k are denoted as v1, . . . , vn. Each neighbor is assigned with
a maximum token number, which represents the maximum number
of sub-streams to be scheduled to push. It is calculated as follows:

ti =

⌈
vi∑n

i=1 vi
× S

⌉
.

Because
∑n

i=1 ti may be larger than S, not all the neighbors
is necessarily used to push sub-streams. Denote h = min{h :∑h

i=1 ti ≥ S}. It is sufficient to find the smallest h to cover S.
For the first h−1 neighbors, request ti sub-streams randomly from
neighbor i. For the h-th neighbor, it is possible that the number of
remaining sub-streams is less than th. In this case a peer requests
all the remaining sub-streams from the h-th neighbor.

After a peer computes the number of sub-streams to request from
each neighbor, it determines the beginning of each requested sub-
stream. For sub-stream i, if Psub[i] ≤ Ppush, the beginning chunk
is the first missing chunk of sub-stream i, whose sequence ID is
larger than or equal to Ppush; otherwise, it is the next missing
chunk of Psub[i] of sub-stream i. The “sub-stream scheduling mes-
sages", carrying the number of sub-streams and the IDs of the start-
ing chunks, are sent to each corresponding neighbor.

3.4 Sub-stream Re-scheduling

Due to network dynamics in P2P networks, the upload rate from
peer neighbors may fluctuate significantly. Though the sub-stream
scheduling is achieved based on peers’ previous achievable upload
rates, a parent peer may not have a sufficient upload rate to deliver
chunks to its children as time goes on. To achieve a good stream-
ing performance in the push mode, one peer should periodically
examine the achievable upload rates of its push-neighbors and re-
schedule the sub-stream download from one neighbor to another
neighbor if the original neighbor cannot sustain the upload rate of
the assigned sub-streams. This mechanism mainly accomplishes
the feedback function.

To evaluate the streaming performance of a push-neighbor, we
introduce a simple threshold-based heuristic in LStreaming as fol-
lows. If the streaming rate for one sub-stream is below a thresh-
old, the corresponding push-neighbor is canceled with the right to
continue pushing chunks for this particular sub-stream after its re-
ceiving a canceling message. The local peer may request another
neighbor to push this sub-stream. We call this operation as "push-
neighbor switching".

3.4.1 Periodical Re-scheduling
In sub-stream re-scheduling, each LStreaming peer examines the

number of pushed-chunks from each neighbor every Tre (i.e. 10s)
and adjusts the workload for each neighbor based on their achiev-
able upload rates in the previous Tre. For example, let S = 15,
U = 30 and Tre = 10. Ideally, 20 (30×10/15=20) chunks
should be received from one sub-stream over Tre. If one peer re-
ceives more than 10 chunks of one sub-stream from one neighbor,
we classify this neighbor as a qualified peer, who pushes chunks
of this sub-stream to the local peer. This neighbor continues to
push chunks of this sub-stream in the next Tre. Similarly, the local
peer freezes the streaming of those sub-streams from the unquali-
fied neighbors, who are not able to achieve the rate threshold. Then
the local peer re-schedules these freezed sub-streams.

In this sub-stream re-scheduling, the local peer recalculates the
maximum number (token) of sub-streams, which can be allocated
to each neighbor based on the number of chunks downloaded from
them in the previous Tre = 10 seconds. If one neighbor has already
been qualified for pushing one sub-stream, then its token number
is subtracted by 1. With the remaining token numbers, similar to
the sub-stream scheduling, the local peer schedules the download
of the freezed sub-streams from its neighbors.

3.4.2 Loop Avoidance
Due to the sub-stream re-scheduling, loops may occur in the

system. To avoid loops for sub-stream i, when the local peer re-
schedules sub-stream i, it only requests sub-stream i from the neigh-
bor, who has a larger head of sub-stream i than that of the local
peer. This simple method can effectively avoid loops. However,
the loop avoidance may lead to some sub-streams not allocated be-
cause no such neighbor can be found. Therefore, we introduce the
head detection mechanism.

3.4.3 Head Detection
When the local peer receives a buffer map from one neighbor, it

examines its un-scheduled sub-streams to see whether this neigh-
bor has any sub-streams, whose head is larger than that of the local
peer. We call this “head detection". If the answer is positive and
this neighbor still has some token number left, this sub-stream may
be requested to download from this neighbor. There exists one ex-
ception, though. If the current time is close to the next sub-stream
re-scheduling round, the peer may wait until next sub-stream re-
scheduling to schedule this sub-stream. In LStreaming, this toler-

ance time is set to 3 seconds empirically.
In case that some sub-streams can not be pushed due to loop

avoidance, the video chunks of these sub-streams have to be down-
loaded in the pull mode.

3.5 Discussions
The push-pull hybrid streaming provides a new avenue in im-

proving the performance of P2P streaming systems. Hybrid sys-
tems may be designed and implemented with different algorithms;
however, the peer behaviors share similarities at large. Each time
one peer retrieves a new chunk, as a push-neighbor, it pushes this
chunk immediately to its children peers.

3.5.1 Push-neighbor switching
A push-neighbor continues to push chunks if it does not receive

any sub-stream re-scheduling or canceling messages. Due to the
sub-stream re-scheduling that changes push-neighbors, video chunks
may be downloaded multiple times and become traffic redundancy.
There are two types of duplicate chunks.

• Chunks in transmission: These chunks have been pushed out
from the push-neighbors before the push-neighbor switch-
ing. Due to the propagation delay and the network buffering
effect, they are still in transit. The amount of this redundancy
only depends on the frequency of the push-neighbor switch-
ing.

• Chunks in the push-queue of push-neighbors: These chunks
have been pushed out from the application layer of the push-
neighbor, but still buffered in the packet queue of the oper-
ating system. Usually the sending of these buffered chunks
cannot be withdrawn. Therefore, the number of this redun-
dancy depends on both the frequency of the push-neighbor
switching and the queue length.

3.5.2 Push-queue
In the push-pull streaming, in order to achieve high throughput

and low overhead, chunks are preferred to be pushed in the tree-
push mode. In general, chunks to be pushed and chunks to be
pulled are stored in different application queues before transmis-
sion. Those chunks in the push-queue should be sent out with a
higher priority by the operating system. If the length of this push-
queue is set large, many chunks have the opportunities to be pushed
out. However, when the push-neighbor switching occurs, chunks in
this push-queue may still be delivered and cause redundancy since
some chunks may be pushed from new push-neighbor again. If this
push-queue is set small, less redundancy occurs when the push-
neighbor switching happens. Nevertheless, more chunks will be
downloaded in the mesh-pull mode.

The length of this push-queue should be designed carefully. In
our simulation and the prototype, we assume three types of DSL
users with the upload capacities of 1Mbps, 512kbps and 128kbps.
The 1Mbps peers can fully support 1Mbps/(300kbps/15)=50 sub-
streams. When a peer receives one chunk, the probability of this
chunk belonging to any sub-stream is 1/15, and this chunks will
be pushed out to 3.3 (50×(1/15)=3.3) children peers each time
on average; therefore, the queue size is suggested to set to 4 in
both the simulation and the prototype. This configuration reduces
redundancy caused by chunks buffering in the push-queue when
push-neighbor switching occurs.

With an appropriate length of the push-queue, the frequency of
the push-neighbor switching is the dominating factor of the video
redundancy. A small number of the push-neighbor switching is
preferred in push-pull systems. In the next section, we will demon-
strate that LStreaming is able to reduce the redundancy effectively.

4. PERFORMANCE EVALUATION
In this section, We first evaluate the performance of LStreaming

with a comparison to GridMedia and a generic random mesh-pull
scheme via simulation. We developed a discrete-event simulator
coded in C++ to capture the system behaviors at the chunk level.
This simulator is implemented based on the simulator engine in [7].
We implement the LStreaming algorithm and re-use the implemen-
tation of GridMedia and the random mesh-pull algorithm for the
performance comparison.

4.1 Simulation settings
In order to conduct a fair simulation comparison among differ-

ent streaming algorithms, each peer runs the streaming algorithms
under investigation simultaneously by introducing multiple “virtual
peers" in the same peer. Each virtual peer implements one stream-
ing algorithm. Those virtual peers using the same streaming algo-
rithm form an independent P2P streaming network. These stream-
ing networks in one simulation experiment are running in parallel
without interfering with each other. In this design of simulation
experiments, the simulation settings can be maintained exactly the
same for evaluating different streaming algorithms, including net-
work topology, link latency and peer churn.

To achieve a realistic latency setup in simulation, the end-to-end
link latency between peers is randomly selected from the real-world
node-to-node latency matrix (2500×2500) [9]. The mean end-to-
end delay in this latency matrix is 79ms. The playback rate of the
stream is 300kbps and the default neighbor number is 15. Similar to
the simulation settings in [7], all peers are assumed to be DSL users
with three types of the upload capacities of 1Mbps, 512kbps and
128kbps, and with the download capacities of 3Mbps, 1.5Mbps,
768kbps, respectively. The upload capacity of the video source is
900kbps. These three types of peers occupy 10%, 50% and 40%
of the total peers. We simulate a flash-crowd event of 15 minutes.
During the first 60 seconds, 6000 peers join the channel randomly.
Then, we simulate two cases of peer behaviors in the simulation:
static versus dynamic. In the static case, peers do not leave after
they join the channel. In the dynamic scenario, 2000 peers leaves
the channel during 400~500 seconds and another 2000 peers depart
within 700~800 seconds randomly. The remaining 2000 peers stay
in the channel until the end of the simulation. In this dynamic sce-
nario, we aim to evaluate the robustness of the systems and examine
the recovery performance on peer churn.

4.2 Simulation results
We provide a quantitative characterization of traffic breakdown

in mesh-pull, GridMedia and LStreaming. We differentiate the to-
tal traffic overhead into two parts: signaling overhead and video
redundancy overhead. After all the peers join the channel, we col-
lect data statistics every 10 seconds on the streaming performance
and the traffic overhead.

4.2.1 Download performance
We introduce two metrics to characterize the download perfor-

mance using the following traffic ratios with respect to the video
playback rate.

• Total download ratio: the ratio between the total download
rate and the video playback rate.

• Effective download ratio: the ratio between non-duplicate
video download rate and the video playback rate.

The effective download ratio characterizes the useful video down-
load of the system. A smooth video playback is achieved when this

ratio equals 1. The difference between the total download ratio
and the effective download ratio is the total traffic overhead ra-
tio. Since the overhead traffic consumes the network bandwidth,
this overhead should be minimized. In Fig. 4, the average stream-
ing performance over all the peers of mesh-pull, GridMedia and
LStreaming is depicted. Note that the effective download ratios
of both Gridmedia and LStreaming are higher than that of the ran-
dom mesh-pull scheme. In addition, the effective download ratio of
LStreaming is closer to 1 compared with GridMedia in both static
and dynamic cases. LStreaming outperforms Gridmedia and Mesh-
pull in terms of the download performance.

Mesh−Pull GridMedia LStreaming
0.95

1

1.05

1.1

1.15

Do
wn

lo
ad

 R
at

io

Total Download Ratio
Effective Download Ratio

(a) Static

Mesh−Pull GridMedia LStreaming
0.95

1

1.05

1.1

1.15

Do
wn

lo
ad

 R
at

io
Total Download Ratio
Effective Download Ratio

(b) Dynamic

Figure 4: Performance of traffic download and total overhead

4.2.2 Overhead breakdown
The total overhead traffic consists of signaling messages and re-

dundant video chunks. In the push-pull systems, the redundant
video download is a potential problem. Video packets usually have
much bigger sizes than control packets. If the number of duplicate
video chunks is large, redundant video traffic becomes the major
contributor in the total overhead traffic.

In Fig. 5(a), the total overhead ratios of both mesh-pull and Grid-
Media reach 7.8%, 9.0% in the static scenario and 8.4%,10.3% in
the dynamic scenario, respectively. Nevertheless, the total over-
head of LStreaming is only 6.0% and 6.5% in both scenarios. Com-
pared with mesh-pull and GridMedia, the overhead reduction of
LStreaming is 23.0%, 33.3% in the static case and 30.0%, 36.9%
in the dynamic case, respectively.

Due to the large video traffic volume, we believe that 10% over-
head is significant and 1.3% increase from the static case to the
dynamic case of GridMedia indicates the possible higher traffic
overhead with more dramatic peer churn. The video redundancy
is the major contributor in the total overhead in GridMedia as high
as 5.4% out of the 9.0% total overhead download ratio in the static
case, and 6.4% out of 10.3% in the dynamic case. Unlike GridMe-
dia, LStreaming achieves a much smaller video redundancy ratio,
0.4% in the static case and 0.9% in the dynamic case, with a slightly

Mesh−Pull GridMedia LStreaming
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

O
ve

rh
ea

d
Ra

tio
Total Overhead Ratio
Signalling Overhead Ratio
Video Redundancy Ratio

(a) Static

Mesh−Pull GridMedia LStreaming
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

O
ve

rh
ea

d
Ra

tio

Total Overhead Ratio
Signalling Overhead Ratio
Video Redundancy Ratio

(b) Dynamic

Figure 5: Overhead breakdown of download traffic

higher signaling overhead. Because video packets are much larger
than signaling packets, the total traffic overhead of LStreaming is
lower accordingly, and its increasing rate from the static case to the
dynamic case also maintains at a lower level.

4.2.3 Push-neighbor switching
This metric is defined as the average number of switching push-

neighbors when peers conduct sub-stream re-scheduling. As we
analyze previously, duplicate chunks are downloaded mainly due
to the push-neighbor switching. In LStreaming, a low switching
frequency leads to significant reduction of video redundancy. In
Fig. 6, we plot the average number of the push-neighbor switching
over each peer every 10 seconds in both cases. We observe that
sub-stream scheduling and re-scheduling in LStreaming achieves
load balancing very well. The system converges to a stable state
faster and suffers less push-neighbor switching than GridMedia.
The average values of LStreaming (see the lower dotted line in Fig.
6) in both cases are smaller than those of GridMedia (see the upper
dotted line).

4.2.4 Quality ratio
We define the quality ratio as the ratio of the number of chunks,

which has been played till the current time, and the number of
chunks which should be played till the current time. This met-
ric is computed every 10 seconds after all peers join the system
(t = 60s). Fig. 7 shows the quality ratios of both GridMedia
and LStreaming converge to 1 very quickly after the initial tran-
sition period. Nevertheless, the streaming performance of mesh-
pull slightly suffers. In particular, in the dynamic case, when the
peer churn is severe within 400~500 seconds and 700~800 seconds,
LStreaming suffers the least and recovers the most quickly, com-
pared with other two schemes.

4.3 Prototype experiment
We implement a prototype of LStreaming and conduct a prelim-

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Duration (sec)

Av
er

ag
e

Nu
m

be
r o

f P
us

h−
ne

ig
hb

or
 S

wi
tc

hi
ng

 (p
er

 p
ee

r)

LStreaming
GridMedia

(a) Static

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8

9

10

11

Duration (sec)

Av
er

ag
e

Nu
m

be
r o

f P
us

h−
ne

ig
hb

or
 S

wi
tc

hi
ng

 (p
er

 p
ee

r)

LStreaming
GridMedia

(b) Dynamic

Figure 6: The performance of the average push-neighbor
switching

inary evaluation of its performance on a campus network. In one
experiment, 80 peers join a video channel of 300kbps. On the appli-
cation level, we artificially limit the upload capacity of each client
with the same distribution used in the simulation. The video source
is capped with the upload capacity of 600kbps. The total stream-
ing duration lasts for 50 minutes. All peers join the system within
5 minutes and 20 peers leave the channel at t = 15 minutes. As
shown in Fig. 8, the average quality ratio is very close to the opti-
mal value 1. The quality ratio fluctuates sightly when some peers
leave and there is almost no visual impact during the experiment.
We also illustrate the overhead breakdown for the prototype system
in Fig. 8. Note that the video redundancy of the prototype matches
well with the simulation results shown in Fig. 5. The total overhead
ratio is as small as 4.5%, including only 0.8% video redundancy
ratio. Fig. 8 demonstrates that LStreaming effectively reduces the
total overhead, especially the video redundancy overhead; at the
same time it achieves a very good streaming performance.

The start-up time is another important performance metric in the
live streaming. In this experiment, when one peer downloads 20-
second continuous chunks, this peer starts to playback the video.
In Fig. 9, we plot the cumulative distribution function of the start-
up time of the peers in this experiment. Note that 70% peers starts
the video playback within 7 seconds. For a comparison, in a recent
measurement study [10] on a popular P2P live streaming applica-
tion, PPLive, the start-up delay is from 10 to 20 seconds; however,
less popular channels had start-up delays of up to 2 minutes.

5. CONCLUSION
In this paper, we study the emerging push-pull P2P streaming

approach. The push-pull streaming has the potential to achieve the
optimal throughput and to reduce the signaling overhead; however,
this push-pull streaming may incur significant traffic overhead if
the system is not carefully designed. The video redundancy turns
out to be the major contributor in the total traffic overhead. This

0 100 200 300 400 500 600 700 800 900
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Duration (sec)

Q
ua

lity
 R

at
io

LStreaming
GridMedia
Mesh−Pull

(a) Static

0 100 200 300 400 500 600 700 800 900
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Duration (sec)

Q
ua

lity
 R

at
io

LStreaming
GridMedia
Mesh−Pull

(b) Dynamic

Figure 7: The performance of average streaming quality

0 1000 2000 3000
0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

Duration (sec)

Q
ua

lity
 R

at
io

Watching Quality

LStreaming
0

0.01

0.02

0.03

0.04

0.05

O
ve

rh
ea

d
Ra

tio

Overhead Breakdown

Total Ratio
Signalling Ratio
Redundancy Ratio

Figure 8: The performance of the LStreaming prototype

redundancy is a direct consequence of the push-neighbor switch-
ing, in which the signaling asynchronization occurs between the
peer and its push-neighbors, due to the propagation delay and the
chunk buffering delay. This asynchronization cannot be completely
avoided; nevertheless, with a low frequency of the push-neighbor
switching, the video redundancy can be reduced significantly.

We design and implement simple but effective sub-stream schedul-
ing and re-scheduling mechanisms in LStreaming in a closed-loop
feedback system to achieve automatic load balancing with rapid
convergence. The simulation results show that LStreaming has
low frequency of push-neighbor switching. As a consequence, the
total overhead is reduced by 23.0%, 33.3% in the static scenario
and 30.0%, 36.9% in the dynamic scenario compared with generic
mesh-pull and GridMedia. The prototype experiment demonstrates
that LStreaming is practical and achieves the expected performance.

With the same push-neighbor switching frequency, the length of
the push-queue may further impact the amount of the video redun-
dancy. In our experiments, a suggested value is determined empir-
ically in LStreaming. This parameter also controls the proportion
of video delivery in the tree-push mode and the mesh-pull mode.
We are now investigating the tradeoff between mesh-pull and tree-

0 5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Start−up Time (sec)

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
of

 S
ta

rt−
up

 T
im

e

Figure 9: The cumulative distribution function of the startup
time

push in the design of push-pull streaming systems. In addition,
the current prototype experiments are only conducted on campus
networks. We intend to continue wide-area experiments over the
PlanetLab to evaluate the performance of LStreaming.

Acknowledgement
We would like to thank Miao Ma and Qinglin Zhao for their invalu-
able comments. This work is supported in part by Huawei Tech-
nologies Co., Ltd. through contract Huawei 003.06/07 and in part
by RGC Earmarked Research Grant 620306.

6. REFERENCES
[1] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for

end-system multicast,” IEEE JSAC, vol. 20, no. 8, pp.
1456–1471, Oct. 2002.

[2] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum,
“DONet/CoolStreaming: A Data-driven Overlay Network
for Peer-to-Peer Live Media Streaming,” in IEEE
INFOCOM, vol. 3, Mar. 2005, pp. 2102 – 2111.

[3] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and
challenges of peer-to-peer Internet video broadcast,”
Proceedings of the IEEE, vol. 96, no. 1, pp. 11–24, Jan. 2008.

[4] “PPLive,” http://www.pplive.com.
[5] F. Pianese, D. Perino, J. Keller, and E. W. Biersack,

“PULSE: An adaptive, incentive-based, unstructured P2P
live streaming system,” IEEE Trans. on Multimedia, vol. 9,
no. 8, pp. 1645–1660, Dec. 2007.

[6] X. Hei, Y. Liu, and K. W. Ross, “IPTV over P2P streaming
networks: the mesh-pull approach,” IEEE Communications
Magazine, vol. 46, no. 2, pp. 86–92, Feb. 2008.

[7] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding
the power of pull-based streaming protocol: Can we do
better?” IEEE JSAC, vol. 25, no. 10, pp. 1640–1654, Dec.
2007.

[8] B. Li, S. Xie, G. Keung, J. Liu, I. Stoica, H. Zhang, and
X. Zhang, “An empirical study of the coolstreaming+
system,” IEEE JSAC, vol. 25, no. 10, pp. 1627–1639, Dec.
2007.

[9] “Merdian node to node latency matrix (2500×2500),” 2005,
meridian project,
http://www.cs.cornell.edu/People/egs/meridian/data.php.

[10] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A
measurement study of a large-scale P2P IPTV system,” IEEE
Trans. on Multimedia, vol. 9, no. 8, pp. 1672–1687, Dec.
2007.

