
Performance Improvement of Generation-2 RFID Protocol
Chonggang Wang
University of Arkansas
Fayetteville, AR 72701

USA
cgwang@uark.edu

Mahmoud Daneshmand
AT&T Labs Research

Florham Park, NJ 07932
USA

daneshmand@att.com

Kazem Sohraby
University of Arkansas
Fayetteville, AR 72701

USA
sohraby@uark.edu

Bo Li
Hong Kong University of Science

and Technology
Hong Kong, China

bli@cse.ust.hk

ABSTRACT
Radio frequency identification (RFID) provides a non-line-
of-sight and contactless approach for object identification.
But if there are multiple tags in the range of an RFID
reader, tag collision can take place due to radio signal
interference and therefore an anti-collision algorithm is
required to resolve collisions. Recently, EPCglobal RFID
generation-2 (Gen-2) protocol [1] is proposed for ultra-
high frequency (UHF) passive tags and is being deployed.
Gen-2 designs a slotted random anti-collision algorithm,
especially, an adaptive slot-counter (Q) selection algorithm.
The integer-valued parameter Q in Gen-2 plays a critical
role in tag collision resolution. This adaptive algorithm
dynamically adjusts the value of Q based on the type of
replies from tags. In this paper, we propose an optimal Q
algorithm that determines the optimal values of Q
according to the number of remaining tags and in turn to
optimize tag identification speed (TIS). It’s been
demonstrated through extensive simulations that the
proposed algorithm achieves higher TIS than Gen-2
adaptive Q algorithm.

Categories and Subject Descriptors
C.3.3 [Network Protocols]: Applications, Protocol
architecture, Protocol verification, and Routing protocols.

General Terms
Algorithms, Performance, Design.

Keywords

Radio Frequency Identification, Air Interface, Generation-2
RFID, Performance Analysis, Tag Identification Speed.

1. INTRODUCTION
RFID has been existed for many years since its first
application of “identification, friend, or foe” (IFF) in
World War II [2]. Recently, it is being used in many fields
including supply chain management, homeland security,
military deployment management, healthcare industry and
airline industry. A RFID system consists of the following
important components: 1) RFID tags (or transponders).
Each tag consisting of a microchip and an embedded
antenna contains a unique identity or called Electronic
Product Code (EPC). An object or item affixed with one
tag at least is identified when the tag is interrogated by a
RFID reader. Tags could be classified into active tags,
semi-active tags, and passive tags depending on whether
they have embedded power or not and what the embedded
power is used for; 2) RFID readers (or Interrogators). A
RFID reader usually has more than one separate antenna
and is responsible to read potential tags around it. The
communication between the reader and tags are established
by an air-interface protocol that provides operation modes
and procedures for both reader-to-tag and tag-to-reader
directions. Air-interface interface protocol defines the
command format, synchronous timing between the reader
and tags, and determines how the frequency and time
resource could be shared by the reader and tags; 3) RFID
Database. Each record of RFID raw data may contain
information such as reading time, location, and tag EPC. In
business environments such as a distribution center, many
pallets, cases and products attached with RFID tags could
arrive during a very short time and therefore massive RFID
data flow is produced, which needs to manage in an
efficient and timely manner. RFID readers usually store
some raw data at the front-end of the reading process,
producing a filtered RFID database at the end of
interrogation cycle. In fact, tags and readers form the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
QShine’08, July 28-31, 2008, Hong Kong, China.
Copyright 2008 ACM XYZ…$5.00.

peri
Callout

peri
Typewriter
QShine 2008, July 28-31, 2008, Hong Kong, Hong Kong.

Copyright 2008 ICST ISBN 978-963-9799-26-4

DOI 10.4108/ICST.QSHINE2008.3926

peri
Typewriter

peri
Typewriter

frond-end communication subsystem, while database is a
part of back-end software subsystem, as shown in Fig. 1.

As shown in Fig. 1, each reader can only interrogate tags
within its vicinity, or called interrogation region [3]. When
multiple tags scattering within the interrogation region,
there are chances that reply signals from multiple tags
occur simultaneously and therefore tag collisions occur. On
the other hand, multiple readers can be deployed in reality
and networked together into a reader network. In case of
multiple readers placed close to each other, it is possible
that the signal of one reader interferes with others. Such
interference caused by the presence of multiple readers was
called reader collision [4].

Figure 1. General RFID architecture.

This paper investigates tag collisions and proposes an
optimal Q algorithms based on Gen-2 [1] protocol. The rest
of this paper is organized as follows. Section II describes
the anti-collision-related features of Gen-2 protocol.
Section III presents the optimal Q algorithm. Section IV
gives out simulation results for performance comparisons
of our algorithm to Gen-2 adaptive Q algorithm. Finally,
Section V concludes the whole paper.

2. GEN-2 PROTOCOL
Gen-2 protocol [1] offers a new air-interface protocol
including physical and media access control (MAC)
specifications for UHF RFID passive tags, which operates
in the range of 860 MHz to 960 MHz. This protocol
provides advanced new features designed for fast tag
identification, flexibility, and security. First, Gen-2
protocol can partition the tag population into distinct sub-
populations so that tags can associate separately and
independently with each of the several readers.

2.1 Basic Operations of Tag Identification
Process
Tag identification process consists of a number of
inventory rounds. In [1], inventory round is defined as “the
period between successive Query commands” issued by the
reader and therefore the issuing of a new Query command
implies the ending of the current inventory round and the
beginning of new inventory round. According to [1], the
reader can issue a Query command when system is
powered up or when the channel is idle; therefore, if there
are no tags identified in a particular round, the reader can
issue a Query command to start a new inventory round.
During each inventory round, the reader issues a set of
QueryAdjust, or QueryRep commands to identify tags.
When a tag is identified in a particular inventory round, it
will cease to respond to commands from the reader in the
same round.

Gen-2 protocol defines three types of query commands:
Query, QueryAdjust, and QueryRep. Query carries the
value of parameter Q and initiates an inventory round;
Query triggers each tag to select a random number and
store it in its Slot Counter (SC). QueryAdjust is used to ask
all tags to adjust the value of Q and reselect their SC. With
this command, Q is incremented by 1, decremented by 1 or
remains unchanged according to the adaptive Q algorithm
that will be explained later. QueryRep is used by the reader
to notify all tags to decrement their SC by 1. Those tags
which contain SC = 0, will decrement to 7FFF. In summary,
Query and QueryAdjust inform all tags of the latest Q
value and trigger them to reselect SC, while QueryRep
instructs tags to decrement their SC by 1. The sending of
Query by the reader implies that a new inventory round has
begun. Within an inventory round, several QueryAdjust
and/or QueryRep can be transmitted by the reader, in order
to identify the remaining tags. According to [1], Query
command can be issued when the system is powered on or
if there are no replies from the tags both QueryAdjust and
QueryRep can be issued either after a tag is successfully
identified, or channel is in collision. Such operations are
described in [1] as options for implementation
consideration. The basic operations of successfully
identifying a tag can be summarized as follows (See Fig. 2):

1)Reader  Tags: The reader initiates the process of
an inventory round by sending a “Query”
command to the population of tags it was selected
to participate in the round. The Query command
sends an integer-valued parameter Q and instructs
tags to independently select a random integer from
the uniform distribution [0, 2Q-1] and respond a
16-bit random number (RN16) to the reader if 0 is
chosen. The reader waits for replies from the tags.

2) Tags  Reader: Tags’ responses to the reader lead
to either a Success (S) or a Failure (F). It is a
Success if exactly one tag has selected number 0,
and thus, that tag has being identified by the
reader. Otherwise, it is a Failure and no tag is
being identified.

3) Reader  Tag: If Success, then reader sends an
acknowledgement (ACK) command back to the
identified tag. The identified tag processes the
received ACK and reports its EPC back to the
reader.

4) Reader  Tags: Either Success or Failure the
reader continues with new query commands
(Query, QueryAdjust, or QueryRep) to identify
remaining and newly arriving tags.

How tags respond to the reader is dependent on and
controlled by the reader’s commands. Since all tags
respond independently, collision could occur among tags’
responses and a “slotted random anti-collision” algorithm
is described in [1] for its resolution. The following is a
summary of the algorithm: Upon receiving a Query or
QueryAdjust command, each tag deposits an integer-valued
number in its slot counter, which is an integer selected at
random from a uniform distribution [0, 2Q-1], where Q is
an integer-valued parameter. Q varies in the [0, 15] range,
and is designated and adjusted by the reader. The value of
Q is embedded in the Query command, and updated using
QueryAdjust command. After selecting the random number,
tags which have SC = 0 respond to the reader command.
As shown in Fig. 2, if there is a collided or successful reply,
the reader continues to issue QueryRep or QueryAdjust; if
there is no reply, the reader could send a Query,
QueryAdjust, or a QueryRep. These commands will
instructs unidentified tags to either reselect or reduce their
SC, or to restart and choose a new SC with a new Q value.

2.2 Adaptive Q Algorithm
When reader receives a reply from the tags after issuing a
query command or the time T1+T3 has expired before
receiving any reply (See Fig. 2), the algorithm in Fig. 3 is
triggered by the reader to update Q based on the following
rules. In this flow chart, suppose Q fp is the float-point
representation of Q. The value of Q is determined based on
the integer nearest to Q fp. The detailed operation is as
follows:

Figure 3. Gen-2 adaptive Q algorithm.

 Collided Reply: This is due to the fact that more
than one tag has selected SC=0, which in turn could
imply that Q is too small and that the number of
remaining tags is too large. In this case Qfp is
incremented by the value of parameter c, a real
number. After this operation, if Q fp exceeds 15, it is

Figure 2. Tag identification process and timing relationship in Gen-2 protocol.

set to 15. The value of Q is the integer that is
nearest to Qfp, that is: Q=round(Qfp).

 No Reply: This can be due to the fact that none of
the tags has selected SC=0, which in turn could
imply that Q is too large and that the number of
remaining tags is too small. In this case Q fp is
decremented by c. After this operation, if Qfp is
negative, we let Q fp =0. Then the value of Q is
Q=round(Qfp).

 Successful Reply: This means that only one tag has
selected SC=0 and that the current value of Q is
proper. In this case, Qfp and Q remain unchanged.

According to the specifications in [1] (also shown in Fig.
3), the initial value of Q is Q0=4. The typical values for c
suggested by [1] are in the range of (0.1, 0.5). It is also
suggested in [1] to use a small c when Q is large, and a
large c when Q is small. Since c< 1, there are three
possibilities after each update: Q increments by 1, Q
decrements by 1, or Q remains unchanged. The reader uses
QueryAdjust to notify tags of these possibilities. In our
former paper [5], we designed a new slot-counter selection
algorithm that uses different c values for cases of “collided
reply” and “No Reply”, respectively, and improves the tag
identification speed therefore.

3. OPTIMAL Q ALGORITHM
The optical Q algorithm works as follows: 1) each time
when a tag is identified and the number of remaining tags
is n, the reader determines an optimal Q based on n; 2) then
the reader notifies tags of this optimal value and instructs
all tags to re-select their SC; 3) tags make response
according the Gen-2 operations listed in Section II.1.

In order to determine the optimal Q value, let us first
rewrite Q=Q(n) and deduce tag identification speed. We
calculated TIS in [6] as follows:

1
/ ((),)

n N
TIS N T Q n n


  (1)

2

2

((),) 1 _ ((),) _ (((),)
((),) 1) _ ,

succ q idle q

q coll

T Q n n Ave T n Q n n Ave T n Q n n
n Q n n Ave T

     
 

(2)

1((),)qn Q n n 1 if n=N or 0 else, (3)

3((),) ((),) ((),)q q in Q n n n Q n n p Q n n  , (4)

2 1 3((),) ((),) ((),) ((),)q q q qn Q n n n Q n n n Q n n n Q n n   , (5)

((),) 1/ ((),)q sn Q n n p Q n n , (6)

() () 1((),) (1/2) (1 1/2)Q n Q n n
sp Q n n n     , (7)

()((),) (1 1/2)Q n n
ip Q n n   , (8)

where N is the number of total tags to be identified in an
inventory round. When the number of remaining tags is n
and Q=Q(n), p i(Q(n), n) is the probability that a query
command gets no reply, ps(Q(n), n) is the probability to get
a single/successful reply nq1(Q(n), n) is the number of
Query command used to identify a tag, nq2(Q(n), n) is the
number of QueryAdjust used to identify a tag, n q3(Q(n), n)
is the number of QueryRep used to identify a tag.
Ave_Tsucc, Ave_Tidle, and Ave_Tcoll, are average duration of
a successful reply, no reply and a collided reply, which can
be easily deduced from Fig. 2.

Eq. (1) shows that TIS depends on Q and n. Now we
consider optimizing TIS, given n. In order to maximize
TIS, we need to find an optimal Q to minimize T(Q(n), n)
in Eq. (2). Although it is difficult to get a closed form
expression for the solution from Eq. (2), we can obtain the
numerical result of the optimal Q by differentiating T(Q(n),
n) with respect to Q(n) and setting the derivative to zero.
We use Q*(n) to denote the optimal Q value for TIS
maximization. This optimal setting of Q to maximize TIS is
our optimal Q algorithm.

Inputting Q*(n) into Eq. (1), we can get TIS of our optimal
Q algorithm. Fig. 4 shows Q*(n) when the number of
remaining tags varies between 0 and 1000. It can be seen
that Q*(n) increases with the increase of n. Another
important observation is that Q*(n) is not too sensitive to n.
For example, when n is in the range of [350 700], Q*(n)=10
when TRrate=15.625 Kbps. This observation makes our
optimal Q algorithm be a highly practical approach to
optimize tag reading performance because it does not need
to know the exact value of n, although some accurate
algorithms have been available to measure it [7].

Although our optimal Q algorithm needs to know the
number of remaining tags n, we in this paper will not
propose any estimation algorithm to predict the number of
tags; however, some algorithms in literatures such as [7]
are available to predict the number of tags. Instead, we will
furthermore show in the next section though simulation that
our optimal Q algorithm, although it is based on the
number of remaining tags n, does not require its exact
value.

4. SIMULATION RESULTS
Simulations are setup as follows: 1) RTrate is fixed at 64
Kbps and TRrate has four values – 125, 62.5, 31.25, and
15.625; 2) The number of tags N t varies between 10 and
1000; below Nt=400, increments are 10 while between

Nt=400 and 1000 the increments are 50; 3) channel with
zero bit error rate is assumed; 4) when there is a collided
reply, the reader sends QeuryAdjust; when there is a
successful reply, the reader issues QueryRep; when there is
no reply, the reader uses QueryRep if Q has no change or
QueryAdjust if Q gets changed. The typical values of other
system parameters are given in Table 1. In simulation we
measure tag identification speed as the ratio of the total
number of identified tags over the total time consumed. As
shown in Fig. 4, the optimal algorithm achieves higher TIS
than Gen-2 adaptive Q algorithm, especially when the
number of tags is large.

Since our optimal Q relies on the number of remaining tags
n, we are interested in investigating the performance of
both policies assuming that n is unknown. We note that
approaches such as [7] can be used to estimate n.
Simulation results in Fig. 6 are obtained by setting n=n
(1+f), where nis the actual number of remaining tags and
f is a real random number uniformly distributed in the
range of [-0.4, +0.4]. In other words, we intentionally give
false values of n to the optimal Q algorithm, which in turn
calculate the optimal Q values based on these false values.
As shown in Fig. 6, the optimal Q still achieves higher TIS

Figure 4. Optimal Q values Q*(n) (left: n is below 100; right: n is between 100 and 1000)

Figure 5. Performance comparisons between our optimal Q and Gen-2 adaptive Q.

than adaptive Q, even though there is an average 20% error
in n, which implies that our optimal Q algorithm does not
need accurate measurement of n.

5. CONCLUSIONS
This paper designs an optimal Q algorithm for RFID Gen-2
protocol, which adjusts the parameter Q based on the
number of remaining tags. The new algorithm achieves
better performance than Gen-2 adaptive Q algorithm in
terms of tag identification speed.

6. ACKNOWLEDGMENTS
This research was supported by AT&T Labs Research.

7. REFERENCES
[1] EPCglobal Specification, “EPCTM radio-frequency identity

protocols class-1 generation-2 UHF RFID protocol for
communications at 860 MHz – 960 MHz,” version 1.0.9,
Jan. 2005. [Online] http://www.epcglobalinc.org

[2] J. Landt, “The history of RFID,” IEEE Potentials, vol. 24,
no. 4, Oct.-Nov. 2005, pp. 8 – 11.

[3] Z. Zhou, H. Gupta, S. Das, and X. Zhu, “Fast reading of
RFID tags in multi-reader systems,” Under Submission, 2006
[http://www.cs.sunysb.edu/~hgupta/ps/rfid.pdf]

[4] D. W. Engels and S. E. Sarma, “The reader collision
problem,” Proc. of IEEE International conference on
Systems, Man and Cybernetics (SMC’02), Oct. 6-9, 2002.

[5] C. Wang, M. Daneshmand, and K. Sohraby, “A new slot-
count selection algorithm for RFID protocol,” Proc. of
Chinacom 2007, August 22-24, 2007, Shanghai, China

[6] C. Wang, M. Daneshmand, and K. Sohraby, “Performance
analysis of gen-2 RFID protocol,” Technical Report,
University of Arkansas, Jan 2008. [Online]
http://comp.uark.edu/~cgwang/TR/RFID.pdf.

[7] M. S. Kodialam and T. Nandagopal, “Fast and reliable
estimation schemes in RFID systems,” Proc. of ACM
Mobicom 2006, Los Angeles, CA, USA, September 23-29
2006, pp. 322-333.

Table 1. Typical values of Gen-2 system parameters
Parameters Value

TARI 12.5 us
DATA0 1.0*TARI = 12.5 us
DATA1 1.5*TARI = 18.75 us
RTrate 64 Kbps
RTcal 31.25 us
TRcal 64.0 us

DR 8
LF DR/TRcal = 125 KHz
M 1, 2, 4, 8

TRrate LF/M = 125, 62.5, 31.25, 15.625
Kbps

Tpri 1/LF
T=>R Preamble 6*Tpri

T=>R End-of-Signaling 2*Tpri

Delimiter 12.5 us
R=>T Preamble (RTP) Delimiter + DATA0 + RTcal +

TRcal
R=>T FrameSync RTP – Trcal

T1 Max(RTcal, 10*Tpri)
T2 5*Tpri

T3 5*Tpri

EPC 96 bits
Q0 4

Figure 6. Performance comparisons between our optimal Q and Gen-2 adaptive Q
considering that the number of remaining tags has a certain error.

(TARI: Reference time interval for a data-0 in reader-to-tag
signaling; DATA0: Time interval for a data-0 in reader-to-tag
signaling; DATA1: Time interval for a data-1 in reader-to-tag
signaling; RTcal: Reader-to-tag calibration symbol; TRcal: Tag-

to-reader calibration symbol; DR: Divide ratio; LF: Backscatter
link frequency; Tpri: Link pulse-repetition interval; M: Number of
subcarrier cycles per symbol in tag-to-reader direction; R=>T:
Reader to tag; T=>R: Tag-to-reader)

