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ABSTRACT
Sparse sensor networks have emerged in recent studies. Relaying
data with the help of mobile elements seems an effective way to
bridge the gaps in such networks. In this paper, we propose the
Grid-Based Mobile Element Scheduling (GBMES) approach that
schedules a mobile element (ME) to periodically gather data from
a partially connected sensor network. The GBMES algorithm per-
forms well on avoiding data loss due to buffer overflow of sensor
nodes through reducing the traveling delay of ME, and the data
transferring delay at each data gathering point.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Distributed ap-
plications

General Terms
Algorithms, Design, Experimentation

Keywords
Data gathering, Mobile element, Sparse sensor networks

1. INTRODUCTION
Wireless sensor networks are usually characterized by resources

constraint and dense deployment. But some sensor networks can
not be connected due to the restriction of geographic conditions,
and sometimes are not necessary to be connected in many applica-
tion scenarios.
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Consequently sparse networks emerged as a special class of ad-
hoc and sensor networks, which have created a number of new chal-
lenges, including absence of end to end paths, large delay, network
partitioning, and so on. This kind of networks are also referred
to as delay tolerant networks (DTNs) [1], intermittently connected
networks, or partially connected networks.

Node mobility seems the only effective way to let nodes ex-
change messages in such sparse networks, and several related schemes
are proposed in literature [2–8].

From network connectivity point of view, most current literature
focus on totally sparse networks in which there are no end to end
paths between most nodes, or even every two nodes are discon-
nected.

In this paper, we lay our effort on collecting data from partially
connected sensor networks where there are a number of connected
fragments, and any two of these fragments are disconnected from
each other. Fig. 1 illustrates an instance of such deployments.

To demonstrate the significance of proposing such a problem, we
can imagine several scenarios, such as wildlife sanctuaries monitor-
ing networks, partially destroyed intrusion detection networks, and
battlefield surveillance networks. In wildlife sanctuaries, we prob-
ably can’t afford the expense of deploying a whole-area monitoring
network, so an alternative is to build networks in some key zones.
Intrusion detection networks and battlefield surveillance networks
are perhaps partitioned into a few fragments due to attacks.

For dealing with such scenarios, we propose the Grid-Based Mo-
bile Element Scheduling (GBMES) algorithm in which a mobile el-
ement (ME) is introduced to fulfill the task of collecting data from
partially connected sensor networks.

The main purpose of our scheme is to avoid data loss due to
buffer overflow of sensor nodes through scheduling the movement
of ME, scaling the grid cell size, or adjusting some parameters
of sensor nodes, such as data transmission rate, buffer size, sam-
pling rate, etc. We evaluate the impact of these metrics on sensor
buffer overflow in simulations, and the results demonstrate that the
GBMES algorithm performs well and has high scalability.

The remainder of this paper is organized as follows. We sur-
vey some of related schemes in section 2. In section 3, we present
the Grid-Based Mobile Element Scheduling (GBMES) algorithm.
Then we evaluate the performance of the GBMES algorithm through
simulations in section 4. Section 5 concludes this paper.
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2. RELATED WORK
Vahdat and Becker proposed the Epidemic Routing in [2] in which

mobile hosts move randomly from one connected portion to an-
other and exchange messages whenever they meet, until the mes-
sages flood the network or reach the destination.

The approach proposed by Li and Rus [3] extends the concept
of an "active message" introduced by [9]. The authors present two
methods to change the trajectories of mobile nodes for transmitting
messages in disconnected ad-hoc networks.

Different from the approaches in [2] and [3], the schemes pre-
sented in [4–8,10–12] all impose a mobile-element layer on sparse
networks for network connection or data collection.

Shah et al. in [4] model a three-tier architecture for sparse sensor
networks where they exploit mobile data MULEs to bridge the gaps
between sinks and sensors.

Zhao et al. propose several approaches which use mobile mes-
sage ferries to relay messages in sparse and delay-tolerant net-
works. Literature [5] introduces the idea of message ferrying and
studies its use in networks with stationary nodes. Networks with
mobile nodes are considered in [6]. Literature [7] focuses on con-
trolling the mobility of multiple message ferries for performance
and robustness concerns.

The Mobile Element Scheduling (MES) problem is proposed in
[10]. It considers a sensor network where sensor nodes operate at
different sampling rates.

Gu et al. [8] propose the Partitioning-Based Scheduling (PBS)
algorithm that schedules the movement of a mobile element for
data harvesting, so that there is no data loss due to buffer overflow.

Harras and Almeroth [11] discuss inter-regional messenger schedul-
ing in delay tolerant mobile networks.

Tariq et al. [12] propose the optimized way-points ferry rout-
ing method for designing message ferry routes in sparse networks
where nodes has arbitrary movement.

Among the related work mentioned above, only literature [11]
has the same network topology as ours, but it focuses more on
scheduling the mobile messengers to provide inter-regional com-
munication.

The PBS algorithm [8] and the MES problems [10] also lay much
effort on reducing data loss caused by sensor buffer overflow as
the GBMES algotithm does. But both schemes schedule mobile
elements to traverse all sensor nodes for data gathering, which is
not realistic in a large scale sensor network, and is not appropriate
for our scenarios.

3. GRID-BASED MOBILE ELEMENT
SCHEDULING ALGORITHM

3.1 Problem Description and Methodology
The network model of our scenario is shown in Fig. 1, where a

mobile element (ME) travels along a carefully designed route, and
periodically gathers data from all regions of the sensor network.

The sensor nodes are assumed static, and have equal transmis-
sion range. The ME has the same transmission range as regular
sensor nodes, but it has sufficient energy, storage and processing
capability.

All sensors and ME are aware of their own location through lo-
calization approaches, and every sensor node is equipped a buffer
for caching data.

The Grid-Based Mobile Element Scheduling (GBMES) algorithm
first partitions the sensor field into square grid cells. Then a mobile
element (ME) periodically traverses all grid cells for data collec-
tion.

Figure 1: The network model

The goal of GBMES is to eliminate data loss due to buffer over-
flow of sensor nodes.

Suppose there are m regions in the network, the length of the
inter-regional route is Lt, and the length of the intra-regional route
in region i is Ls

i. The number of grid cells in all regions is assumed
to be n. Let ts

j denote the data transferring delay of ME in grid cell
j, and v denote the speed of ME. Then total time Tr for ME traveling
a round (returning to the starting point) can be calculated through
equation 1.

Tr =
Lt +

∑m
i=1 Ls

i

v
+

n∑

j=1

ts
j (1)

To avoid buffer overflow at node k, the following condition should
be satisfied:

Bk > rs
k · Tr =

rs
k(Lt +

∑m
i=1 Ls

i)
v

+ rs
k

n∑

j=1

ts
j (2)

Where Bk is the buffer size of node k, and rs
k is the sampling rate

of node k.
According to equation 2, buffer overflow could be avoided by

decreasing the sampling rate of sensor node, the length of travel-
ing route, or the data transferring delay of ME in each grid cell.
Increasing the speed of ME will also achieve the objective.

For the purpose of avoiding data loss due to buffer overflow, on
one hand, we design a shortest route for ME to travel so that the
traveling time is minimized, on the other hand, we introduce an
efficient data gathering scheme that reduces the data transferring
delay.

3.2 Grid Partitioning
In this part, we first partition the network into grid cells using

Grid Partitioning technique, which is the basis of the GBMES al-
gorithm.

In grid partitioning (GP) approach, each sensor maintains two
predefined parameters: α (the size of each grid cell) and (Xorigin,Yorigin)
(the coordinate of the origin in a cartesian coordinate system).

Here we use a term grid point to denote the geometric center of
each grid cell, and each grid cell is uniquely marked by the grid
point. Suppose that the coordinate of a grid point is (Xc,Yc). Then
it satisfies equation 3.

Xc = Xorigin + (i + 1/2) · α (3a)
Yc = Yorigin + ( j + 1/2) · α (3b)

(i, j = 0, 1, 2...)

In the process of grid partitioning, every sensor node calculates
to know which grid cell it belongs to, and how far it is to the grid
point of the grid cell.



A sensor node calculates the coordinate of its grid point through
its own coordinate (Xs,Ys) , and α (see equation 4).

Xc = bXs/αc · α + α/2 (4a)
Yc = bYs/αc · α + α/2 (4b)

The distance from the sensor node (Xs,Ys) to its grid point is
marked with dsc, and its value is:

dsc =
√

(Xs − Xc)2 + (Ys − Yc)2 (5)

Here another term grid node is introduced to denote the nearest
sensor node to the grid point in the same grid cell compared with
all its one-hop and two-hop neighbors, and dsc of a grid node must
be less than the transmission range of sensor nodes (marked with
γ).

3.3 Traveling Route Design
Our goal of this section is to design a shortest loop tour for the

mobile element (ME) collecting data periodically.
To simplify the route design issue, we assume that each region

in the network has the approximate shape of a rectangle or a square
whose sides are parallel to the axes of the coordinate system.

The route design problem is divided into two sub-problems: inter-
regional design and intra-regional design.

3.3.1 Inter-Regional Design
The inter-regional route is designed to visit each region exactly

once that has a minimum route length. Such a problem can be
reduced to the traveling salesman problem (TSP). A number of al-
gorithms are proposed in [13], [14], and [15] to solve this kind of
problems.

Given the boundaries of region k, the grid domain that covers re-
gion k can be decided through calculating the grid points (Pk

bl, Pk
tl,

Pk
tr, Pk

br) on the four corners of region k, where Pk
bl is the grid

point on the bottom left-hand corner of region k, Pk
tl is the grid

point on the top left-hand corner, Pk
tr is the grid point on the top

right-hand corner, and Pk
br is the grid point on the bottom right-

hand corner. We term these grid points as corner grid points.

(XPk
bl ,YPk

bl ) =



(bVk
l/αc · α + α/2, bHk

b/αc · α + 3α/2),
Vk

l < Xc + γ,Hk
b > Yc + γ

(6a)

(bVk
l/αc · α + 3α/2, bHk

b/αc · α + 3α/2),
Vk

l > Xc + γ,Hk
b > Yc + γ

(6b)

(bVk
l/αc · α + 3α/2, bHk

b/αc · α + α/2),
Vk

l > Xc + γ,Hk
b < Yc + γ

(6c)

(bVk
l/αc · α + α/2, bHk

b/αc · α + α/2),
Vk

l < Xc + γ,Hk
b < Yc + γ

(6d)

The coordinate of gird point Pk
bl can be calculated through equa-

tion 6, where Vk
l is the left vertical boundary of region k, and Hk

b

is the bottom horizontal boundary of region k. Point (Xc,Yc) marks
the grid point of the grid cell that point (Vk

l,Hk
b) belongs to (cal-

culated by equation 4).
Fig. 2(a) depicts the strategy of deciding Pk

bl, the solid square
denotes the grid point whose coordinate is (Xc,Yc). When point
(Vk

l,Hk
b) falls in zone A, equation 6a applies. Equation 6b, 6c and

6d apply when point (Vk
l,Hk

b) falls into zone B, C and D, respec-
tively.

The coordinate of Pk
tr is calculated similarly, and Fig. 2(b)

shows the policy. The coordinates of Pk
tl and Pk

br could be de-
duced once the coordinates of Pk

bl and Pk
tr are calculated.

(a) (b)

Figure 2: An illustration of calculating corner grid points

The Inter-Regional Route Construction (IRRC) algorithm is in-
spired from the Nearest Neighbor (NN) [15] algorithm, and is de-
tailed in Algorithm 1.

Algorithm 1 IRRC algorithm
1: Put all corner grid points of each region into a vertex set Vnet
2: Initialize an empty ordered set Vtsp for recording the node se-

ries of a TSP tour
3: Stand on an arbitrary region i. For each corner grid point of

region i, find out the shortest edge connecting this corner grid
point and a vertex of a different region in Vnet. Put the corner
grid point with the shortest edge (say u) and the correspond-
ing endpoint (say v) into Vtsp. Remove from Vnet all vertices
belonging to the regions where u or v is located

4: Set current vertex be v, find out the shortest edge connecting v
and a vertex w of a different region in Vnet. Add w into Vtsp,
then remove all vertices belonging to the same region as w’s
from Vnet

5: If Vnet is empty then terminate, otherwise set vertex w be v, and
go to step 4

The vertices in the ordered set Vtsp generated by Algorithm 1
together form an inter-regional route.

3.3.2 Intra-Regional Design
After the ME goes into a region, it traverses the grid node of each

grid cell to collect data, and then returns to the entering point.
As mentioned in section 3.2, every grid node is within γ distance

from the grid point of the grid cell. So the intra-regional route
is designed to be a hamiltonian cycle that visits each region point
once, and it’s also a TSP tour.

For example, if a region is covered by a grid with three rows
and four columns (see Fig. 3), the grid points and the dash lines
form a 3 × 4 grid graph. As illustrated in Fig.3, we can construct a
hamiltonian cycle in the grid graph.

Figure 3: A hamiltonian cycle in a 3 × 4 grid graph

But not all grid graphs have a hamiltonian cycle. As proved in



literature [16], an m × n grid graph has a hamiltonian tour if and
only if either m or n is even. Based on this theorem, we classify
the intra-regional route design issue into two categories: (a) m × n
is even; (b) m × n is odd.

If m × n is even, a hamiltonian cycle always exists in the grid
graph. We assume n is even, and m is odd or even. The intra-
regional route can be constructed as shown in Fig. 4(a).

For there is no a hamiltonian cycle in the grid graph when m × n
is odd, we adjust the intra-regional route to take one diagonal of a
grid cell in the grid graph(see Fig. 4(b)).

(a) m × n is even (b) m × n is odd

Figure 4: Hamiltonnian cycle construction in grid graphs

3.4 Data Gathering Scheme
After calculating the inter-regional route and the intra-regional

routes, ME concatenates them to a loop tour, and travels along the
loop tour periodically.

When ME arrives at each grid point, it stops and communicates
with the grid node. The grid node is the root of a local spanning
tree. It takes the responsibilities of disseminating queries over the
tree, gathering data from the tree, and delivering gathered data to
ME.

3.4.1 Multi-Point-Relay Tree Construction
The Multi-Point-Relay Tree Construction algorithm (MPRTC)

constructs a local spanning tree in each grid cell. It is encouraged
by the multi-point relays (MPR) [17] algorithm, and is stated in
Algorithm 2.

Algorithm 2 MPRTC algorithm
1: For each grid node (say x), start with an empty set MPR(x)
2: Put the one-hop neighbors of x in current grid cell into set N(x),

and put the two-hop neighbors of x in current grid cell into set
N2(x)

3: First select those one-hop neighbor nodes in N(x) as MPRs
which are the only neighbor of some node in N2(x), add these
one-hop neighbor nodes to MPR(x), and keep a mapping of
each MPR and the dominated subset of N2(x) in MPR(x)

4: While there still exist some node in N2(x) which is not covered
by MPR(x):
(a) For each node in N(x) which is not in MPR(x), compute the
number of nodes that it covers among the uncovered nodes in
the set N2(x)
(b) Add that node of N(x) into MPR(x) for which this number
is maximum, and keep a mapping of the MPR node and the
dominated subset of N2(x) in MPR(x)

5: Construct an MPR tree rooted at x based on MPR(x), where
each two-hop neighbor of x selects its MPR node as its parent

6: After constructing MPR trees in all grid cells, every node not
covered by any MPR tree requests to join an MPR tree as a
three-hop neighbor of the grid node either in its grid cell or in
a neighboring grid cell

Fig. 5 shows the MPRTC scheme in a grid cell, the left part
of the figure is the initial network connection, and the right part

illustrates the structure after the MPR selection. Node A is the grid
node. Node B, C, and D are all MPR nodes selected by the grid
node, and they together dominate all two-hop neighbors of the grid
node.

B

A

D

C

Figure 5: MPRTC scheme in a grid cell

For gaining good performance of MPRTC, we confine the diag-
onal length of each grid cell to no more than four times γ, so that
most sensor nodes in a grid cell are within two hops away from
the grid node. Given this constraint, the length of each side of the
square grid cell is limited to 2

√
2γ.

Apparently, the MPRTC algorithm divides the network into grid
clusters. In each cluster, the grid node is a cluster head, it can
deliver query message over its MPR tree, and gather sensed data
from the sensor nodes.

3.4.2 In-Grid Data Fusion
The In-Grid Data Fusion (IGDF) technique is efficient for short-

ening data transferring delay.
Data generated by sensor nodes in a grid cell are geographically

correlated, and could be fused at intersecting points of the MPR
tree when needed.

For simplicity, we ignore the computation cost and the possibil-
ity of high rate fusion in IGDF. The fusion policy is in a simple
step-by-step manner, which means the fusion point first aggregates
its own data with one input and next fuses the aggregation result
with another input until all the inputs are aggregated.

Figure 6: A typical MPR tree

For example, in the MPR tree shown in Fig. 6, grid node A
first fuses its data with the data from node B, and waits for the data
from MPR nodes C and D. Node C fuses data from the downstream
nodes (node E, F, and G) one by one, and then sends the final result
to node A. So does node D. After fusing all data from its down-
stream nodes (node B, C, and D), grid node A sends the final result
to the ME staying at the grid point.

Wu
′ = (Wu + Wv)(1 − δ) (7)

The resulting amount of data after every fusion is exhibited in
equation 7, where Wu and Wv are the amount of data in node u and



node v before current fusion, respectively. Wu
′ is the amount of

data in node u after fusing the data from node v, and δ is the fusion
factor.

3.4.3 Query Forwarding and Data Gathering
When ME arrives at each grid point, it stops and sends a QUERY

message containing a queryTime parameter. If a grid node receives
a QUERY message, it floods the QUERY message along the MPR
tree rooted at itself. When receiving the QUERY message, from the
end points of the MPR tree, all nodes send the data sensed before
the time point of queryTime to its upstream sensor node, until all
data is converged to the grid node. Then the grid node sends the
data to ME, and ME moves to next grid point after collecting the
data. Sensor nodes clear the data from its buffer after sending them
out.

Data fusion could be executed at the fusion points using the
IGDF algorithm.

4. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the GBMES al-

gorithm. For comparison, we also observe the performance while
implementing the (PBS) algorithm [8] to schedule the movement of
ME in each region.

4.1 Simulation Model
In our simulations, we randomly deploy 500 sensor nodes into

five predefined regions located in a 2000×2000m2 playground (see
TABLE 1).

Table 1: Deployment of the network
Region Scope (X1, X2,Y1,Y2) Number of nodes

I (90, 650, 170, 610) 100
II (560, 1070, 780, 1150) 80
III (170, 710, 1360, 1760) 90
IV (1330, 1790, 1380, 1870) 80
V (1340, 1910, 220, 910) 150

The grid cell size is set to 2.4γ, where γ is the transmission range
of sensor nodes and is set to 100 m.

Each sensor node is equipped with a same size buffer (2 Mb),
and the data transmission rate of sensor nodes and ME is 500 kb/s.

The data sampling rate of each sensor differs due to different lo-
cations or various stimuli. Without loosing generality, we randomly
set the sampling rate of each sensor node to a value ranging from
0.128 kb/s to 0.512 kb/s.

The parameters used in the simulations are initially set to the
default values above unless specified otherwise.

4.2 Impact of the ME speed
Fig. 7 illustrates the impact of the ME speed on buffer overflow

of the GBMES scheme and the PBS algorithm, as well as the impact
of fusion factors on buffer overflow in the GBMES scheme.

Given a fixed-length route, the ME will travel less time due to the
increase of the speed, and therefore the buffer overflow occurrence
rate is reduced. We can observe in Fig. 7, when the speed of ME
ranges from 0 to 16 m/s, the buffer overflow rate gradually descends
from 1 (the buffer of every sensor overflows) to 0 (no overflow oc-
curs). In PBS, buffer overflow keeps existing until the speed of ME
reaches about 12 m/s, while in GBMES, the critical speed is about
9 m/s.

When data fusion is exploited, GBMES performs much better
than PBS on reducing buffer overflow rate at the same ME speed.
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Figure 7: Impact of the ME speed on buffer overflow (δ is the
fusion factor)
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Figure 8: Impact of the fusion factor on the time delay of
GBMES (at the ME speed of 10 m/s)

Fig. 7 shows three fusion instances with fusion factor 0.2, 0.4 and
0.6, respectively. When fusion factor is 0.4, GBMES can guarantee
zero buffer overflow rate at the ME speed of 4 m/s.

The impact of fusion factor on the time delay of the GBMES
scheme is shown in Fig. 8. In a round, the route length in GBMES
is fixed, so the traveling time of ME running at a certain speed is
also fixed. When the fusion factor increases, the amount of data
transferred in the network decreases accordingly. Hence the data
transferring time is shortened.

4.3 Impact of the grid cell size
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Figure 9: Impact of the grid cell size on buffer overflow

Obviously, increasing the size of grid cell will result in a shorter
traveling route. But we can not increase the grid cell size arbitrarily
due to the constraints of the MPRTC algorithm (see section 3.4.1).
Within the acceptable range of the grid cell size (less than 2

√
2γ,

where γ is the transmission range of sensor nodes), we choose 5
points (2.0γ, 2.2γ, 2.4γ, 2.6γ, and 2.8γ) to simulate the impact of
grid cell size on buffer overflow.



The results in Fig. 9 show that the performance is becoming
better when increasing the grid cell size in both GBMES and PBS
schemes, although not so obviously. Compared with PBS, GBMES
performs better in each grid cell size setting.

The key difference between PBS and GBMES lies in route de-
sign. As illustrated in Fig. 10 , the average route length in PBS is
about 3 times the one in GBMES.

2 2.2 2.4 2.6 2.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Grid cell cize (× γ)

R
ou

te
 le

ng
th

 (
m

)

 

 
PBS
GBMES

Figure 10: Impact of the grid cell size on traveling route length
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Figure 11: Impact of the grid cell size on time delay(at the ME
speed of 10 m/s)

So GBMES scheme gains less traveling time than PBS due to the
shorter route length (see Fig. 11).

Unfortunately, this benefit is earned with the augmentation of
data transferring delay. In GBMES, nodes in the MPR tree need one
to three hops to transfer data to the grid node, and one more hop to
the ME. Compared with PBS, GBMES needs more data transferring
time when the amount of data transferred is the same, which is
confirmed in Fig. 11.

However, total time (the sum of traveling time and data transfer-
ring time) spent in GBMES is still less than that in PBS (see Fig.
11).

4.4 Impact of the data transmission rate
Both in PBS and in GBMES, increasing data transmission rate

will obviously reduce the data transferring delay, hence affects the
performance.

When the data transmission rate augments from 0 to 1000 kb/s,
the buffer overflow rate descends remarkably. In Fig. 12(a) (ME
Speed = 5) and Fig. 12(b) (ME Speed = 10), when data transmis-
sion rate increases, the buffer overflow rate of GBMES drops more
rapidly than that of PBS. Also there is a critical point existing in
each of these two instances, where GBMES and PBS have compa-
rable performance. In Fig. 12(c) (ME Speed = 15) and Fig. 12(d)
(ME Speed = 20), PBS has better performance than GBMES.

In general, GBMES scheme performs better in low-ME-speed
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(a) ME speed=5m/s
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(b) ME speed=10m/s
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(c) ME speed=15m/s
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Figure 12: Impact of the data transmission rate on buffer over-
flow

and high-data-transmission-rate circumstances, while PBS performs
better in high-ME-speed and high-data-transmission-rate situations.

4.5 Impact of the buffer size of sensor nodes
Fig. 13 shows the impact of buffer size on the performance of

GBMES and PBS at two different ME speeds. When the buffer size
of sensor nodes varies from 0 to 5 Mb, the buffer overflow rate
drops accordingly.
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(a) ME speed=5m/s
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Figure 13: Impact of the buffer size on buffer overflow

When the ME speed is 5 m/s (see Fig. 13(a)), there is no buffer
overflow in GBMES at the buffer size of 3 Mb, while the buffer
overflow rate goes to 0 until the buffer size reaches 4 Mb in PBS.
GBMES schemes with data fusion perform much better.

As the ME speeds up, PBS gains good performance faster than
GBMES. When the speed reaches 20 m/s (see Fig. 13(b)), both
GBMES and PBS can keep zero buffer overflow with smaller buffer
size, but the performance of PBS is slightly better than that of
GBMES. The GBMES scheme still overwhelms PBS if data fusion
is used.

4.6 Impact of the sampling rate of sensor nodes
To observe the impact of data sampling rate of sensor nodes, we

raise a concept of basic sampling rate (rs
b), and assume the sam-



pling rate in the network varies from rs
b to 4rs

b. Then we simulate
the impact of sampling rate on buffer overflow by adjusting rs

b from
0 to 0.64 kb/s.
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Figure 14: Impact of the sampling rate on buffer overflow

In these simulations, the speed of ME is chosen as 5 m/s. Fig.
14 illustrates the simulation results. The buffer overflow rate is in-
creasing rapidly with the augmentation of the basic sampling rate.
when the basic sampling rate reaches 0.64 kb/s, all buffers in PBS
and GBMES (including the ones with data fusion) get overflowed.
However the GBMES scheme still performs better than PBS at each
sampling rate.

5. CONCLUSION
In this work, we propose the Grid-Based Mobile Element Schedul-

ing (GBMES) approach which schedules a mobile element to peri-
odically gather data from a multi-regional network. The GBMES
algorithm reduces the time delay to an acceptable extent, and there-
fore gains good performance on reducing data loss due to the buffer
overflow of sensor nodes.
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