A Mesh Check Scheme against P2P Live Streaming
Attacks -

Jinkang Jia
School of Electronics and
Information Engineering
Beijing Jiaotong University
Beijing,100044,P.R.China
jinkangjia@yahoo.com.cn

ABSTRACT

With the wide spread of P2P streaming systems, there ap-
pear some hackers who try to pollute the system by inserting
fake data chunks into the system. These “dirty” chunks will
then be propagated to many normal peers, which will result
in the failure of the whole system. Considering the playback
quality and the burden of the client, most systems nowadays
don’t adopt any measures to protect the video content, such
as encryption, CRC, or other methods.

We think it’s more important to eliminate the polluters
actively than to prevent the peers from polluted passively. In
the paper, we propose a new scheme which tries to leverage
the P2P nature of the system. We piggyback some “check”
bytes in the data chunks exchanged between different peers.
On one hand, these “bytes” can verify the authenticity of
the data chunks, which prevent the diffusion of the polluted
chunks. On the other hand, they can also help to detect
and identify the “polluters” of the system. By simulation,
the effects of our schemes are evaluated and the results are
very inspiring. We think this light-weight solution against
the streaming attacks is promising and can be deployed in
real world.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed

Systems; C.4 [Performance Of Systems]: Raliability, avail-
ability, and serviceability

General Terms

Performance, Security, Measurement

*This work was supported in part by the Chinese NSFC un-
der Grant 60672069 and 60772043,China 973 2007CB307101
Chinese Ministry of Education under grant 20050004033 and
Beijing Jiaotong University under grant 2005SMO006.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Qshine08 July 28-31, 2008, Hong Kong, China.

Copyright 2008 ICST ISBN 978-963-9799-26-4

DOI 10.4108/ICST.QSHINE2008.3853

Changjia Chen
School of Electronics and
Information Engineering
Beijing Jiaotong University
Beijing,100044,P.R.China
changjiachen@sina.com.cn

Keywords

P2P, live streaming, pollution

1. INTRODUCTION

P2P live streaming systems [1, 2, 3, 4, 5], such as Cool-
Streaming, PPLive, PPStream, have become one of the most
popular applications across the Internet which has attracted
large number of users in rather short period. Abundant pro-
gram resources, convenient access method, low configuration
requirements, good playback quality, free service, they all
contribute to the great success of these systems.

Like some P2P file-sharing applications, most commercial
live streaming systems adopt the mesh-based data-driven
mechanisms [3] for video diffusion. On one hand, the P2P
nature of the system helps to increase the spread speed of
video data chunks and ease the server load at the same time.
But on the other hand, the direct exchange between peers
also incurs many security problems. Some hackers reverse-
engineered the private protocols and try to pollute the whole
system, and some researchers crawl many peers to analyze
the characteristics of users and evaluate the overall perfor-
mance. These behaviors all do no good to the system, or
even ruin the whole system. However, due to the limitation
of bandwidth and processing cost, most deployed streaming
systems nowadays don’t apply any encryption algorithms to
protect the protocols as well as the video chunk data.

As far as we know, there is little work which has paid
attention on the pollution of these P2P streaming systems.
In [6] the authors have revealed how serious the number
of peers will decline after the pollution is inserted into the
streaming system. But the solutions proposed in the paper
are either hard to be deployed or heavy-weight and complex.
We will discuss these schemes in section 3.

In the paper we propose a simple scheme which is easy to
be put into real deployment. A mesh-based check network
is formed by all neighbors of one peer. Each peer is mon-
itored by others and the reputation between each pair of
connection is accumulated by serving good content to each
other. Several fake chunk exchanges will be discovered by
the downloader and the connection between the downloader
and the polluter is cut immediately. This lightweight and
self-rescue mechanism will eliminate the fake chunk intrud-
ers and effectively prevent the system from being polluted.

Besides, we also developed the codes for simulation. We
try to reveal the relationship between the vital parameters
of system design and pollution effect. And our scheme is
proved to be effective to find out the polluters at early stage.

peri
Typewriter
Copyright 2008 ICST ISBN 978-963-9799-26-4

DOI 10.4108/ICST.QSHINE2008.3853

peri
Typewriter

The rest of the paper is structured as follows. In Section
2, we will introduce some present work concerning pollu-
tion in various P2P systems. We will go on to present the
infrastructure of these mesh-based P2P streaming systems
as well as some solutions on anti-pollution in Section 3. In
Section 4, our light-weight scheme will be proposed for the
identification of fake chunks and polluters as well. The sim-
ulation on pollution diffusion and validation of our scheme
are given in Section 5. We will conclude our work and raise
some future work in Section 6

2. MOTIVATION AND RELATED WORK

With inborn nature of free sharing of various P2P sys-
tems, abundant resources and great convenience have been
brought to users. However, as side-effects, the security prob-
lems have become more and more prominent and serious,
which will decide the future development of P2P technol-
ogy.

For file-sharing systems, because the illegal sharing of
these copyrighted files decreases the benefits of the audio and
video companies, the fight between the copyright protectors
and free users becomes more and more fierce. Some protec-
tors even hire some pollution companies to help them pre-
vent the files from being propagated. With the violent con-
troversies in commercial and industry fields, there are some
measurement-based or theoretic studies which pay great at-
tention to the pollution of P2P networks [7, 8, 9, 10]. As
far as we know, [8] on FastTrack network is the first which
tries to reveal the situations of pollution. It’s observed that
the pollution is wide spread and is pervasive especially for
recent popular songs. The following studies [7, 9, 10] have
done much in modeling of the pollution propagation process
through theoretic analysis. In [9] the authors adopted the
well-known model for disease spread and proposed the mod-
ified model and some counter-measures for the diffusion of
polluted files. In [10], some non-linear differential equations
are listed and the authors developed a suite of fluid models
to characterize the pollution proliferation of P2P systems.

For streaming systems, things are a little different, be-
cause it’s the companies themselves instead of free users that
publish the streaming content. Usually, companies who are
operating these P2P systems have paid content providers
for publishing the video or audio programs. The fight lies
mainly on the hackers and these companies. However, the
pollution consequences are much more serious for streaming
systems compared with file sharing systems, and some fake
chunks will make the service of the whole system unavail-
able. By experiments|[6], it has been proved that the number
of users will decrease rapidly after the insertion of polluted
chunks by one high-bandwidth polluter. Therefore, the pol-
lution attack is more devastating for streaming systems.

Our motivation for the research is two-fold. On one hand,
from the commercial perspective, these streaming systems
are becoming more and more widely used by millions of
audiences from every corner of the world. Therefore, the
failure of the service makes the service providers of these
commercial systems begin considering the pollution prob-
lems. On the other hand, from the technological view, these
P2P streaming systems have their own characteristics which
make the old methods for file sharing systems cannot be
adopted any more. New techniques should be proposed to
meet the requirements of the live P2P systems. Firstly, the
rigid time demands for chunk diffusion makes the protocols

Peer List Server

Channel List Server

Program Server

Figure 1: Communication procedures for typical
P2P streaming system

must be light-weight and easy to be implemented. Secondly,
the heterogeneous processing capabilities of different peers
further increase the difficulty and make old method unavail-
able such as encryption, hashing, and so on.

Based on the motivations, in the paper we propose a light-
weight scheme to protect the system from polluted. Our
solution tries to isolate the polluters actively instead of check
each chunk passively. In addition, the modification of the
protocol is trivial. The key scheduling algorithms and the
connection management policies needn’t be changed at all.
The only modification of the client is some codes on check
algorithms and the format of queries(responses).

3. SYSTEM INFRASTRUCTURE AND DE-
FENSE SOLUTIONS

It is shown the whole procedure how a P2P streaming
user joins the system in Fig. 1. After launching the client,
the software will automatically connect to the channel list
server to update channel lists. After the user selects the
channel to watch, he has to wait several or tens of seconds
for video playing. During this period, the client will firstly
request the peer list server for some other users who are
watching the same channel. Each user is identified by its
IP address and the listening port. After harvesting enough
<IP, port> pairs, the client will try to connect these peers
to download data chunks. In most systems, each chunk is
identified by the playtime offset which is encoded by the pro-
gram source. After the user successfully connects to other
peer, they will exchange the playtime offset and the buffer
maps (BMs) which denote the availability of the chunks pe-
riodically. Based on these BMs, the client will schedule to
download which chunks from which peer. After receiving
enough chunks in the buffer, the media player will pop up
immediately and the program begins playing.

Therefore, the whole topology of the system looks like a
mesh instead of other structured topology, such as binary
tree, forests, and so on. Thus, if one polluter pretends to
be a normal peer and gets registered successfully into the
system. In procedure 3 of Fig. 1, he can easily insert fake
chunks, which will be further propagated by normal peers.
The diffusion of the pollution will not only decrease the play-
back quality but also even destroy the whole system.

There are some solutions proposed by [6], we will analyze
their advantages and shortcomings in detail next.

Traffic Encryption: This scheme works well only if the
system under consideration isn’t open source. However, by

reverse engineering of the codes of client, the system cannot
be kept secure any longer. If the reverse engineering process
is thorough enough, and considerable fraction of the system
protocol and messages can be revealed, thus facilitating the
polluter to inject pollution into one or more streams. Fur-
thermore, the decryption of the encrypted data chunk is still
time-consuming and may deteriorate the playback quality
for some old PCs.

Blacklisting: One method is to find the “unusual” peer
who behaves different from others. For example, polluters
may declare they have all data chunks in their BMs to at-
tract more benign peers to download from them. Another
method is to identify if one chunk is polluted based on min-
ing characteristics or some audio/video techniques. In addi-
tion, by identifying these polluters, peers need to broadcast
the blacklist to other peers. The disadvantages of the scheme
are obvious. Firstly, one attacker may behave like an ordi-
nary peer and create fake chunks similar to ones received
from neighbors. Even worse, the polluter can even send du-
plicate valid chunks to different chunk queries, which can
successfully avoid being detected by all above techniques
adopted. Secondly, the broadcast of the blacklist takes time
and may incur the so-called “broadcast storm”. Further-
more, it should be noted that if the protocols of the stream-
ing system is open source, the polluter may initiate a “black-
list announcing attack” by just slandering others instead of
spreading fake chunks.

Hash verification: Similar to BitTorrent, some researchers
proposed to introduce some hash information to verify the
integrity of the chunks. In this way, each peer needs to
get the hash of each chunk from the source. Therefore,
the source server’s load will be much higher if the system
adopts the centralized fashion. To relieve the load, to dis-
tribute the hashes through the P2P system itself has been
proposed. However, it’s easy for the polluters to insert the
“fake chunks” and corresponding “fake hashes” simultane-
ously, which will result in peers being fooled into believing
the integrity of the chunk. In brief, hashing method is not
a viable solution for P2P live streaming.

Chunk signing: In this scheme, some “authentication in-
formation” needs to be transmitted to the receivers along
with the chunks. The authentication information can either
be provided by the source (in which case the load on the
source might be high) or could be distributed through the
P2P system itself, in the form of a separate stream or be pig-
gybacked onto chunks. There are two reasons which prevent
the scheme from being deployed in real systems. First, the
high computational requirements are needed for all peers.
Secondly, some polluters can still insert fake “authentication
information” to confuse the check of each chunk.

In all, the schemes mentioned above can be easily made
ineffective or are hard to be put into real deployment due to
their obvious disadvantages. As far as we know, our scheme
is the first which try to utilize the correlation among dif-
ferent chunks and randomize the check information to pre-
vent peers from pollution. The formation of the mesh check
topology can assure the polluter can be easily identified and
eliminated. Furthermore, our scheme is distributed and can
be deployed easily.

4. MESH CHECK SCHEME FOR ANTI-
POLLUTION

As far as we know, no current deployed systems take poli-
cies to examine the authenticity of data chunks, therefore,
it’s easy for the polluters to insert fake chunks and pollute
other benign peers. The consequences are destructive. Fur-
thermore, some benign peers who receive fake chunks will
act as "middle” polluters unintentionally and accelerated the
diffusion of the pollution. Even worse, the frequent freezes
of the images will make some peers leave the system forever.
The degradation of the playback quality and the decrease of
the amounts of peers will finally result in the unavailability
of the streaming service. Based on the P2P nature of these
live streaming systems, we devised a simple scheme to as-
sure the integrity of data chunks and eliminate attackers as
well. In addition, our scheme is light-weight and easy to be
deployed. Next we will introduce our scheme in detail.

4.1 'Two Observations

The scheme we propose is based on two characteristics of
the real deployed systems from our measurements[11, 12].

1. The frequent exchange of the BMs which indicate the
(un)availability of data chunks in the buffer gives the
peer the perspective and ability to schedule the down-
loads of data chunks from different peers. Meanwhile,
the understanding of the chunk distribution in neigh-
bors’ buffers may help the peer verify the chunk re-
ceived from peer A by peer B which has the chunk;

2. From the real measurement [11], it’s revealed that the
buffer update step of the peer is block-based instead
of chunk-based; the block must be a playable segment
which contains tens or even hundreds of data chunks.
This relative stability of the buffer can help us to utilize
the correlation among adjacent chunks.

4.2 Mesh-based Inter-chunk Check Scheme

The idea is very simple. All current deployed real systems
are pull-based instead of push-based. That is, each peer
will independently determine which chunk he will download
from which neighbor based on the BMs he received. Based
on these characteristics, one peer can piggyback some ultra
“check” bytes query of another chunk as he sends the request
for one data chunk. For example, when peer A requests data
chunk 7; from peer B, he can also piggyback another ques-
tion such as: what are the first two bytes of data chunk I
given peer B has I in its buffer. At the same time, peer
A can download data chunk I from peer C' and piggyback
the query as: what are the last two bytes of data chunk ;7
Thus, a verification network is formed. Each data chunk re-
ceived from one peer can be validated by answers from other
peers and the monitoring mechanism among each other is
formed consequently. The neighbors of each peer form the
mesh or even all-connected graph. In addition, some repu-
tation system can be adopted. Each neighbor of one peer
need to accumulate reputation by serving good chunks, and
a single fake chunk will ruin the reputation greatly. If the
reputation decreases below some threshold, the peer will cut
off the connection actively to the neighbor who serves fake
chunk. It should be noted that even the chunk is encrypted,
it makes no difference for our scheme to work effectively.
Piggybacking encrypted “check” bytes also works well.

In addition, our scheme is distributed and each peer need
only make decisions on its own. To make it clear, we will
give a simple scenario to illustrate how our scheme works.

TN Piece have

("] Picce absent

Wl Picce uploaded

%4 Piece check uploaded

Piece 1: g ':|'> [|

> Pisbud
ece @ @
Picce 5 - —

Figure 2: Two typical scenarios of our scheme

As illustrated in Fig. 2, suppose that peer C has downloaded
from and simultaneously uploaded chunks to two benign
peers for some time: peer A and B, Which are shown in
black line. After polluter P joins the system and tries to
spread fake chunks by announcing its BM to other peers,
peer C' may request to download chunks according to present
scheduling algorithms. As shown, suppose that peer C' will
send queries to pull chunk 1, 3, 5 respectively from peer P,
A, B, the scheduler of peer C' should also piggyback some
“check” bytes requests for the chunks. For example, When
requesting chunk 3 from peer A, the scheduler of peer C
will randomly pick another chunk which has at least two
duplicate copies in all its neighbors’ BMs, including peer A.
After determining the chunk for verification, it will go on
to choose two or more random bytes of the chunk as the
“check” bytes of the chunk. Consequently, the chunk 3 as
well as two random-selected “check” bytes of chunk 1 are
downloaded. It should be noted that once the “check” bytes
of certain chunk are chosen, they will kept unchanged for
later requests. Therefore, as each peer of the system takes
the responsibility of serving certain chunks, it is also looked
on as the “monitor” of other chunks. Thus, though AB, AP
and PB aren’t connected physically, in fact, they have been
connect logically by the check mesh which are represented
by red lines in Fig. 2.

After accumulating some chunks and “check” bytes in the
buffer, peer C will check the authenticity of the chunks. Two
“cutting rules” are proposed to help to judge if the chunk is
fake or not.

Rule 1: If none of “check” bytes of certain chunk can be
matched to the chunk and there exists two or more “bytes”
providers which have responded with the same “bytes”. Then
we will reward these neighbors with same “bytes” with higher
reputation and punish the uploader and all the other “bytes”
providers. See chunk 1 as Fig. 2 for illustration.

Rule 2: If the chunk has been matched to one of the
“check” bytes, then the reputation of the uploader and the
matching “check” bytes providers should be increased. Mean-
while, those who provided the fake “check” bytes should be
punished severely. See chunk 5 in Fig. 2 for illustration.

Adopting these rules, the connection will be cut off if the
reputation of the connection drops below some predefined or
dynamic threshold. When devising the reputation system,
we prefer to take the “Additive Increase/Multiplicative De-
crease (AIMD)” which has been adopted in controlling the
window size of TCP. For each peer, it can keep record of
behaviors of each neighbor. The reputation of each connec-
tion can be accumulated correspondingly by serving good

chunks to this peer, if any one of the neighbors reports bad
“check” bytes or bad chunks, the reputation will drop greatly
and the connection will be cut off if the reputation is below
some threshold. Our scheme is totally distributed and the
reputation doesn’t need to be diffused in the system. This
design further eliminates the possibility of broadcasting fake
reputation by attackers in the system. Suppose that most
peers are benign peers, our scheme works very well and a
few polluters cannot attack the system at all.

4.3 Discussions

The advantage of our scheme is obvious. Each polluter can
be quickly identified by the adoption of the “check” bytes.
If the polluter tries to transfer the fake chunk, it can be
easily found by the two identical “check” bytes of other be-
nign peers and is cut off consequently. If the polluter tries
to respond with the bad “check” bytes, it can also be recog-
nized by the matching of chunk which another benign peer
uploaded and other correct “check” bytes. Therefore, the
polluter has to do good no matter for the chunk itself or the
“check” bytes so as not to be disconnected by other peers.

In addition, we can assume an extreme scenario. It’s pos-
sible for two or more malicious polluters to collude together
to give a false comment on other good node. But in reality,
it’s hard to be the case. Firstly, the possibility that one peer
connects to two or more attackers simultaneously is rather
trivial. The inborn connection scheduling scheme for each
peer will tend to keep neighbors selectively instead of ran-
domly. That is, even the malicious peers try to pollute the
specific benign peer, this peer may not keep both of these
connections simultaneously. Secondly, even two or more at-
tackers have connected to one target peer, the pollution can
also be detected for there are more benign connections than
malicious ones. The cooperation of the attackers may suc-
ceed in fooling the scheme one or two times, they are de-
termined to be found by other benign peers consequently.
Finally, the random selection of peers who provide “check”
bytes and real chunks will make the cooperation among ma-
licious peers hard to be deployed.

Given all protocols are reverse-engineered, the random se-
lection of chunks and corresponding bytes for verification
further increases the difficulty for polluters to diffuse fake
chunks. And The large number of normal peers and con-
nections per client makes it harder to conspire among all
polluters. Besides, our scheme is easy to be deployed. The
client developers need only add some simple protocols to
query and receive “check” bytes while keeping all the other
important policies untouched, such as the scheduling algo-
rithms. The bandwidth needed to transfer these bytes and
the processing capacity for peers are trivial.

5. SIMULATION AND EVALUATION

In our simulation, we adopt discrete event-driven mecha-
nism which tries to catch main characteristics of the system.
5.1 Assumptions

To pay more attention on the anti-pollution effects, some
basic assumptions are adopted and listed below.

1. All peers join the system at the beginning of the pro-
gram, and to evaluate the function of our scheme, we
assume that the polluted peer won’t leave the system;

2. To imitate the mesh topology of the peers, we adopt

Figure 3: Sample topology for simulation

the random connected graph as the topology of the sys-
tem. The degree of each peer is generated according
to the degree distribution which is revealed by the real
measurement. In Fig. 3 we plotted a sample topology
in which all peers except the seed have the degree of
3. To some extent, this mesh-based topology can ac-
celerate the spread rate of chunks as well as pollution;

3. To simplify the system, we assume that all connections
have the same bandwidth. We think this simplification
will not influence the pollution diffusion process much.
In addition, each peer has the same buffer size as well
as the update size of block.

5.2 Parameters and Metrics

For the convenience of statement, we’d like to define some
key parameters of the streaming system.

e Buffer size (S chunks): the buffer needed to store the
video data chunks. In our simulation, we assume that
the unit of S is chunks instead of bytes;

e Seed bandwidth (Bs): the maximum number of chunks
which can be served by the seed for one peer in one
unit of time;

e Peer bandwidth (B): the maximum number of chunks
one peer can serve for another peer in one unit of time;

e Seed degree (Ds): the maximum degree for the seed;
e User number (N): the number of normal peers;

e Playback rate (r chunk/s): the playback rate for the
program. We still adopt chunk/s as the unit instead
of byte/s;

e Update pace (U s): the pace for the buffer to update.
Because the update of the buffer is block-based instead
of chunk-based, in the simulation, we assume that each
peer will update its buffer when it has downloaded the
whole chunk number of r *x U in size. That is, it has
downloaded the video chunks which can be played for
U seconds. Intuitionally, the longer the update pace
is, the more “check” bytes can be used to verify the
integrity of the data chunks;

e Placing factor (f): from our work[11], we have proved
that each peer will determine its own playback start
point based on the first several BMs he received. That
is, it will choose the start point (offset) according its

Table 1: Parameter Settings
N S f INy | U | r P
500 | 100 | 0.34 | 1 1 [10 | Defend
B | Ds | Bs | Dp | By | T; deg
10 5 20 5 | 20 | 15 | uniform

neighbors’ buffer. The peer will choose the offset as
formula (max(P;) — min(P;)) x f +min(P;) ,where P;
denotes all pieces that are in peer ¢’s neighbors’ buffers;

e Polluter number (Np): the number of the polluters;

e Polluter degree (Djp): the maximum degree of the pol-
luter;

e Polluter bandwidth (B,): the maximum number of
chunks that each polluter can upload to each peer in
one unit time;

e Polluter join time (73 s): the time unit when the pol-
luters join the system;

e Polluter strategies (Ps): there are two ways for the
polluters to adopt to spread fake chunks;

— Positive attack (Attack): In order to spread the
pollution more quickly and widely, one polluter
will declare that it has all chunks which its neigh-
bor needs by filling BMs with all “1”’s. Its neigh-
bor will tend to download the chunks from this
polluter if it’s the sole owner of some chunks.

— Passive pollution (Defend): To hide the identity,
some polluters will act as ordinary peers and obey
all the policies the protocol regulated. By imitat-
ing the behavior of normal peers, the polluters are
hard to be identified by current systems.

e Degree distribution (deg): the degree distribution of
normal peers. In our simulation, we generate the de-
gree for each peer which lies between 5 and 10 uni-
formly. That is, the minimum degree for one peer is 5,
and the maximum is 10.

In our simulation, unless pointed out specifically, the basic
parameters we adopted are shown in table 1. We assume
that all polluters take the Defend scheme by default.

Because the source plays the video at r chunks per sec-
ond, it should be noted that there are r % t chunks which
are made available in total at time slot ¢{. However, some
early chunks will disappear due to the slide of peers’ buffers.
In the following graphs, we will take the time slot as well
as chunk sequence to show the pollution or anti-pollution
processes.

5.3 Pollution Diffusion

In the subsection, we will discuss the relationship between
some key parameters and the pollution diffusion process. To
smooth the random error, we repeated the simulation of each
scenario for 10 round. Then we calculate the average of these
metrics and the results are plotted consequently.

| | ——defend
- = -attack

»
2
=

iio I M i 'JW i W A W | wwm

—15

| “‘
"\

8

g8
i

g 8 8
8 5 g

g
Infected Peer Number

Infected Peer Number
g

s &

5

g

=1 polluter
= 5 polluters
=10 polluters

Infected Peer Number

0 50 100 150 200 250 300 350 400 450 500 o 5
Chunk Number

Figure 4: Polluter join time

5.3.1 Polluter Join Time

When the program source initiates to play, all buffers of
the connected peers are empty. It’s more effective for pol-
luters to insert fake chunks as earlier as possible.

The simulation results are plotted in Fig. 4. The polluter
adopts the Attack strategy and we fine-tune T to be 5, 10,
15 respectively. It’s obvious that the earlier the polluter
joins the system, the higher percentage of certain chunk will
be infected. The polluter occupies all benign peers’ buffers
ahead of the source. Considering the red curve for the join
time at 5, of all 500 peers, on average there are more than
400 peers who receive fake chunks during all the time for
simulation. On such condition the whole system will be
destroyed and it’s very hard to recover. The final decline is
due to the end of our simulation, which can be neglected.

Another hint for us is that the pollution effect will be
stable when the polluter joins the system after most buffers
of peer has been filled with good chunks. It means that it’s
same for the polluter to join the system at 15 or 150. Because
each peer has more candidate uploaders for each chunk, it’s
a little difficult for the pollution to spread widely.

To prevent the system from being polluted at the early
stage, we propose two heuristics here. Firstly, for program
source, it can do the BM check at the beginning of one play.
That is, it can recognize the polluter by querying BMs to
each peer who tries to join the system. If the BM contains
the chunk indicators which the program source has not pub-
lished, the polluter can be identified and blocked by the
source. By this way the positive attackers can be eliminated
from the system. Secondly, for client, the scheduler can send
more chunk queries to the program source instead of other
peers if the peer list returned by the source is below some
threshold. Besides, the passive pollution can be eliminated
by our scheme which will be discussed later.

5.3.2 Polluter Strategies

We will compare the pollution effects brought by different
strategies in the subsection. As shown in Fig. 5, it’s obvious
that the adoption of positive Attack strategy can pollute
more peers than the passive conservative Defend scheme
do. When there is one normal peer which received at least
one fake chunk in one update pace (time unit), the infected
peer number will be added by one. Therefore, the y-axis
denotes the number of peers who have once received bad
chunks in the time slot. After the polluter joins the system
at time slot 15, the pollution spreads like the disease and
reaches stable after some time. Under same conditions, the
aggressive scheme can infect more than 80 peers while the

Time (s)

Figure 5: Polluter strategies

i
Time (s)

Figure 6: Polluter Number

passive one can only affect less than 30 peers.

5.3.3 Single Polluter vs. Multiple Polluters

In Fig. 6 it’s plotted how the polluter number will influ-
ence the pollution spread process. It’s revealed that more
polluters will infect more benign peers. However, it doesn’t
mean that the pollution effect can be good enough by solely
increasing the polluter number. From the graph, it’s re-
vealed that the infected number of peers increases much
when there are 5 polluters in the system comparing with
only 1 polluter. When the polluters increase to 10, the in-
crease rate is not high enough as before.

In fact, the phenomenon can be explained by the classical
model of disease spread. After there is more than half num-
ber of peers infected, the possibility that an infected peer en-
counters another benign peer becomes less than that of the
encounters between two infected ones. Thus the infection
rate will decline correspondingly. In addition, the relative
stable topology and the continuous shift of chunks in buffer
will hinder the further diffusion of pollution. In brief, there
exist an optimal number of polluters if peer number N is
fixed. It’s rather difficult to infect each peer in the system.

5.4 Our Scheme

In the subsection, we will evaluate the performance of our
scheme on hindering the pollution diffusion. We will firstly
consider the one polluter scenario, and then go on with the
discussion of multiple polluters. To eliminate the influence
of other parameters, we fixed the topology of the simulation
for each scenario. Thus the simulation will be run for only
once instead of 10 rounds in last subsection.

5.4.1 One Polluter Scenario

It’s plotted in Fig. 7 the anti-pollution effect of our scheme,
and it’s shown how the infected number of benign peers
evolves without or with our scheme. It’s obvious our scheme
works well in cutting the source of the pollution. From our
simulation, all 5 connection of the polluter are cut after the
polluter stays in the system for 4 time units, that is, before
20 second in our simulation. However, the pollution still
exists for about 11 time units due to the differentiation of
buffers of other benign peers. Furthermore, there are 23 of
1871 connections among benign peers which are cut off, for
they have relayed some fake chunks. These side-effects are
trivial compared with the large number of connections. Be-
cause the pollution sources are eliminated successfully, the
buffer slide of all peers helps the system clean again.

From the chunk view, we replot the polluted number for

- Swith
- Swithout

k| without scheme
= with scheme

= fit curve for Swith
- fit curve for Swithout

8
-

Infected Peer Number
Infected Peer Number

10+

st .

= with scheme m8 % m _mggEs
. " = g n" L]
300 = without scheme .

200

10 15 25 30 35 a 0 150

20
Time (s)

Figure 7: Infected peer number

each infected chunk in Fig. 8. In the figure, the x-axis de-
notes the chunk sequence number while the y-axis represents
the polluted number of peers who received this chunk. We
adopt Swith and Syithout to denote the pollution diffusion
results with and without our scheme. To be more clearly, we
fitted these points with polynomial of degree 3. It’s revealed
that the pollution will decrease quickly and diminish at last.

From above discussions, we find the quickest way to re-
move pollution is to identify the pollution source as soon as
possible. After the source is found out and cut off, the slide
of the playback window will self-clean the system. Further-
more, our scheme doesn’t need the help of the servers at
all, and the self-secure mechanism with the help of all the
trusted neighbors works very well.

5.4.2 Multiple Polluters Scenario

When there are multiple polluters who join the system
simultaneously, our scheme does well, too. In Fig. 9 we
plotted the anti-pollution effect of our scheme when there
are 10 polluters joined at time unit 15. For each peer, if
there are more normal neighbors than the polluted ones,
these polluters will be correctly identified and cut off. Again
we noticed the fluctuation of the infected number of peers
during the convergence process. After careful observation of
their buffers, we confirmed that it is caused by the “middle”
relay peers who lag behind the source, and the distribution
of buffer offset. The peers who have downloaded fake chunk
from them may have cut off the connection, but these dirty
chunks will diminish finally because of the ongoing of the
playback process.

6. CONCLUSION AND FUTURE WORK

In the paper we propose a simple scheme to prevent the
normal peers from being polluted by polluters in various
P2P streaming systems. These polluters try to insert fake
chunks into the system and destroy the playback of other
normal peers. The consequence is devastative, which has
been proved by the measurements. Compared with other
solutions which have been proposed, our solution is more
effective and easy to be deployed. The key idea is simple.
Adopting the P2P nature of these streaming systems, the
check topology among all neighbors of one peer will be a
mesh consequently. Each chunk served by one peer will be
monitored and checked by others, and the peer is responsible
for the validation of chunks served by others simultaneously.
From our simulation, the connection can be cut off at the
beginning of the pollution diffusion.

2(;0 250 300
Chunk Number

Figure 8: Infected chunk

7.
[1]
[2]
3]

7]

8]

(10]
(11]

(12]

350 400 450 10 15 25 30 35 a

20
Time (s)

Figure 9: Multiple polluters

REFERENCES

http://www.pplive.com.

http://www.ppstream.com.

X. Zhang, J. Liu, and B. Li. Coolstreaming/donet: A
data-driven overlay network for peer-to-peer live
media streaming. In Proc.IEEE Infocom’05, Miami,
USA, Mar. 2005.

http://www.tvants.com.

http://www.vvsky.com.

Prithula Dhungel, Xiaojun Hei, Keith W. Ross, and
Nitesh Saxena. The pollution attack in p2p live video
streaming systems: Measurement results and defenses.
In Proc. ACM SIGCOMM’07(P2P-TV’07), Kyoto,
Japan, Aug. 2007.

Uichin Lee, Min Choi, Junghoo Cho, M. Y. Sanadidi,
and Mario Gerla. Understanding pollution dynamics
in p2p file sharing. In Proc.IPTPS’06, Santa Barbara,
CA, USA, Feb. 2006.

Jian Liang, Rakesh Kumar, Yongjian Xi, and

Keith W. Ross. Pollution in p2p file sharing systems.
In Proc.IEEE Infocom’05, Miami, USA, Mar. 2005.
Richard Thommes and Mark Coates. Epidemiological
modelling of peer-to-peer viruses and pollution. In
Proc. IEEE Infocom’06, Barcelona, Spain, Apr. 2006.
Rakesh Kumar, David D.Yao, Amitabha Bagchi, keith
W. Ross, and Dan Rubenstein. Fluid modeling of
pollution proliferation in p2p networks. In Proc. ACM
SIGMETRICS’06, Saint-Malo, France, Jun. 2006.
Jinkang Jia and Changjia Chen. Linear placement
scheme based study on offset delay distribution in p2p
streaming system. Submitted to IEEE/ACM Trans. on
Networking.

Jinkang Jia, Chunxi Li, and Changjia Chen.
Characterizing ppstream across internet. In
Proc.IEEE NPC’07, Dalian, China, Sep. 2007.

