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Abstract-The advent of new health sensing technologies has 
presented us with the opportunity to gain richer data from 
patients undergoing clinical interventions. Such technologies are 
particularly suited for applications requiring temporal accuracy. 
The Wolf Motor Function Test (WMFT) is one such application. 
This assessment is an instrument used to determine functional 
ability of the paretic and non-paretic limbs in individuals post­
stroke . It consists of 17 tasks, 15 of which are scored according 
to both time and a functional ability scale. We propose a 
technique that uses wearable sensors and performance sensors 
to estimate the timing of seven of these tasks. We have developed 
a sensing framework and an algorithm to automatically detect 
total movement time. We have validated the system's accuracy 
on the seven selected WMFT tasks. We also suggest how this 
framework can be adapted to the remaining tasks. 

I. INTRODUCTION 

Occurrences of stroke are severely taxing on the popu­
lation. In the U.S. alone, upwards of 800,000 strokes occur 
each year, with around 400,000 affected individuals surviving 
with some form of motor or cognitive deficit [6]. In many 
cases, this motor deficit takes the form of hemiparesis, or 
weakness or loss of function in one side of the body. It 
is known that, by working intensely with trained clinicians, 
those suffering from hemiparesis can often regain partial 
use of the affected limb. However, the numbers of people 
suffering from stroke is quickly outpacing the number of 
trained clinicians who can help this population to regain 
motor functionality. Thus, there is a large and growing gap 
between the quantity and duration of therapeutic interven­
tions that should be administered, and that which we are 
able to provide. This has led to a push innovative approaches 
to physiological interventions. To evaluate the efficacy of 
these interventions, suitable tools are required. The tools 
used to do this are referred to as assessment instruments. 
A number of instruments have been developed to evaluate 
functional recovery after stroke. For instance, some examples 
of instruments for determining upper-extremity functional 
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ability are the Chedokee-McMaster (CM) assessment, the 
Fugl-Meyer (FM) assessment, and the Wolf Motor Function 
Test (WMFT) assessment [20], [21], [25]. These assessments 
can indicate the extent to which an intervention is effective in 
helping the patient to regain a dimension of functional motor 
capability. 

Because assessment instruments utilize subjective mea­
sures, it is critical that these assessments are valid, reliable, 
and administered according to a standard. Within a study, 
there are numerous variables that can affect the administra­
tion of an assessment. For instance, in larger trials, there can 
be multiple sites and multiple examiners. Such variability has 
led to studies that seek to develop proper standardization, 
organization, and administration of large multi-site trials [9], 
[19]. 

Motivated by these concerns, we propose the technological 
solution of automating assessment instruments for motor 
task rehabilitation. We suggest using a wearable motion 
sensor and an overhead camera to administer the WMFT. 
The WMFT is ideal for a number of reasons. First, it is a 
reliable and valid instrument for determining upper extremity 
(UE) functional ability [25]. Second, it is scored according 
to time and a functional ability scale. An instruction manual 
indicates how the tasks should be measured and scored. 
According to this manual, the task movement time is obtained 
by a clinician with a stopwatch. Using our sensors, we can 
obtain this timing information for various WMFT tasks with 
a higher degree of accuracy and consistency. 

An added benefit of automating assessments is the poten­
tial to save time for clinicians. The WMFT can take more 
than two hours to complete on both limbs. For large clinical 
trials, there may be many clinicians capable of administering 
assessments. However, smaller trials have limited resources 
and access to clinicians. By automating the assessment, 
we can shift time normally spent in the provision of the 
assessment to the provision of the therapeutic intervention. 

In the following, we will describe our system's capabilities 
and the WMFT tasks on which it can be used. We will discuss 
the results of a technological feasibility study, the system 
accuracy, and the extension of our system to the remaining 
WMFT tasks. Finally, we will discuss the next steps for the 
technology. 
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TABLE I 
WOLF MOTOR FUNCTION TEST: TASK LIST 

1. Forearm to table (side) 
2. Forearm to box (side) 
3. Extend elbow (side) 
4. Extend elbow (weight) 
5. Hand to table (front) 
6. Hand to box (front) 
7. Weight to box* 
8. Reach and retrieve 
9. Lift can 
10. Lift pencil 
II. Lift paper clip 
12. Stack checkers 
13. Flip cards 
14. Grip strength* 
15. Tum key in lock 
16. Fold towel 
17. Lift basket 
* Indicates tasks that are not timed. 

II. THE WMFT ASSESSMENT 

The Wolf Motor Function Test (WMFT) assessment is 
designed to evaluate upper extremity (UE) motor deficits 
for individuals post-stroke or traumatic brain injury (TBI) 
of mild to moderate severity. It was designed to help link 
treatment planning with the desired functional restitution for 
a patient. The assessment requires the participant to perform 
17 functional tasks (see Table I). The WMFT utilizes time 
and a functional ability (FA) scale to score the tasks (15 of the 
tasks receive this score; the remaining 2 are strength tests). 
The tasks are arranged in order of increasing complexity, and 
from proximal to distal joints. The WMFT has been shown 
to be both valid and reliable [25]. 

The 17 tasks include gross motion (e.g. lifting the arm 
from the lap to the top of a box on a table), forearm 
pronation/supination (e.g. turning a key 1800), dexterity (e.g. 
flipping cards and stacking checkers), and grip strength 
(measured with a dynamometer). Most WMFT tasks require 
a table and chair, both of which are standard in dimension, 
and placed with a set orientation and distance with respect 
to each other. For tasks that require the tabletop, there is a 
template that is taped down to indicate object placement and 
success conditions (e.g. when extending the elbow, the thumb 
must pass a specific line). The template is symmetric, as the 
WMFT is done for both limbs. The test is also video taped, 
with video cameras placed in pre-determined, fixed locations. 

It is important to note that, while the timing is measured 
in real-time, the FA score is often determined post-hoc after 
watching video data. Thus, automating the time measurement 
is effectively automating the assessment. In this paper, we 
describe how to obtain the time score for these tasks using 
our sensor framework. We note that there are aspects of the 
WMFT that are not accommodated by our system as yet 
(e.g. offering encouragement during task performance). We 
explore these, and the extension of this work to additional 
WMFT tasks, in Section VII. 
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III. BACKGROUND: AUTOMATED ASSESSMENT 

Automated assessment is a sub-category of technological 
approaches to health care known as "telemedicine." The 
dominant approach to automation of assessments has been 
to use technological devices to quantitatively measure a 
physiological output and to determine its relationship to func­
tional ability. Mazzoleni et al. developed a robotic apparatus 
through an iterative design process with clinicians, stroke pa­
tients, and engineers [17]. The robotic apparatus is designed 
to measure force and torque (FIT) applied by the user during 
the performance of 6 activities of daily living (ADL) tasks 
[15]. The system restricts users to isometric movements and 
makes use of forward models to determine patient-generated 
forces and torques. Balasubramanian et al. developed a new 
apparatus that also used FIT data [7]. Using a robotic device, 
they sought to quantify the required amount of assistance, 
motion smoothness, and movement synergy in participant 
motions. Both papers focus on the correlation of quantitative 
FIT measures with functional motor characteristics. 

A large body of work in this field focuses on the correlation 
of quantitative physiological measures to existing assessment 
instruments, including those mentioned in Section I. Cinkelj 
and Van Dijck further Mazzoleni's work by describing the 
robot's software and by evaluating posterior probability pro­
files of the robotic system [8], [10]. They are able to show 
correlations between the quantitative FIT measures and the 
FM score. 

An alternative approach to robot-aided assessments is 
to use simpler, sensor-based systems. One feature that is 
assessed in patients post-stroke is relative levels of proprio­
ception in the affected limb. Leibowitz et al. focused on this 
issued by developing a system where sensors are worn on the 
hand; the participant is asked to move their hands to target 
locations indicated by a screen [16]. This system was able 
to measure proprioception with more accuracy and resolu­
tion than standard "up/down" tests administered in practice. 
Bonato et al. affixed tri-axial accelerometers to a subject's 
arm [14]. They then performed the WMFT and compared 
accelerometer readings for the participants. The goal of the 
study was to determine if different functional impairment 
levels could be distinguished in the raw accelerometer data. 
Hester et al. correlated accelerometer data from the trunk and 
arms to CM, FM, and WMFT scores using a linear regression 
technique [13]. They extracted a number of temporal and 
spectral features from the signals, and evaluated correlations 
with the WMFT FA score. 

Our approach is to systematically evaluate the WMFT 
tasks with the goal of automation. As we have suggested, we 
focus on timing because timing is the only measure taken in 
real-time. Automating the timing of the WMFT accomplishes 
our stated goals of minimizing the burden on and need for 
trained clinicians. Subsequent evaluation of the video data 
can be used to determine the FA scores. 

IV. AUTOMATED ASSESSMENT FRAMEW ORK 

We have devised an experimental setup to evaluate the 
efficacy of our system that uses a combination of wearable 



sensors and perfonnance sensors. 

A. Wearable Sensors 

In our experimental setup, the user wears a single sensor on 
the wrist of the limb under evaluation. The wearable sensor 
used in this study is an inertial measurement unit (lMU) 
developed in the USC Interaction Lab. This device has been 
validated in previous studies [22], [24]. The IMUs rely on 
inertia-based MEMS sensors to obtain motion infonnation 
from the user. Each IMU contains a 3-axis accelerometer, 
three single-axis rate gyros, and one single- and one dual­
axis magnetometer. This design is an updated version of that 

presented in our previous work [I8]. 
The IMU sensor outputs are low-pass filtered (using analog 

filters) and sampled by a lO-bit AOC. An Atmel@ AT­

mega324 microcontroller reads the digitized sampled data, 
arranges them into individual packets, and transmits each 
packet (along with a timestamp) to the central computer using 
the I2C bus interface. Each IMU is enclosed in a custom 
plastic enclosure and secured to the user using a Velcro strip 
(Figure 1). The lightweight enclosure has a concave shape 
in order to contour to the human body. 

Fig. I. The motion suit worn by the participants consists of the IMUs and 
wearable computer. In our experiments, only one IMU is used. 

B. Wearable Computer 

The central control unit of the motion suit contains a com­
puter, a battery pack, a power converter, and other discrete 
components (see Figure 2). Our chosen hardware platfonn 
is the Gumstix@Wifi-Stix pack, a small Linux computer 
(80mmx20mm) with a 400MHz processor with 64MB of 
RAM. Wireless communication is facilitated by a Netwifi­
MicroSO wireless transmitter. The transmitter, which in­
cludes an antenna, is FCC-certified and can use the 802.11 (b) 
and 802.11 (g) transmission protocols. The small size and 
form factor allow for easy packaging of the computer for 
wearable applications. It is powered by a polymer lithium ion 
cell phone battery pack. The Gumstix has a large developer 
community, and software for a number of interface devices 
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(including the I2C and SPI data transmission protocols) is 
readily available. An advantage of the Gumstix platfonn 
is that it lends itself to development for various software 
suites, such as the open source Player/Stage development 
environment that we have employed [12]. The entire system 
is called the motion suit, and is pictured in Figure 1. 

Fig. 2. The central controller worn on the participant's body contains a 
computer (Gumstix), battery, DC-to-DC converter, and a plastic housing. 

C. Performance Sensors 

The performance sensor used in this study is an overhead 
camera. By marking the work surface appropriately, an 
overhead camera can be calibrated to look for specific events 
(e.g. the arm crossing a line or the hand covering a strip). We 
used a Logitech QuickCam Pro 5000 USB camera for our 
vision system. This camera, when connected to a computer, 
incurs an average delay of 0.114s in capturing and processing 
100 images (.OOIs/image). 

D. Software Drivers 

As described in our previous work, the sensors and 
controller are integrated using the Player/Stage framework. 
Player is an open source software suite that allows for 
the control and coordination of multiple devices using a 
server/client architecture. It is optimized for robot program­
ming and control, and its design, which treats each driver 
as an input/output device, is suitable for our framework. By 
using the Player camera driver, and our own drivers for the 
1M Us and Gumstix, we can coordinate the data received 
from each device and feed it into a master controller. This 
controller maintains models of the user state (e.g. "arm is 
moving") and the trial state (e.g. "we are on task 3"). 

Real time image processing is done using the Open 
Computer Vision Library (OpenCV) [5], [4]. OpenCV is an 
open source computer vision library written in C/C++. It is 
independent of the operating system and hardware, and is 
optimized for real-time applications. In our system, for each 
WMFT task trial, the image processing code checks a region 
of interest (ROJ) in each captured image to detect the success 
condition of a gesture. The ROI is a fixed section of the 
image which corresponds to markings we have made on the 



table surface for the detection of success conditions for each 
task. For example, in the WMFT tasks that have a success 
condition denoted by "the forearm touching the table and 

covering a line" (Tasks 1, 2, 5, 6, and 8), the ROI corresponds 
to a marking on the table to which the participant is told to 
move their arm. The vision system looks for this specific cue 
by continually computing the total intensity (sum of intensity) 
of all the pixels in the ROI. This intensity value is compared 
to a predetermined threshold. Variations in this intensity 
indicate whether or not a gesture has been completed (we 
are making the reasonable assumption of standard lighting 
conditions.). For tasks which involve the thumb crossing a 
line (Tasks 3 and 4), it again looks at the intensity value of 
the ROI to detect when the line was occluded and when it 
becomes visible. We have developed tools for calibration and 
intensity threshold computation for this system. 

V. METHODS 

We designed a technological feasibility study to determine 
if our system could accurately measure timing of the various 
WMFT tasks. Our hypothesis was that the system would 
obtain more accurate timing scores than those obtained from 
a stopwatch. 

The participants wore an IMU on the wrist of the arm 
being tested, and were monitored by an overhead camera 
(Figure 3). There are markings on the table, used by the 
monitoring system to determine when various task success 
conditions have been met. The participants performed tasks 
from the WMFT (Tasks 1, 2, 3, 4, 5, 6, and 8, listed in Table 
II. These tasks were chosen because they require only the 
lMU and overhead camera). Two participants were recruited 
for the study. The participants were healthy individuals with 
no apparent motor limitations. 

Fig. 3. A participant perfonning the WMFT assessment. The participant 
is being monitored by an overhead camera and an IMU on the wrist. 

The examiner administered the seven selected WMFT 
tasks, and timed them using a stopwatch. The examiner 
followed the protocol in the WMFT Instruction manual. 
These instructions specity the following: participant starting 
position (location with respect to the table, initial position of 
the limb being tested), task description, the timing procedure, 
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TABLE II 
COMPARISON OF AUTOMATICALLY MEASURED TIME AND THE GROUND 

TRUTH TIME 

I Task I Tauto Is) I Tgnd Is) I 
1. Forearm to table (side) 2. 43 2. 50 
2. Forearm to box (side) 1. 65 1.65 
3. Extend elbow (side) 2. 35 2.50 
4. Extend elbow, weight (side) 2. 29 2. 30 
5. Hand to table (front) 2.60 2. 55 
6. Hand to box (front) 1. 56 1. 65 
8. Reach and retrieve 2.03 2. 15 

verbal instructions, and the FA scoring metric. The tasks were 
administered on the participants' right arms (because these 
were healthy subjects, differences in the right and left arm 
scores were not expected to be significant). For each task, 
the automated time estimate is defined as Tauto . The time 
measured by the examiner's stopwatch is defined as Tclock. 
As specified in the manual, this is the time between the 
experimenter uttering "Ready, set, go!" and the completion 
of the task-specific success condition. 

VI. RESULTS 

A. Obtaining the Ground Truth Movement Time 

Our first goal was to determine the temporal accuracy 
of our measurement system. To do so, we compared the 
measured movement time, Tauto, with the ground truth 
movement time, Tgnd, which we obtained from the IMU. To 
obtain Tgnd, we simultaneously recorded overhead camera 
and IMU data while a subject performed the WMFT tasks. 
We used a button on the experiment laptop to begin timing. 
The timer continued to run until the camera determined a 
task success condition. For instance, on Task 1, Forearm to 
Table (side), the WMFT instructions indicate that gesture is 
complete once "the forearm and hand touch the table in the 

required fashion." The camera determined that the gesture 
was complete once the table marking, specified a priori, 

was occluded by the participant's arm and hand. After the 
completion of these tasks, we hand-annotated the IMU data 
to determine the actual movement time. This was done by 
prototyping various motions, and observing the accelerometer 
and rate gyro signals. We found the start and end points of 
the gestures using an empirically determined threshold for the 
change in signal variance. We compared the IMU-obtained 
time to the automatically measured time (The results are 
shown in Table 11.). By using the IMU data as a ground truth, 
we determined the RMS error of the automated timer to be 
0.22s. Thus, the camera-based timing system is an accurate 
indicator of movement time. 

B. WMFT Task Timing Results 

Having determined the accuracy of the automated time 
measure, we next sought to compare the automated time to 
the time obtained when the examiner used a stopwatch. The 
examiner instructed the two participants to repeat the WMFT 
tasks. The automated and stopwatch-measured movement 
times for both participants are indicated in Table III. We 



TABLE III 
MOVEMENT TIME FOR PARTICIPANTS 1 AND 2 AS MEASURED BY THE 

STOPWATCH AND THE AUTOMATED SYSTEM 

Task I Tclo ck Is] I Tauto Is] 
Participant I 

I. Forearm to table (side) 2.18 1. 24 
2. Forearm to box (side) 2.66 1. 58 
3. Extend elbow (side) 1.78 l.l3 
4. Extend elbow, weight (side) 1. 81 1. 01 
5. Hand to table (front) 2. 35 1. 10 
6. Hand to box (front) 2.03 l.l1 
8. Reach and retrieve 2.00 1.04 

Participant 2 
1. Forearm to table (side) 2. 03 1.03 
2. Forearm to box (side) 2. 75 1. 72 
3. Extend elbow (side) 2.03 1.28 
4. Extend elbow, weight (side) 2.00 1.34 
5. Hand to table (front) 2. 31 1. 32 
6. Hand to box (front) 3.07 1. 89 
8. Reach and retrieve 1.60 0. 60 

originally hypothesized that Tauto would be shorter than 
Tclock. This is due to our observation that, when timing a 
movement using a stopwatch, there will always be a finite 
delay between the experimenter observing the completion of 
the task, and relaying that infonnation to the finger to press 
the stopwatch button (this is a function of the examiner's 
reaction time). This delay is evident in the results presented in 
the table. A question that immediately comes to mind regards 
the extent to which this delay affects the measured time. For 
our examiner, the distribution of the error between Tauto and 
Tclock has mean f.L = 0.94 and variance u2 = 0.03. Thus, errors 
on the order of 1 s were typical. To put this in perspective, 
the maximum time allowed for most WMFT tasks according 
to the manual is 120s. For those participants with lower 
functional abilities (and longer movement times), this error is 
of less significance. For those with higher functional abilities, 
the error must be taken into account. 

VII. DISCUSSION 

Our technological feasibility study was successful. During 
the preparation and administration of this experiment, we 
produced a number of interesting results and observations. 
In the following, we will discuss the issues of examiner 
bias, the difference between measured movement time and 
what we will define as gesture time, the requirements for 
full automation of the WMFT, extension of our system to 
the other WMFT tasks, and limitations of our system. 

A. Examiner Bias 

As we have discussed, the WMFT examiner's reaction 
time introduces an inherent delay that is included in the 
time score. For a trained examiner, we hypothesized that 
this error was a constant bias error. It has not affected the 
validity or reliability of the WMFT, presumably, because the 
relative movement times for stroke-affected individuals are 
typically much longer in duration than the examiner bias 
delay. Furthennore, if the same experimenter administers 
pre- and post-intervention WMFT assessments, the bias will 
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be present in both cases, and will be rendered negligible 
when the results are compared to each other. Each examiner 
will have a different bias - however, as long as this bias is 
relatively consistent, it does not pose a problem in measuring 
a patient's change in functionality. The error we empirically 
found between Tauto and Tclock follows from this assumption 
- the mean error was 0.94s, but had a relatively small 
variance of u2 = 0.03. In the future, we will validate this 
hypothesis by evaluating the error for different examiners. 

B. Movement Time vs. Gesture Time 

After perfonning the initial round of experiments, we 
realized that there can also be human-introduced error due to 
the variable delay between the experimenter saying "Go!" 

at the beginning of a bout, and the participant starting the 
movement. Our previously defined movement time Tauto is 
the elapsed time between the experimenter saying "Go" and 
the detennination of the success condition. We define the 
gesture time Tges as the elapsed time between the initiation 
of motion by the participant to the detennination of the 
success condition. Thus, Tges must always be less than or 
equal to Tauto. The delay between "Go" and the beginning 
of participant motion is equal to Tauto - Tges. We conducted 
an initial exploration into the significance of this delay to 
detennine how much it varied in our trials. 

The participants repeated the seven WMFT tasks, but 
instead of using the button push on the laptop to detennine 
the beginning of the gesture, we used the IMU data for the 
start condition (again, threshold values on the accelerometer 
and rate gyro signal variance were used for this condition). 
We then measured Tges for the tasks. The original experi­
ments, where a button-push was used to detennine the start 
condition, will be defined as vision-only; the experiments that 
used the IMU for the start condition will be defined as vision 

+ IMU. The results for the two participants are shown in 
Figures 4 and 5. 

Fig. 4. A comparison of the time measured by the stopwatch and the 
automated system for Participant I. The results for the vision-only are shown 
in plot 1, and the results for the vision + IMU are shown in plot 2. 

As expected, in both cases, Tauto is always less than or 
equal to Tclock. It follows that the error between Tauto and 



Fig. 5. A comparison of the time measured by the stopwatch and the 
automated system for Participant 2. The results for the vision-only are shown 
in plot I, and the results for the vision + IMU are shown in plot 2. 

TABLE IV 
MEAN AND VARIANCE OF THE ERROR BETWEEN Tauto AND Tclock FOR 

vision only AND vision + IMU CONDITIONS 

Condition 

Participant 1: Vision only 
Participant I: Vision + IMU 
Participant 2: Vision only 
Participant 2: Vision + IMU 

0.94 
1.25 
0.94 
1.33 

0. 04 
0. 14 
0.03 
0.15 

Tclock is larger in the vision + IMU condition. The mean 
and variance of the error between Tauto and Tclock for both 
participants are shown in Table IV. 

C. Full Automation of the WMFT 

To completely automate this system, a mechanism for 
delivering instructions to the participant must be automated. 
We have created such a system using a socially assistive 
robotic (SAR) device in our previous work [11]. SAR is 
the study of the use of non-contact robots to administer 
assistive therapeutic interventions to populations suffering 
from various deficits. To extend this work to be compatible 
with a SAR system, we can utilize the timing data to create a 
user state model, and a trial state model. The user state model 
is a constant estimate of the user's state. This consists of tags 
such as user_resting, user_start, user_moving, 
and user_stop that correspond to the user's state between 
tasks, the commencement of a task, motion, and the comple­
tion of a task (respectively). Meanwhile, the trial state model 
is a constant estimate of the task number, as well as the state 
of completion. The state of completion for each task includes 
tags including taskyre, taskyrog, and task_comp 
corresponding to the time before the task is commenced, the 
task being progressed, and the task completion (respectively). 
Each state also includes different modes of operation. During 
pre-task, instructions are provided to the participant. For 
each task, once specific completion conditions are met (as 
indicated by the user model), the elapsed time is recorded as 
the task score. 
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With full automation these tags will correspond to the 
robot verbalizing or gesturing appropriately. This can include 
giving instruction, offering feedback, and providing encour­
agement. We have already piloted an assistive robotic agent 
with participants with Alzheimer's and stroke-related motor 
deficits [23], [22]. Thus, while we now require a human 
to administer the WMFT, we are actively working on the 
technological incorporation of the assistive agent. 

D. Remaining WMFT Tasks 

The seven WMFT tasks described here all make use of 
the same setup; a marked table, a wearable IMU, and an 
overhead camera. Other WMFT tasks would require a dif­
ferent combination of performance sensors. We have piloted 
the required technologies but have not fully validated them 
with the tasks. Here we will provide a brief outline on how 
the timing and administration of the remaining WMFT tasks 
can be automated. 

Automation of Task 7, weight to box, can be accomplished 
by mounting a weight scale in the experiment table surface 
underneath the box. Task 9 involves lifting a can to the 
mouth. We are developing a c++ gesture recognition mod­
ule to recognize and time the correct gesture with Hidden 
Markov Models (HMMs). For Tasks 10 and 11, we envision 
the use of the AcceleGlove motion capture glove to detect the 
desired finger motion [1]. Task 12 can be automated by using 
the aforementioned weight scales with appropriate threshold 
values. Automation of Task 13 can be accomplished with the 
existing setup by tracking the cards with augmented reality 
(AR) tags and detecting the required success condition using 
the overhead camera [2], [3]. AR tags allow for 3D tracking 
of objects in real-time. The tags are 2D symbols placed 
on objects in an environment. Once an overhead camera 
is calibrated with the locations of the tags, whenever they 
are moved, their position and orientation data is relayed 
to the controller. For Task 14, the dynamometer can be 
instrumented with a linear potentiometer, and the resulting 
resistance can be correlated with grip strength. For Task 15, 
a rotary potentiometer along with the wrist mounted IMU 
can be utilized to detect the start and end conditions. Finally, 
Task 16 can be administered by placing AR tags on the towel 
(in this case, the towel would have the AR tags calibrated 
while it is open. The subsequent occlusion of a tag would 
indicate folding of the towel.). 

E. Limitations of our System 

The methodical nature of the timing measure for assess­
ments is a strong argument for automation. However, it 
goes without saying that automation removes the 'human 
element' of the assessment. One important characteristic of 
the human is recognizing failure scenarios. Specifically, these 
are motions or behaviors that would invalidate a score. For 
instance, most of the WMFT tasks are uni-manual. If a 
participant uses the opposite hand to aid in performing a 
task (typically, this occurs when the paretic limb is being 
assessed), the task is invalid, the participant is asked not to 
use the compensatory limb, and the task is repeated. For this 



specific case, the use of the limb not under assessment can be 
captured by placing IMUs on both wrists, but we recognize 
that there are other scenarios that might occur. Through 
our interactions with our collaborators at the USC Health 
Sciences Campus, we are building models to determine the 
most relevant failure scenarios. We expect a pilot study, 
using approximately ten stroke-affected participants, to result 
in more insight into the additional sensing and processing 
required to capture failure scenarios. 

As we outlined in the Introduction, with the work pre­
sented in this paper, we were focused on obtaining the timing 
score, and not the FA score (we mentioned other projects 
working in this arena). We are now in the preliminary stages 
of investigating the ability of our sensors to estimate the FA 
score. The problem is complicated because of the sometimes 
vague nature of the WMFT instructions for creating the 
FA score. For instance, on Task 10, the instructions state 
"If participant slides the pencil away from the center of 

the table somewhat they can still get a "5" if it looks 

"normal" otherwise." While this may become clear for a 
human receiving training from a clinician, translating such 
a standard to an automated system is challenging. Such a 
complication makes it easy to understand why the projects 
mentioned in Section III attempt to determine the FA score 
through correlation techniques. We intend to use pilot data 
from post-stroke individuals to begin formulating models for 
the determination of the FA score based on IMU and camera 
data. 

Another characteristic of the WMFT is the provision of en­
couragement to the participant - during task performance, the 
examiner should offer encouraging and motivational phrases. 
Our SAR agent can offer encouragement to participants 
during the performance of various functional tasks [22]. In 
the future, we expect to extend these capabilities to the 
implementation of the WMFT. 

VIII. CONCLUSION 

We have described a technique for automating the tim­
ing of WMFT tasks. Specifically, we have completed a 
technological feasibility study with two participants. We 
have also presented a number of interesting technical and 
practical issues associated with the automation of motor task 
assessments. The next logical step is to validate with a larger 
number of participants, and with the full battery of WMFT 
tasks. We will also establish the robustness of our system by 
using more examiners. 
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