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Abstract-Drunk driving, or officially Driving Under the In­
fluence (DUI) of alcohol, is a major cause of traffic accidents 
throughout the world. In this paper, we propose a highly efficient 
system aimed at early detection and alert of dangerous vehicle 
maneuvers typically related to drunk driving. The entire solu­
tion requires only a mobile phone placed in vehicle and with 
accelerometer and orientation sensor. A program installed on the 
mobile phone computes accelerations based on sensor readings, 
and compares them with typical drunk driving patterns extracted 
from real driving tests. Once any evidence of drunk driving is 
present, the mobile phone will automatically alert the driver or 
call the police for help well before accident actually happens. We 
implement the detection system on Android G 1 phone and have it 
tested with different kinds of driving behaviors. The results show 
that the system achieves high accuracy and energy efficiency. 

Keywords-Drunk Driving Detection, Mobile Phones, Accelera­
tion, Sensors 

I. INTRODUCTION 

A. Motivation 

Crashes caused by impairment of alertness in vehicle drivers 
pose a serious danger to people, not only to drivers themselves 
but also often to the general public [1]. According to the 
report of U.S. National Highway Traffic Safety Administration 
(NHTSA), more than a million people have died in traffic 
crashes in the United States since 1966. During these tragedies, 
drunk driving is one of the main causes. The concern related to 
drunk driving is not only the high crash rate, but also the type 
of crashes that are most likely to happen. In the last two years, 
2007 and 2008, 13,041 and 11,773 alcohol-impaired driving 
fatalities happened, respectively. Both are 32% of the total 
fatalities of that year [2]. During these crashes, ten of thousands 
of people were killed, and much more people injured. Besides 
being a great threat to public safety and health, drunk driving 
also imposes a heavy financial burden on the whole society, 
especially on the healthcare sector. According to U.S. Central 
of Disease control (CDC) [3], the annual cost of alcohol­
related crashes totals more than $51 billion in 2008. Lee et 
al. pointed out in their work [4] that the emergency department 
spends $4,538 more on average in treating alcohol-impaired 
motor vehicle crash victims, especially for patients who are 
minimally injured, because of their impaired reasoning and 
blunted sensation. 

Despite the fact that drunk driving is a serious problem, its 
detection has been so far relying on visual observations by 
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patrol officers. Drivers under the influence of alcohol show a 
marked decline of perception, recognition, and vehicle control, 
so they tend to make certain types of dangerous maneuvers. The 
U.S. NHTSA has conducted extensive studies in their effort to 
help distinguish these maneuvers. During field studies involving 
hundreds of officers and more than 12,000 enforcement stops, 
the researchers have identified cues of typical driving behavior 
for drunk drivers, namely problems in maintaining proper lane 
position, speed and braking problems, vigilance problems and 
judgment problems [5]. These are guidelines for patrol officers 
to stop a suspect drunk driver and give him an alcohol test. 

However, relying on visual observation of patrol officers to 
prevent drunk driving is insufficient. First of all, given the 
huge mileage of driveways in USA, the number of patrol 
officers is far from enough to observe and analyze every driver's 
behaviors. Second, the guidelines of drunk driving patterns are 
only descriptive and qualitative. Sometimes it is not easy to tell 
whether a vehicle is performing that exact type of movements 
or not, especially when it is dark with poor sight range or other 
obstructions are present in the middle. In fact, U.S. CDC has 
reported that each year only less than 1 % of the drunk drivers 
are arrested and more than 99% of self-alleged drunk driving 
episodes go unnoticed [3]. It is also imaginable that even a 
drunk driver is stopped by a patrol officer, the driver may have 
been on the way for dozens of miles. So it is essential to develop 
systems actively monitoring drivers' operating situations and 
alerting of any insecure conditions to prevent accident. It is 
preferable that the actively monitoring system satisfies the 
following requirements: a real-time monitoring system with 
quick response; a reliable system performing accurately; a non­
intrusive system and a low cost system. 

B. Our Contributions 

In this paper, we propose utilizing mobile phones as the plat­
form for drunk driving detection system development, as they 
naturally combine the detection and communication functions. 
To the best of our knowledge, we are the first to do so. 

As a self-contained device, mobile phone presents a mature 
hardware and software environment for the development of 
active drunk driving monitoring system. The system based 
on mobile phone can function effectively on its own because 
mobile phones are highly portable, all necessary components 
are already integrated therein, and their communication services 
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have vast coverage. The mInimUm requirement for such a 
mobile phone platform is the presence of simple sensors, 
e.g., accelerometer and orientation sensor. Currently, many 
phones, especially smartphones, meet this requirment. They 
contain multiple types of sensors, including accelerometers 
and orientation sensors. And their communication module and 
speakers are naturally good enough for alerting. Such phones 
are very popular and widely accepted in our society. Over 120 
million smartphones were sold in 2008 [6], and their popularity 
is projected to continuously increase in the near future due to 
decreasing price. Recently, several leading telecommunication 
companies such as AT&T have made available affordable 
smartphones [7] [8], whose features are similar to those of high­
end models, in addition to cheaper service plans [9]. 

We summarize the contributions of this paper as follows. 
- We propose utilizing mobile phones as the platform for 

drunk driving detection. To the best of our knowledge, we are 
the first to introduce mobile phones in the area of drunk driving 
detection. 

- We design the algorithm for detecting drunk driving in real 
time using mobile phones. We analyze the drunk driving related 
behaviors and extract its fundamental cues based on lateral and 
longitudinal accelerations of vehicle, which are determined by 
accelerometer and orientation sensor readings in mobile phones. 

- We design and implement the drunk driving detection 
system on mobile phones. The system is reliable, non-intrusive, 
lightweight and power-efficient. And it requires no extra hard­
ware and service cost. 

- We conduct real driving tests to evaluate the performance 
of our system. During these tests, we drive regularly or simulate 
the drunk driving related behaviors. We also vary the position 
and orientation of mobile phones in the vehicle for the purpose 
of validation. The results show that our detection system 
achieves good performance in terms of false negative and false 
positive. 

Paper Organization The rest of the paper is organized as 
follows. Section II presents related work. We extract the cues 
of drunk driving in Section III. We present the system design 
and implementation in Section IV. In Section V, we evaluate 
our system with real driving tests. In Section VI and VII we 
discuss our solution and conclude the paper. 

II. RELATED WORK 

There are some existing research on the development and 
validation of technological tools for driving monitoring. Some 
of them are known under the name of driver vigilance monitor­
ing, and they focus on monitoring and preventing driver fatigue. 
Other work focus on real-time driving pattern recognition. In 
detail, they use various methodologies and techniques described 
as follows. 

Visual observation is an option to detect driver fatigue. In 
[10], Zhu et al. have used two cameras on dashboard to capture 
the visual cues of drivers, such as eyelid movement, gaze 
movement, head movement and facial expression, in order to 
predict fatigue with a probabilistic model. In [11], Albu et 
al. have conducted the research in a relatively simpler way. 
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They claim the sleep onset is the most critical consequence 
of fatigued driving, separate the issue of sleep onset from the 
global analysis of the physiological state of fatigue, and take 
eyes opening and closing as cues of sleep onset. They have 
used vision-based system to monitor the eyes conditions in 
order to detect fatigue in driving. In [12], Lee et al. have used 
two fixed cameras to capture the driver's sight line and the 
driving lane path for the purpose of driving pattern and status 
recognition. They calculate the correlation coefficients among 
them to monitor the driving status and patterns. These methods 
all need one or more cameras to be installed in the vehicle and 
just in front of the driver. It will cause certain potential safety 
hazard to the driver. 

Besides visual methods, the interaction at the vehicle-human 
interface also provides clues to driving information detection. 
Desai et aI., in their work [13], have assumed that the time 
derivative of force exerted by the driver at the vehicle-human 
interface, such as pressure on the accelerator pedal, can be used 
to decide the level of driver alertness. Practically, they have 
installed a force sensor on the accelerator pedal and collected 
the exerted force to monitor driver fatigue. In [14], Krajewski et 
al. have collected steering behavior data and processed them to 
capture fatigue impaired patterns by using signal processing 
procedures for feature extraction. They have conducted the 
experiment with a driving simulator. The automobile manufac­
turer Saab has proposed an experimental product AlcoKey [15], 
which collects a breath sample of drivers before they start the 
vehicle. Then the AlcoKey's radio transmitter sends a signal 
to the vehicle's electronic control unit to allow it to be started 
or not based on the alcohol level in the breath sample. These 
researches use the interactions between human and vehicle to 
indicate drunk driving. Their systems need to alter the vehicle 
and be tightly coupled with the auxiliary add-ons, so their 
compatibility is compromised. 

In [16], Heitmann et al. have proposed a series of various 
technologies, such as head position sensor, eye-gaze system, 
two pupil-based system and in-seat vibration system, for alert­
ness monitoring and promotion. Based on these technologies, 
they have used a multi-parametric approach to monitor and 
prevent driver fatigue. However, their system is very compli­
cated and still stay in the experimental stage, for example the 
eye-gaze system and pupil-based system are still hard to be 
integrated into the vehicle. 

In [17], Leece et al. have proposed an architecture for driving 
information system with specific sensors and GPS receiver. 
They have collected the acceleration and GPS data and used 
pattern matching to identify and classify driving styles. Their 
work shows that the acceleration reflects the features of driving 
pattern. However, they do not only focus on the acceleration 
signature, but also use GPS data. The devices involved in their 
system are specific and not conveniently compatible. Also, their 
system is not realized and still in an early stage of development. 

III. ACCELERATION-BASED DRUNK DRIV ING CUES 

In this section, we analyze the drunk driving related behav­
iors and extract fundamental cues for drunk driving detection. 



(a) (b) (c) (d) 

Fig. 1. Problems in maintaining the lane position : (a) weaving, (b) drifting, (c) swerving, (d) turning with a wide radius [5] . 

Our analysis is based on the accelerations of vehicles. 
In the U.S. NHTSA's study on drunk driving, the researchers 

have identified cues of typical driving behavior for drunk 
drivers. Based on their work, we summarize these drunk 
driving related behaviors into three categories. The first and 
second category focus on driving behaviors related to vehicle 
movement itself, such as the movement trace or the movement 
trend; the third category is about the driving behaviors related 
to subjective judgment and vigilance of the driver. We present 
these three categories of behaviors as follows. 

- Cues related to lane position maintenance problems: such 
as weaving, drifting, swerving, and turning abruptly, illegally 
or with a wide radius. 

- Cues related to speed control problems: such as acceler­
ating or decelerating suddenly, braking erratically and stopping 
inappropriately (e.g. too jerky). 

- Cues related to judgment and vigilance problems: such as 
driving with tires on center or lane marker, driving on the other 
side of the road, following to closely, driving without headlights 
at night, and slow response to traffic signals. 

According to the U.S. NHTSA's report [5], different cate­
gories of cues correspond to different probabilities of drunk 
driving. Generally, the probability for lane position maintenance 
problems is 50.75%, for speed control problems 45.70%, for 
judgment and vigilance problems around 40%. For example, 
if a driver is observed to be weaving, the probability of drunk 
driving for him is more than 50%. Some cues, such as swerving 
and accelerating suddenly, have single-cue probabilities greater 
than 70%. Furthermore, the probability of drunk driving in­
creases when a driver exhibits more than one of the cues. For 
example, if the weaving plus any other cue is observed, the 
probability of drunk driving jumps to at least 65%. 

The results suggest that: (1) these driving cues provide 
relatively strong evidence of drunk driving; (2) the cues related 
to problems of lane position maintenance and speed control 
are the main categories, corresponding to higher probabilities 
of drunk driving, so they can be used as main evidences for 
drunk driving detection; (3) the probability of drunk driving 
goes higher while the number of observed cues increases. 

For the purpose of developing actively detecting system for 
drunk driving, we focus on the cues of problems of lane position 
maintenance and speed control. We map these cues into lateral 
acceleration and longitudinal acceleration of vehicles. 
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A. Lateral Acceleration and Lane Position Maintenance 

In general, the lane position maintenance problems result in 
abnormal curvilinear movements, including weaving, drifting, 
swerving and turning with a wide radius. They all cause a 
remarkable change on lateral acceleration. U.S. NHTSA's report 
gives out the clear illustrations of these situations [5], as shown 
in Fig. 1. 

As illustrated in Fig. 1 (a), weaving means the vehicle alter­
nately moves toward one side of the lane and then toward the 
other. Apparently, the lateral movement is caused by a steering 
wheel rotation toward one direction and a following steering 
correction toward the other direction. Similarly, the drifting, 
swerving and turning with a wide radius have the abnormal 
lateral movements, as shown in Fig. 1 (b)(c)(d). 

B. Longitudinal Acceleration and Speed Control in Driving 

A drunk driver often experiences difficulty in keeping an 
appropriate speed. Abrupt acceleration or deceleration, erratic 
braking and jerky stop are strong cues to show that the driver 
is under alcohol impairment. They will all be reflected in the 
changes of longitudinal acceleration. 

We assume that the longitudinal acceleration is positive 
toward the head of the vehicle. The abrupt acceleration of 
vehicle will lead to a great increase of longitudinal acceleration 
(positive values). On the contrary, the abrupt deceleration, 
erratic braking or jerky stop will cause a great decrease of 
longitudinal acceleration (negative values). 

In summary, the patterns of lateral acceleration and lon­
gitudinal acceleration of a vehicle may indicate abnormal 
lateral movements and abrupt speed variations, which reveal the 
driver's problems in maintaining lane position and controlling 
speed. These problems are two main categories of drunk driving 
related behaviors, and are the strongest cues for detecting drunk 
driving. Therefore, the acceleration (either lateral or longi­
tudinal) pattern provides fundamental cues for drunk driving 
detection. Furthermore, multiple rounds of acceleration pattern 
matching will increase the accuracy of detection, since the 
probability of drunk driving for a driver increases with more 
instances of drunk driving related behaviors. 

IV. SYSTEM DESIGN AND IMPLEMENTATION 

In this section, we introduce the design and implementation 
of our drunk driving detection system. We first present the sys-
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Fig. 2. Working procedure of the drunk driving detection system. The 
components in the dashed box show the data processing and pattern matching 
part, reflecting the algorithm design. 

tem overview followed by the design of detection algorithms. 
Then we elaborate on implementation details. 

A. System Overview 

The drunk driving detection system is made up of four 
components, as presented in Fig. 2. They are (1) monitoring 
daemon module, (2) calibration module, (3) data processing 
and pattern matching module and (4) alert module. The third 
module implements the detection algorithm, as marked by a 
dashed box. Our design is general, not constrained to any 
particular brand or type of mobile phone. And our design is also 
power-aware, as hardware such as the screen is only activated 
when necessary. 

The work flow of our drunk driving detection system is 
also illustrated in Fig. 2. After the system starts manually, a 
calibration procedure is conducted when the system detects 
that the phone is located in a moving vehicle. Then the 
main program launches, working as a background daemon. 
The daemon monitors the driving behaviors in real time and 
collects acceleration information. The collected information in­
cludes lateral and longitudinal acceleration. They are processed 
separately, and used as inputs to the multiple round pattern 
matching process. At the same time, the historical information 
will be registered. This information is helpful in the following 
round pattern matching process. If the pattern condition is 
satisfied, which means a drunk driving is detected, one signal 
is transmitted to trigger an alert. The phone may alarm to 
remind the driver or automatically contact the police for help. 
If the condition is not satisfied, execution returns to the daemon 
immediately. In the following sections, we will present the 
details of algorithm design. 

B. Design of Algorithm 

We design the detection algorithm based on accelerations, 
and apply it to the mobile phones equipped with accelerometer 
and orientation sensor. 

The acceleration readings are usually provided by accelerom­
eters in directions of x-, y-, and z-axis, correspondingly repre­
sented by Ax) Ay and Az. For generality, we assume that the 
directions of X-, y-, and z-axis are decided by the orientation 
of the phone. As illustrated in Fig. 3, the x-axis has positive 
direction toward the right side of the device, the y-axis has 
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Fig. 3. (a) Acceleration readings in direction of X-, y-, and z-axis with regard 
to the body of the mobile phone. (b) The posture of mobile phone is decided 
by yaw (Ox), pitch (Oy) and roll (Oz). 

positive direction toward the top of the device and the z-axis 
has positive direction toward the front of the device. 

A mobile phone's orientation can be determined by orienta­
tion angles, i.e. yaw, pitch, roll values that are denoted as Bx) 
By and Bz, respectively. The yaw means rotation around the z­
axis, while pitch and roll represent the rotation around x-axis 
and y-axis. They are also shown in Fig. 3. The values of them 
can be obtained via the orientation sensor. 

In real detection process, both the lateral acceleration and 
the longitudinal acceleration should be based on the vehicle 
movement direction. The acceleration information of the mobile 
phone, Ax) Ay, should be transformed into the accelerations 
of the vehicle. In the simplest case, we assume that the mobile 
phone is laid flat in the vehicle, with the top of phone toward the 
head of vehicle, so that the accelerations on x-axis and y-axis 
represent the lateral and longitudinal accelerations of vehicle, 
respectively. However, the real situations are more complex. 
The mobile phone may be laid in the vehicle arbitrarily, neither 
flat nor heading toward the head of the vehicle. Therefore, 
we set a calibration procedure to help the system determine 
what direction is longitudinal. We first obtain the horizontal 
components of Ax and Ay, which are denoted as Axh, Ayh, 
by Eq. 1. {AXh = AxcosBz 

AYh = Ay cos By 
(1) 

The calibration procedure begins to work when the system 
detects the vehicle starts to move. Its starting movement gives 
the mobile phone a continuously initial longitudinal accelera­
tion, either forward (to get off directly) or backward (to back 
off the vehicle first). We denote this acceleration as vector 

AI. It is much different from that in human movement. Our 
experiments show that the acceleration keeps above 2.65 mj 82 
for several seconds (at least 3 seconds) during the vehicle's 
starting movement. During the human movements even in the 
running, the average acceleration in a time window of 3 seconds 
is no more than 2 mj 82. Actually, the most of accelerations 
in human movements keep below 1 mj82. So it is easy for 
system to detect when the vehicle starts. AI'S amplitude can 
be obtained by Eq. 2; while its direction is determined by the 
direction ofAxh and Ayh. 



(2) 

Next, we denote the angle between vector Axh and AI as a, 
the angle between vector AYh and AI as f3. These two angles 
can be calculated by Eq. 3. {a = arccos(Axh/IAII) 

f3 = arccos(AYh/IAII) 
(3) 

Then, the lateral acceleration vector Alat and longitudinal 
acceleration vector Alan of the vehicle can be inferred by Eq. 
4. { Alat = Axh sin a + AYh sin f3 

Alan = Axh cos a + AYh cos f3 
(4) 

The last step of calibration is to determine the correct direction 
of two vectors Alat and Alan. As we mentioned before, the 
starting movement of vehicle may be one of two directions. If 
the vehicle starts to move forward, the vectors we obtained 
above have the correct directions. Otherwise, the directions 
of vectors are inverse. Therefore, the system will observe 
the following moving direction of vehicle after the starting 
movement. If the direction of following moving differs from the 
one of starting movement, it will invert the directions of Alat 
and Alan. Otherwise, these two vectors will remain unchanged. 

The determined acceleration vectors Alat and Alan are used 
in drunk driving detection, as described in following. 

1) Lateral Acceleration Pattern Matching: The lateral ac­
celeration pattern matching is based on the value of Alat. The 
pattern which shows remarkable changes of acceleration values 
reveals the abnormal curvilinear movements of the vehicle. That 
is when the vehicle is making the curvilinear movement, it has 
a sudden lateral acceleration toward one side, and then a lateral 
acceleration toward the other side. 

Fig. 4 presents examples of vector Alat of a moving vehicle. 
They are obtained from the acceleration and orientation infor­
mation collected by the integrated sensors of a mobile phone 
in that vehicle and calculated through the above equations. Fig. 
4 shows the results when the vehicle is operated in different 
manners by the driver: moving straight, turning normally, 
weaving and turning with a wide radius. The latter two are 
considered abnormal curvilinear movements. We can find that 
in these two scenarios, the values of Alat have a great variation 
from negative to positive. 

The pattern matching is to check the variation between the 
maximum value and the minimum value of Alat within a pat­
tern checking time window winlat. If the variation exceeds the 
threshold Thlat. an abnormal curvilinear movement of vehicle 
is considered happening, showing that the driver has problems 
in maintaining the lane position. We set the consecutive two 
checking time windows to have a overlap, in order to avoid 
missing recognizing pattern. 
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Fig. 4. Examples of Alat value of a moving vehicle. We show the results 
when the vehicle was operated in different manners. 

2) Longitudinal Acceleration Pattern Matching: Similarly, 
the longitudinal acceleration pattern matching is based on the 
value of Alan. The problems in speed control, i.e. the vehicle 
acts abnormally in either accelerating or decelerating direction, 
result in a large absolute value of Alan, making a salient convex 
or concave shape in its graph of curves. 

The system keeps checking the maximum or minimum value 
of Alan. If the amplitude of value exceeds the threshold Thlon, 
a speed control problem is considered detected. In reality, the 
features of accelerating and braking during driving may vary 
considerably even with the same driver. So that we set different 
thresholds for positive Alan (for accelerating) and negative 
Alan (for decelerating), denoted as Thl+ and Thl-on on' 

3) Multiple Round Pattern Matching: Multiple round pattern 
matching will increase the accuracy of drunk driving detection. 
The cues related to problems of lane position maintenance or 
problems of speed control provide evidences of drunk driving. 
The single lateral acceleration pattern matching or longitudinal 
acceleration pattern matching can indicate these two kinds of 
problems respectively. Each of the two detection algorithms 
based on the above two acceleration patterns may achieve 
a fairly high detection accuracy, above 50% in most cases, 
and around 45% in some cases. Nevertheless, the combination 
of observed cues from lane position maintenance and speed 
control problems can provide much stronger evidence for drunk 
driving. So we use multiple round pattern matching in the 
detection algorithm design. 

We design a simultaneous work flow of data processing for 
both lateral acceleration and longitudinal acceleration. These 
two accelerations serve as inputs to the pattern matching mod­
ule. In pattern matching procedure, the pattern in two directions 
can be found based on lateral or longitudinal acceleration data. 
Multiple round means that the matching process continues 
round after round, and the trigger condition is satisfied when 
several numbers of pattern are recognized. For this purpose, the 
historical information catch component is used for catching and 
storing the previous pattern matching information which can be 
used in the following round of pattern matching. Currently, we 
set the triggering condition to be two matching patterns. 



C. Implementation 

We develop the prototype of the drunk driving detection 
system on Android G I phone. The G I phone provides an 
accelerometer sensor and an orientation sensor. In the following 
part, we describe the implementation details of the prototype. 

We implement the prototype in Java, with Eclipse and 
Android 1.6 SDK. It consists of 7 class files, which include 
4 Activities, I View, I Service and I Resource. They can 
be divided into five major components: user interface, system 
configuration, monitoring daemon, data processing and alert 
notification. After the system is started, it finishes the configu­
ration automatically. The monitoring daemon keeps running in 
background as a Service in Android, collecting and recording 
the readings of sensors. These readings are processed and 
used to detect drunk driving. In data processing component, 
according to real situations, the time windows are set to 5 
seconds. When drunk driving is detected, the alert notification 
component works to alarm and remind the driver of dangerous 
driving or call the police for help. 

We compile and build the system project, create and sign 
the .apk file and install it onto G I phone by ADB tool. The 
size of the .apk application file is about 2I5KE. Ultimately, 
we may create the .apk file in release mode, sign it with our 
release private key and publish it on Android Market, making 
it available to Android mobile device users for download. 

V. EVALUATION 

We evaluate the drunk driving detection prototype with real 
driving tests. In this section, we first describe how we collect 
the data. Then we present the system performance in different 
scenarios and the energy efficiency. 

A. Data Collection 

We study drunk driving behaviors in two main categories: 
problems of lane position maintenance and problems of speed 
control. Correspondingly, we have collected the data of these 
two kinds of abnormal driving behaviors in real driving simu­
lations. The data include lateral and longitudinal accelerations 
of the vehicle, reflecting its features of movement in these two 
directions. We have also collected the data of regular driving in 
different environments. In the experiments, the mobile phone 
was laid in the vehicle. In most cases, it did not slide, since 
the friction between the body of phone and the surface inside 
the vehicle was strong enough to hold the phone in the same 
position during driving. But we still consider the situations in 
which the phone was put on a slippery surface, and might 
slide in driving. We have conducted further tests to see how 
our detection system applies to this special case. We report 
the experimental data in the follow section. In general, we 
separate the driving behavior data collected into two sets, one 
for training and the other for evaluation. 

In the experiments, we drove a 2002 Ford Taurus car, 
having a G I phone with our drunk driving detection system 
in the car. Since the system finishes the calibration procedure 
automatically, there is no requirement for the position and 
orientation of the phone. We arbitrarily laid the phone in the 
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Fig. 5. The G 1 phone is put on the front seat or the dashboard of the vehicle 
during drunk driving detection. 

car, e.g., on the front right seat, on the back seat, on the 
dashboard, etc., as shown in Fig. 5. Then we drove the car 
with different driving behaviors and in different environments. 
The main categories of drunk driving related behaviors and 
regular driving behaviors were both tested. And general driving 
locations, such as in alley, on highway, in campus and etc., are 
considered. 

In total, we have obtained 72 sets of data for drunk driving 
related behaviors, including weaving, swerving, turning with 
a wide radius and erratically changing speed (accelerating or 
decelerating); and we also collected 22 sets of data for regular 
driving, each of these drivings lasts for 5 to 10 minutes. 

B. Detection Performance 

We study the performance of detecting drunk driving related 
behaviors, since drunk driving can be directly inferred by the 
accurate detection of these abnormal driving behaviors. We 
measure the detection performance in terms of false negative 
(FN) and false positive (FP). False negative happens when 
drunk driving related behaviors show up but the device misses 
them. False positive happens when the device reports drunk 
driving related behaviors but the vehicle is actually under 
regular driving conditions. In general, the lower the both FN 
and FP are, the better the performance is. 

J) Performance Description: We first determine all the 
parameter values in the algorithm. We choose winlat to be 
5 seconds, because we find all the patterns for drunk driving 
related behaviors happen in such a time period according to 
our test data. We may obtain thresholds for the determination 
of drunk driving related behaviors in our detection algorithm 
from the training data. When determining the threshold values, 
we consider the tradeoff between FN and FP, because any 
decrease in FN will be accompanied by an increase in FP. With 
different threshold values, we can achieve different balances 
between FN and FP, aiming at low FN and reasonable FP. We 
choose one threshold setting, described as follows, that achieves 
the best balance between FN and FP with our training data. 
For detection of the abnormal curvilinear movement in drunk 
driving related behaviors, we set the threshold Thlat to 4. That 
means a upper bound of variation in values of Alat. If the 
variation of Alat values exceeds that threshold, the vehicle is 
very likely to be making an abnormal curvilinear movement; 
otherwise, its lateral acceleration would not have such a great 
change in a small time period. For detection of problems of 



Abnormal Curvilinear Movements Problems of Speed Control 

FN Rate(%) 0 0 

FP Rate (%) 0.49 2.39 
FN Rate (%) 14.28 0 

(Phone Slidesl 
FP Rate (%) 1.09 2.72 
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Fig. 6. Experimental performance from real driving test. We make a 
comparison between the cases in that the phone slides or not during driving. 

speed, we set the threshold Th/;'n to 2.7 and Thtn to 2.4. 
Those are the upper bounds of speed changes in accelerating 
and decelerating. According to our test, one vehicle in regular 
driving does not speed up or slow down too fast, and the 
positive or negative acceleration values will not exceed the 
thresholds during all driving. 

In our experiment, we have tested the detection performance 
in abnormal curvilinear movement and problem in maintaining 
speed, which are the two main categories of drunk driving 
related behaviors. Fig. 6 shows the experimental results ob­
tained from testing data. In detection of abnormal curvilinear 
movement, the FN rate is 0%, and the FP rate is 0.49%. In 
detection of speed control problem, the FN rate is also 0%, 
and the FP rate is 2.39%. The result shows that the detection 
algorithm in our system performs very well. It can detect all the 
drunk driving related behaviors, such as abnormal curvilinear 
movements and problems of speed control, while the false alarm 
for regular driving behavior is limited to a reasonable range. 
Especially, the detection for abnormal curvilinear movements 
has the best performance. 

2) Performance in Special Case: As we mentioned before, 
in a few special cases, the phone may slide in the vehicle during 
driving. Apparently, if so, the phone's accelerations in lateral 
direction or longitudinal direction or both will differ from the 
accelerations of the vehicle at the very moment of sliding; the 
phone's position and orientation may also change. Therefore 
the driving behavior detection based on vehicle accelerations 
might be affected. 

For the purpose of testing the detection in these cases, 
we gather all the data when the phone slides during drunk 
driving detection. The data include both drunk driving related 
behaviors and regular driving behaviors. We test the detection 
performance by these data with the same threshold set before. 
Fig. 6 shows the results. In these special cases, the FN rate for 
detecting abnormal curvilinear movement is 14.28%, and the 
FP rate is 1.09%; the FN rate for speed control problem is 0%, 
and the FP rate is 2.72%. 

The result shows that the slide of mobile phone has obvious 
impacts on the detection accuracy, especially for detecting 
abnormal curvilinear movements. Because if the phone slides 
when the vehicle is making curvilinear movements, the phone is 
very likely to rotate around an axis. So the lateral acceleration 
of the phone and that of the vehicle will have a quite large dif­
ference. In other words, it is hard to use the lateral acceleration 
of the phone to determine the moving trend of vehicle in lateral 
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Fig. 7. Power consumption curves in different scenarios. 

direction. 
To solve the problems caused by position and orientation 

changes when phone slides during driving, we may add an 
additional calibration procedure in the detection algorithm to 
improve the detection performance in this special case. 

C. Energy Efficiency 

To test power consumption of the detection system, we 
fully charge the G 1 phone and then monitor the power states 
continuously for 7 hours in different scenarios: 1) the Gl phone 
runs without drunk driving detection; 2) the monitoring daemon 
of system keeps running, sensing and recording acceleration 
and orientation, and do the pattern matching on the monitoring 
results. Fig. 7 illustrates the two curves of battery level states 
versus time during this time period of 7 hours. If the drunk 
driving detection system keeps running until the battery power 
is exhausted, it will last a little more than 34 hours. 

VI. DISCUSSION 

In this section, we discuss some untouched issues in the 
general design and implementation. 

1) GPS: Since all our detection approaches rely on driving 
patterns and vehicle movements, it is intuitive to think of 
GPS as a helpful auxiliary. With GPS, it is easy to delineate 
the vehicle movement trace and compare it with the road 
directions. Some simple graphic processing techniques may 
be sufficient to pinpoint any abnormal curves present in the 
trace. Moreover, GPS can provide us with another valuable 
parameter, the speed of the vehicle. Though we can infer 
the speed based on the integral of accelerations, cumulative 
error will make the inference meaningless after a period of 
several minutes. With this speed information, we can identify 
dangerous driving pattern with finer granularity. For example, if 
the vehicle runs at a very high speed, a small lateral acceleration 
is enough to make it drift or swerve with large dangerous 
S-curves. So the acceleration threshold of alerting should be 
dynamically adjusted according to the speed readings. Another 
benefit from the speed information is that we are able to 
calculate the radius of curvature of the vehicle moving path 
with Radius = speed2/accelerationlateral. The radius can be 
a very accurate indication whether the driver is making irregular 
and consecutive sharp turns. 

Though the integration of GPS information is worth ex­
ploring and is one direction of our future work, we argue 



here that GPS is not the best choice for our current solution. 
First, while accelerometers and orientation sensors, which we 
have adopted in our solution, are cheap and available on many 
mobile phones, GPS is a fairly sophisticated functionality that 
is only present on high-end smartphones. So the generality of 
our detection mechanism is compromised if it depends heavily 
on GPS. Another major concern about GPS is its localization 
accuracy. It is common sense that a localization error at the 
magnitude of several meters can take place with GPS [18]. As 
we can see from the NHTSA cue patterns, a single abnormal 
vehicle maneuver normally happens within a distance of 10 to 
20 meters. So the GPS localization error may cause great impact 
on the detection accuracy, if we consider the already achieved 
accuracy at around 100% with accelerometer and orientation 
sensors alone. On the other hand, while accelerometers and 
orientation sensors are mainly mechanical sensors and consume 
little energy, GPS, if turned on all the time, is highly energy 
consuming, as it constantly receives signals from satellites and 
performs considerable amount of computations. 

2) Camera: Most mobile phones are equipped with a camera 
with tolerable quality, e.g., 2 Megapixel resolution probably 
with other functionalities such as auto focus and exposure com­
pensation. So a mobile phone is usually capable of acquiring 
visual information. It can be a great help to remedy some weak­
nesses of the solution presented above. For example, cameras 
can be used to follow drivers' sight line and capture distinctive 
road signs or marks to help analyze driving patterns [10] [12]. 
However, several factors prevent us from adopting this option. 
First, in order to capture useful visual information, there are 
many requirements on the position and posture of the phone. A 
mobile phone must be meticulously set in a vehicle to face the 
front at an appropriate angle. A little position shift or sliding 
can totally ruin the camera view [19]. So it is not feasible even 
to ask normal drivers to maintain an accurate position of his 
mobile phone, not to say a drunk driver. Second, the algorithm 
behind the visual identification must be very complicated to 
accommodate various and changeable traffic conditions. A lot 
of intensive computations must be performed in a real time 
fashion and, hence, a potential high false positive/negative 
rate is possible given the limited computation capability of 
mobile phones. Third, camera operations and intensive image 
processing consume a lot of energy, particularly if the visual 
monitoring is conducted with a relatively high frequency. So in 
short, we think it is impractical at present to include camera and 
visual monitoring into our solution. However, it is a potential 
extension to our system with the fast development of mobile 
phone hardware in the future. 

VII. CONCLUSION 

In this paper, we present a highly efficient mobile phone 
based drunk driving detection system. The mobile phone, which 
is placed in the vehicle, collects and analyzes the data from its 
accelerometer and orientation sensor to detect any abnormal or 
dangerous driving maneuvers typically related to driving under 
alcohol influence. Experiments show that our solution sees very 
low false negative and false positive rates, as well as tolerable 
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energy consumption. In our future work, we plan to improve 
our detection system by integrating all available sensing data 
on a mobile phone, e.g., GPS data and camera image. 
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