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Abstract-Daily life activities such as working and shopping 
may cause people to carry overloaded bags, frequently borne 
in an incorrect way (e.g. only on one shoulder, asymmetrically 
worn). When these activities alter the gait, back pain incidents 
can occur. Critical conditions can be monitored taking advantage 
from a wearable assistant, extracting contextual information 
by on-body acceleration signals. By acquiring data on trunk, 
limb and foot during gait, we are able to detect five walking 
tasks on loaded conditions: two-straps backpack carried on 
shoulders, backpack carried with a single strap on right and left 
shoulder, bag carried with the right and left hand. Seven subjects 
participated walking at self-selected speed on a treadmill carrying 
a load between 10-12% of their body weight. Subjects repeated 
each task for five times over three weeks. We classified the 
activities for a single user by use of KNN, naive Bayes and SVM 
classifiers. KNN achieved the best recognition accuracy of 96.7% 
for day dependent classifier training. The sensors placement, 

which resulted to be different along consecutive days, affects 
performance evaluation: a +30 rotation on the coronal plane 
decreases the accuracy to 76.0%. 

Keywords: gait, back pain, load carriage, wearable assistant, 
accelerometer. 

I. INTRODUCTION 

Carrying loads is a typical task for all of us. Children 
and students wear daily their schoolbag with their books and 
stationeries; businessmen bring planners, laptop and docu­
ments; hikers and soldiers carry their supplies and personal 
equipment for long distance; even daily shopping involves 
carrying groceries home. Bobet et al. [4] reports that carrying 
heavy load leads to stress and asymmetry on the muskoskeletal 
system and is the cause of back and shoulder pain, muscles 
soreness and numbness. Furthermore, additional weight can 
alter the posture control system [5] and increase the risk of 
falls and injury [6]. Problems such as plexus and peripheral 
nerve injury, metatarsalgia, functional scoliosis and thrombosis 
are the most common problems resulting from inappropriate 
loads [51], [52]. Surprisingly, even low load conditions may be 
related to orthopedic, musculoskeletal, or soft tissue injuries 
[7]. 

Back pain in the lower trunk affects up to 90% of Americans 
at some point in their lifetime [1]. After headache, back pain 
is the second most common neurological upset in the United 
States where it affects the American Health Care Expenditures 
at least $50 billion each year [2]. Losses can be quantified 
also in terms of business costs: UK spends £5 billion a year 
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on missing working days [3]. 
The negative consequence of temporary carried loads are 

well studied [8]. In most case, the related symptoms vanish 
after a few days but low back pain starts to become a 
serious problem when it shifts from the acute to the chronic 
forms. Long-term effects of carrying a load are yet not fully 
understood. However, orthopedists warn about the impact of 
these repeated activities [8]. One long-term effect may be 
the permanent postural changes causing compressive forces 
upon the spine and related pathological back problems such as 
degenerative disk disease or disk herniation [9]. Since loads as 
low as the 10% of body weight starts to be critical, in particular 
when repeated over the time, common activities that seem 
innocuous can become problematic. A wearable assistant able 
to detect and warn about potentially harmful walking activities 
can play an important role on the diagnosis and prevention of 
neurodegenerative or chronic diseases. 

In this work we aim at automatic recognition of on-body 
load distribution from wearable sensors, during a common 
activity such as walking( i.e. we aim at the recognition of load 
distribution during locomotion). We have two complementary 
motivations - corresponding to different user groups - for this 
work: 

• Since even subjectively small loads can have harmful 
effects in the long term, automatically recognizing load 
during walking may enable users and allows them to 
become conscious of their load-carrying habits and make 
necessary adjustments. 

• Since long-term effects of load-carrying are still debated, 
a wearable load-monitoring system can provide relevant 
data for medical doctors, by collecting load-carrying 
patterns in daily life situations, over extended periods of 
time. 

We focus on the following on-body load placements: two­
straps backpack carried on both the shoulders (i.e. rucksack 
carried while hiking), backpack carried using a single strap 
on the right or left shoulder (i.e. a laptop bag) and backpack 
carried on the right or left hand using the top strap (i.e. 
groceries). 

We introduce a wearable system implementing context­
recognition algorithms for detecting weight placement (> 10% 
of body weight) among these locations. Our key principle 
is to measure and classify gait alterations between walking 
without load and walking with a load. In order to measure 

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
PERVASIVEHEALTH 2010, March 22-25, Munchen, Germany
Copyright © 2010 ICST 978-963-9799-89-9
DOI 10.4108/ICST.PERVASIVEHEALTH2010.8894

create-net
Typewritten Text

create-net
Typewritten Text

create-net
Typewritten Text



gait alterations we use accelerometers placed on-body. Ac­
celerometers offer unobtrusive integration in our outfit, and 
the rich information present in the acceleration signal during 
walking may be later on exploited to combine load detection 
with other contextual aspects, such as modes of locomotion, 
estimation of terrain profile, or gait trend analysis as well as 
more complex recognition of patterns of daily activities from 
gait. 

The key contribution of this paper are the following: 

• Selection of the relevant features characterizing gait al­
terations due to load. 

• Classification of different altered gait conditions. 
• Identification of the simpler real-life setup to guarantee 

high classification accuracy. 

The reminder of this paper is organized as follows: a 
literature review about the normal gait behaviors can be found 
in Section II. The description of the experiments setup and the 
walking protocol is in Section III. Section IV describes the 
results in terms of features selection and correct classification 
while Section V concludes the paper. 

II. LOAD-RELATED ILLNESSES, POSTURAL AND G AIT 

ALTER ATIONS 

On-body load affects gait and posture, and has been identi­
fied as risk factor for ulterior back pain and disability. Spinal 
pain was shown related to load weight in young people [l3] 
as well as in adults [14], and correlations between backpack 
weight and occurrence of back pain were identified [16]. 

On-body load exert forces impacts on the posture strategies 
by acting on calf, limb, trunk and head - eventually affecting 
the user's gait. Body load was identified as potential cause for 
changes of the spinal posture in adults and young people [15], 
[17], as well as more specific user groups such as soldiers [18], 
backpackers [19], and in some of the working population such 
as postmen [20]. 

A weight on the back increases forward trunk lean, rounds 
the shoulders and causes an alteration on the spine from its 
neutral position [21]. Compensatory pelvic motions increased 
torque and linear forces on bodily structures [22]. Using video­
based analysis, Pascoe et al. [8], described how the different 
modality to carry a load can influence the posture. A bag 
carried on both the shoulder significantly decreases stride 
length, increases stride frequency, reduces the support phases. 
A bag carried on a single shoulder leads to accentuated angular 
movements of the trunk and the head. Under load, forward 
leaning increases (up to 6 0) as well as lateral bending of the 
spine (up to 12 0) [20]. 

Based on epidemiological, physiological and biomechanical 
approaches, Brackley et. al defined a load weight limit of 10-
15 % of the body weight to still perform a safe walk in children 
[25]. Hardin et al. [23] suggested a maximum backpack weight 
of 30% of the body weight for physically fit adults. 

Although automatic, walking is a activity involving complex 
coordination of movements; multiple body segments have to 
move in sync to maintain balance. Besides, feet, hips, spine, 
arms, shoulders and head are also involved. Through this 
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causal chain, postural alteration due to load result in modified 
gait profiles. 1. 

A. Gait analysis techniques 

Gait analysis is used to assess the way we walk and 
highlight biomechanical abnormalities. Three distinct subsets 
of physical variables are included when measuring locomotion 
data: (1) kinematic, (2) kinetic and (3) myoelectric. 

Kinematic data includes position, velocities and accelera­
tions of body segments, as well as angles, angular velocities 
and angular accelerations between segments. Kinematic mea­
surement methods include [26]: (a) exoskeleton systems where 
an electro goniometer records changes in angles of hip, knee 
and ankle joints; (b) inertial sensors such as accelerometers 
that measure linear acceleration of the body segments; (c) 
stereo metric methods that reconstruct in 3D instantaneous 
positions of a moving point in a global coordinate system. 

Kinetic data relate to the forces and the moments exerted 
when the body interacts with its surroundings. A typical 
kinetics measurement method is ground reaction force (GRF) 
measurement, for which platforms such as Pedobarographs and 
pressure insole systems with discrete or matrix sensors can be 
used. Other examples are the gait mats, consisting of a long 
walking strip integrating embedded pressure sensors. 

Myoelectric sensors measure physiological variables orig­
inating in the human body and describe changes associated 
with skeletal muscle activity. 

The traditional measurement systems are mostly opto­
electronic camera-based motion tracking systems for stereo­
photogrammetric [8] or dynamometric platforms. These sys­
tems often require large spaces and are generally expensive 
[31] and they are adequate only for hospital or laboratory 
stationary settings. Furthermore these systems need a complex 
setup and a calibration managed by a specialized technician. 
Markers placement has to obtain maximum visibility from 
multiple cameras to avoid occlusions while minimizing the 
"blind zone". 

Nowadays, a number of wearable systems are developed to 
achieve less invasive measurements, typically for gait mon­
itoring in daily life situations. These systems usually rely 
on wearable inertial platforms that can substitute stationary 
systems for several applications ([27],[28]). Some systems also 
provide wireless communications ([29],[30],[32]). Wearable 
systems have been proposed to estimate stride length, walking 
speed, and foot inclination in the sagittal plane during walking 
by means of a biaxial accelerometer and a rate gyroscope 
embedded in a unit on the shoe [33]. Other studies presented 
system able to detect gait phases with application in motor 
rehabilitation and evaluation, based on inertial [34],[35] and 
magnetic sensors [36]. 

B. Context and load placement recognition from gait 

In literature most of the works on gait recognition involve 
machine vision techniques. Video analysis, based on specific 

1 The gait profile is the movement pattern of body parts during walking 



markers placement, defined load alteration on static posture 
[54], dynamic condition [53], [10] or both [8], [20]. Several 
load carriage methods were investigated: Pascoe et al. [8] 
examined one-strap backpack, two-strap backpack, one-strap 
athletic bag; Smith et al. [53] used a bag carried unilaterally 
and on both the shoulders; Fowler et al. [20] investigated about 
the influence of one strap bag on walk. 

Critical bag weight was also examined. Yusuf et al. [54], and 
Xian Li et al. made a comparison on the spine misalignment 
by a backpack on the shoulders with a weight 10%, 15%, 20% 
of the subject weight. 

Studies with focus on dynamic condition introduced tem­
plates related to characterize the body segment movement 
during gait. These templates can be used to extract information 
such as mean, variance, maximum and minimum value or to 
make a comparison between different body segments behav­
iors. Whittley [38] gave a description about the knee rotation 
template during gait while Osaku et al. [39] described a com­
parison on the compensatory arms-foot movement. Leteneur 
et al. [40] extracted a template useful to evaluate trunk 
and lower trunk inclination during the stance phase of gait. 
Hirasaki [41] analyzed the effect of different walking speed 
on the trunk translation and head pitch/translation. Relevant 
gait information can be extracted by the sensors placement on 
the lower trunk, identified as the body's center of gravity where 
the balance starts. During a walk the hip motion appears as two 
separate, overlapped rotations: firstly, the hip rotate along the 
axis of the spine, forward and back with the legs. Orendurff et 
al. [42] shown the Center of Mass (CoM) trajectory on a health 
subject during walking. They reported a relationship between 
the vertical and mediolateral CoM excursions and the walking 
speed. 

A large use of accelerometers was made to detect the human 
body orientation where the subject posture was estimated 
by attaching sensors on two or more body's segments (i.e., 
trunk, thigh, shank). Aminian [44] and Veltkin [45] recognized 
posture at rest such as standing, sitting and lying. Jonghun 
et al. [46] extended the static recognition detecting activities 
such as walking, running, upstairs and downstairs climbing 
with a single accelerometer on the waist and a neural network 
classifier. Bachlin et al. [12] showed that on-body loads can be 
detected from gait alterations, as well as different shoes worn, 
and walking surfaces can be identified. They also showed that 
gait is specific to each individual, to the extent that it may 
be used for gait-based authentication. However, they identified 
natural day-to-day variations in the gait profile that makes gait­
based context-recognition approaches challenging for long­
term use. 

Therefore, we can state that an extensive collection of 
results from real-life on load carriage is still missing. In fact, 
existing dataset refers to ambulatory acquisition and selected 
population; acquisition is often performed in limited areas due 
to the use of camera-based techniques to capture the walking 
behaviours. The aim of the present work is to put the premises 
to implement a wearable device, enabling long-term capture 
of walking behaviours on broader subjects populations in real-
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life conditions. Enabling long term monitoring is crucial to 
gain a complete understanding of the impact of daily physical 
activities on user health. Such information can be provided to 
clinicians in case of injuries or contractures to perform more 
accurate diagnosis and prescribe ad hoc treatments. 

Finally, a wearable device working on the detection of 
critical walking conditions can be used also to advise the 
user; for example providing precautionary feedback if he is 
incurring in critical tasks or using statistics to advise the user 
of incorrect behaviours repeated over time. 

III. WEARABLE ASSISTANT FOR LOAD MONITORING: 

METHODOLOGY AND EXPERIMENTAL SETUP 

A. Experimental protocol 

We defined six walking conditions, commonly involved in 
daily activities, defining different ways of carrying a load. 
Tasks are defined as follow: normal gait - without weight- (N); 
two-straps backpack carried on the shoulders (SB); backpack 
carried using a single strap on the right shoulder (SR) and 
on the left shoulder (SL); backpack carried on the right hand 
(HR) and on the left hand (HL). The backpack weight was 
chosen between 10-12% of the subject weight. 

Experiments start with a reference task (R) to align sensors 
orientation to the external reference system defined by the 
gravity vector and the floor plane. The duration of each task 
is 2 minutes. It is not mandatory for the subjects to stare a 
visual target during the walk. 

In order to have a controlled setup, trials are performed on 
a treadmill. Murray et al. [47] have shown that walking on 
a treadmill is similar to normal gait. Subjects walked on a 
treadmill at self-selected speed. Before data collection, each 
subject walked for 2 minutes on the treadmill to select a 
comfortable speed which was later used for the recordings on 
all the others days. Walking speeds vary between 3 and 3.5 
Kmlh (average speed was 3.25(±0.25) Kmlh). Subjects were 
asked to wear always the same shoes for all the recordings; 
most of them chose their running shoes. 

The seven tasks were repeated five times on three weeks, 
two times per week: 700 minutes of data. The task execution 
sequence was randomized to prevent the measuring of possible 
fatigue effects from the users. 

Seven subjects participated in this study (4 males, 3 fe­
males). Their average age, height and weight are 35.5 (± 11.6) 
years, 174 (±1O.0) cm and 65.9 (±6.8) Kg, respectively. 
Details are given in Table I. None of the subjects presented 
history of neuroske1etal disorder. 

B. System setup 

The proposed system is based on four tri-axial sensors. 
Wireless accelerometer nodes [48] have a range of ± 6g 
and a resolution of Img. The sampling rate is set out 32Hz 
to guarantee an adequate signal quality and the maximum 
lifetime of the battery supply: 20h. The sampling rate value 
was chosen in agreement with [49] that identifies, using video 
analysis on several walking speed, the typical bandwidth of 
normal subjects gait between 4 and 6 Hz. 



Sub Age Gender Height Weight Load Speed 
[y] [cm] [Kg] [Kg] [kmlh] 

I 30 M 176 71 84 3.5 
2 28 F 165 56 5.6 3 
3 28 M 190 83 84 3.5 
4 30 F 166 55 5.6 3 
5 59 F 162 52 5.6 3 
6 47 M 175 75 84 3.5 
7 26 M 186 74 84 3.5 

Tot 35.50 174 65.90 7.20 3.5 
±11.60 ±1O.00 ±6.80 ±1.50 ±O.25 

Table I 
SUBJECTS SUMMARY CHARACTERISTICS 

In Figure 1 the red circles mark the sensors placement 
and the axis orientation. Sensors were attached to the body 
locations using Velcro belts: two of them are placed on each 
heel, to detect opposite foot gait phases, one on the lower 
trunk (fifth lumbar) and one on the chest, both to capture body 
tilt-related parameters. In a preliminary setup sensors were 
placed also on the knees, wrists and head. However knees­
related information was considered redundant with respect to 
the features extracted from heels. Sensors placed on head and 
wrists capture gestures involved in many different activities 
not only related to the specific problem observed (carriage 
of a load), thus confusing the results. The data is sent via 
Bluetooth to a PC which synchronizes the recordings of all 
four sensors. 

Figure I. Accelerometer sensors placement and axis orientation 

IV. DATA PROCESSING 

Monitoring the user in quiet stance, the sensors position 
is aligned by the introduction of an adequate rotation matrix. 
Experiments start with a reference task to align sensors orien­
tation to the external reference system defined by the gravity 
vector and the floor plane. 

Features on time-series data are extracted on repeatable 
events taking as reference the model reported in Chambers 
[37] (2). The model identify the gait cycle on a single foot 
tagged by the heel strike event. Stance (8) and swing phases 
(8) are related to the events: hell strike (HS) and toe off 
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(TO). Features are extracted on a sliding temporal window, 
identified by two consecutive right heel strikes (t = T): 
[h(T), h(T), ... , fn(T)]. 

Event Sub-phasf! Phase 

Foot Contact EartycJOl.illt 
........ """ .. 

Opposite Toe.off 
...... Stance phase 
........ """'" 

Opposite Foot Contact Gait Cycle 
lateOOUble 

Toe-off """"""""'" 
Swing phase 

Next FOOl Contact 

Figure 2. Double Support Gait Model from [37] 

The average value of the features is computed on the 
overlapped window of the previous N samples to reduce the 
data variability (N = 5). { h(T) = mean(hC!), hC! - 1), ... , hC! - N)), 

h(T) = mean(h(T), h(T - 1), ... , h(T - N)), 
......... - ....... . 
fn(T) = mean(fn(T), fn(T - 1), ... , fn(T - N)). 

To guarantee independence between the features and improve 
classification performance, a feature selection, evaluating the 
entropy of each feature entropy in the classification process, 
was performed. 

Classification is based on the KNN classifier (K = 

3). The task is estimated each t = T: Ctemp(T) = 

f(h(T), h(T), ... , fn(T)). Class assessment is improved by 
the Majority Voting algorithm: the class with the maximum 
number of instances on the previous K estimates (K = 5) 
is taken as the most probable: C(T) = [Ctemp(T), C(T -
1), ... , C(T-1-K)]. In this specific case, transitory activities, 
such as switches from different carriage load methods, are not 
detected. 

A. Signal analysis 

Willemsen et al. [50] present an accelerometer-based tem­
plate to detect automatically stance, push-off, swing down, 
swing up and heel strike on the ankle joint, shown in Figure 
3, where HS and TO events are related to the maximum signal 
peaks on the accelerometer vertical axis. With the purpose to 
detect only these two main events, we developed a simpler 
algorithm to detect the maximum values in the signal of the 
heel sensors. The maximum peak, in the vertical y-axis, closest 
to the minimum peak in the z axis (gait direction) identifies 
HS events (see Figure 4). 

Since sensors are fixed with Velcro stripes, artifacts affect 
the signal (Figure 5, blue curve). To improve maximum peaks 
detection, we apply a low pass filter to the signal (3dB point at 
10Hz) and evaluate peaks on the norma of the signal (Figure 
5 - red curve). 

In Figure 6 the temporal features extracted are represented: 



2 4 6 
Time [sl 

Figure 3. Equivalent acceleration at the ankle joint [50] 

TO HS 
, 

'TO! HS ITO' HS HS ., L,:-!-II,-'---"'IIC:-' -'- ,-'-'�I3"'----''='IIc,-. ,-'----:'� .. :---'-..,.1I';-6 ----:'�"!--'-�II. 
T;m·"'1 

(a) Vertical direction 

(b) Forward direction 

Figure 4. Right heel acceleration sensor 
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Figure 5. Signal processing on the right heel acceleration signal on vertical 
axis to enhance gait phases detection 

• single foot gait duration (Gx, where: x E right, left): 
time interval defined between two consecutive heel strikes 
on a single foot; 

• single foot stance duration (Sx, where: x E right, left): 
time interval defined between heel strike and the consec­
utive toe off a single foot; 

• single foot swing duration (sx, where: x E right, left): 
time interval defined between toe off and the consecutive 
heel strike on the single foot; 

• overlapped phase duration between two feet (Oy, where: 
Y E right/left, left/rightrl); 

For example, starting with the H S of the right foot, 

HSright, and defining: TO of the right foot, TOright, 
H S of the left foot, H Sleft, TO of the left foot, 

TOleft, the events sequence involved in a gait cycle is: 
H Sright, TOleft, H Sleft, TOright, overlapped phases can be 
described as follow: 

• Orl(T) = TOleft(T - 1) - HSright(T) 
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Figure 6. Double support temporal relations 

• Olr(T) = TOright(T) - HSleft(T) 
• Gright(T) = HSright(T + 1) - HSright(T) 
• Sright(T) = TOright(T) - HSright(T) 
• Sright(T) = HSright(T - 1) - TOright(T) 
When a load is carried on a body side, the walking be­

haviour presents temporal asymmetry. One way to evaluate this 
asymmetry is to make a comparison between the duration of 
the stance and swing duration. This parameters is calculated: 

• SsRatioright(T) = Sright(T)/Sright(T) 
• S sRatioleft (T) = Sleft (T) / sleft (T) 

Sensors placed on the hip and upper trunk allow to monitor 
body oscillations in the sagittal and the coronal plane. As 
reported in literature - see Section II-8 -, we assume that 
carrying a load can be identified on the thank to the extraction 
of the rotation features: Rot(j, k, m)where : sensors position, 
j, E Trunk, Limb, rotation plane, k, E Sag, Cor). We mea­
sured the values: m E Mean, Std, Max, Min. 

Figure 7 illustrates the impact on the upper trunk posture 
due to carrying: a) symmetrically a rucksack; b) asymmetri­
cally a hand bag. 

e 
90.� 

180�. _ .. . 

Coronal Plane 

O· 

Sagittal Plane 

Figure 7. Posture alteration due to load carriage 

Not only kinematic but also energy information can be 
extracted from the sensor placed on the lower trunk. Energy 
expenditure (EE) provides the quantitative measure of the 
metabolic energy expanded in physical activity. Mathie et al. 
[43] compute EE on the dynamic accelerometer components 
of a sensor placed on the lower trunk. 



Body inclination and energy expenditure features are nor­
malization to the gait interval duration. 

B. Features selection 

Haal et al. proposed the filter [57] to select the most relevant 
features by ranking entropy of each feature in the classification 
process. The score is a value in the range [O-F], where F is the 
number of folds that build the validation set from the whole 
dataset. The score with F value means the highest feature 
relevance in the classification process. 

User-specific and time-independent features are selected by 
running the described process on D days for each subject. 
Subject specific features scores (81, 82, ... ,87), in the range 
of [0 - F * D], are visible on columns in Table II. 

To select user-unspecific and time-independent features, 
scores from each subjects were added; the final score is shown 
in the "FS" column. 

Features S1 S2 S3 S4 S5 S6 S7 FS 

Gaitright 1 0 0 0 0 0 0 1 

Gaitleft 1 1 0 0 1 0 0 3 
Stanceright 1 0 0 1 1 0 0 3 
Stanceleft 0 1 0 1 0 1 0 3 
Swingright 0 0 0 0 0 0 0 0 
Swingleft 0 0 0 0 0 0 0 0 
SsRatioright 0 0 1 1 0 0 1 3 
SsRatiolejt 0 0 1 0 0 0 3 4 
Overlaprl 0 0 2 0 0 0 0 2 
Overlaplr 0 0 4 1 0 0 0 5 
RotTrunkSagMean 18 18 16 17 15 15 14 113 
RotTrunksagStd 6 2 0 3 0 6 2 19 
RotTrunksagMax 18 11 9 16 16 16 14 100 
RotTrunksagMin 10 8 4 12 12 8 7 61 
RotTrunkCorMean 20 20 20 17 20 20 20 137 
RotTrunkCorStd 5 0 0 6 5 5 3 24 
RotTrunkCorMax 16 17 18 15 20 19 18 123 
RotTrunkCorMin 20 19 19 14 19 16 15 122 
RotLimbsagMean 12 8 20 18 20 17 15 110 
RotLimbsagStd 3 3 2 6 2 4 I 21 
RotLimbsagMax 5 6 5 13 10 9 7 55 
RotLimbsagMin 7 6 16 10 20 12 10 81 
RotLimbCorMean 15 17 16 20 17 20 20 125 
RotLimbCorStd 10 6 5 13 3 8 7 52 
RotLimbCorMax 4 9 2 17 12 10 4 58 
RotLimbCorMin 9 9 2 14 9 10 6 59 
EEriahtMean 4 4 0 0 0 3 3 14 

Table II 
FEATURES RELEVANCE IN THE FILTER SELECTION PROCESS B Y  RANKING 

ENTROP Y OF EACH FEATURE IN THE CLASSIFICATION PROCESS. NUMBER 

OF FOLDS, F = 4; NUMBER OF DAYS, D = 5 

Features selected by thresholding (threashold = 100) are: 

RotTrunkSagMean, RotTrunkSagMax, RotTrunkCorMean, 
RotTrunkCorMax, RotTrunkCorMin, RotLimbSagMean, 
RotLimbCorMean. Both temporal features and the feature 
to highlight a possible walking asymmetry (swing-stance 
duration ratio) are not selected because there is not relevant 
variability over different tasks. This can be due to a bag weight 
too light or to the use of the treadmill instead of acquiring data 
in free walking conditions. Therefore, tests with heavier loads 
can reveal if these features,defined in [20] as the most relevant 
to detect altered walking, can be re-considered. 
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C Walking alteration recognitions results 

Three different data analysis methodologies can be applied: 
(a) user specific and time dependent: a single subject moni­
tored on a single day; (b) user specific and time independent: 
a single subject monitored on several days; (c) user non­
specific and time independent: more subjects monitored on 
several days. In this paper, we analyze the case (a) evaluating 
classification performance in terms of Correct Classification 
Rate (CCR). 

Perform a user specific and time dependent analysis means 
to distinguish each defined walking alteration on a fixed day 
by training the classifier on day X a and testing on day X b, 
where: X E daYl,,,.,5; a represents the first 30 seconds of a 
single task in the dataset while b are the last 90 seconds. 

In Table III performance about the tested classifiers is 
shown. KNN classifier provides the highest accuracy (96.7%), 
when compared to naiVe Bayes (96.5%) and SVM (85.2%) 
cl ass i fi ers 

In Figure 8 the True Positive Rate matrix (TPR) values 
averaged on all the subjects is shown. KNN (K = 3) is 
the classifier used. Real task are reported on each row, while 
estimated tasks are in the columns of the table. 

Classifier S1 S2 S3 S4 S5 S6 S7 
CCR 

KNN 
98.80/1 95.10/1 94.50/1 99.50/1 92.80/1 98.00/1 97.30/1 96.7% 

NB 

99.50/1 96.10/1 95.80/1 99.70/1 91.10/1 97.70/1 97.10/1 96.5% 
SVM 

88.90/1 86.60/1 85.00/1 83.70/1 79.00/1 86.30/1 87.20/1 85.2% 

Table III 
USER-SPECIFIC, TIME-DEPENDENT CLASSIFICATION RESULTS 

COMPARISON FOR DIFFERENT CLASSIFIERS. CROSS-VALIDATION, 4 
FOLDS, ON A SINGLE-USER IN A SINGLE-DAY 

1 
N 0.9 

0.8 
SR 

0.7 

SL 0.6 

O.S 
SB 0.4 

0.3 
HR 

0.2 

HL 0.1 

0 
N SR SL 58 HR HL 

Figure 8. 96.7% of accuracy for user-specific and time-dependent case. 

Another approach can be used to train the classifier to limit 
day-by-day training activity. The classifier can be trained with 
a sufficient amount of data on the day d 1 and update the 
classifier only on the day in which is used. 



We trained the classifier on the first 20 seconds of day 
d1 and the first 5 seconds of the day dj. Testing dataset is 
represented by the last 115 seconds of d j. 

Classifier accuracy has the average value of 92.1 %. The 
classifier stores only the training set of the first day d1 while 
in the following days few steps are sufficient to update the 
classifier. 

Assessment across multiple days, ensures robustness against 
natural daily fluctuations in gait, taking advantage from the 
classifier update on the day of use. In Table IV single user 
classification results on five different days are visible. 

CCR Single Trunk Sensor All Sensors 
TrainDI-TestDl 95.1% 92.8% 
TrainD 12-TestD2 89.4% 94.0% 
TrainD 13-TestD3 90.1% 91.1% 
TrainDl4-TestD4 83.9% 89.7% 
TrainDl5-TestD5 92.3% 93.1% 
Mean 90.2% 92.1% 

Table IV 
ONLINE CALIBRATION - CLASSIFIER TRAINED ON 20 SECONDS OF THE 

DAY dl AND THE FIRST 5 SECONDS OF THE DAY d:i AND TESTED ON THE 

REMAINING SECONDS OF THE DAY j 

The relevance of the calibration done to cope with errors 
on the sensor placement is verified by training classifier on 
day la and testing on day Ib; a is the dataset with calibrated 
sensors placement; b is the dataset where the sensor on the 
trunk is artificially rotated. 

(a) TPR on day dl, +30 
artificial rotation on Z axes 

(b) TPR on day dl, _30 
artificially rotation on Z axes 

Figure 9. TPR matrix on artificially rotation for sensor on trunk 

In Figure 9, the TPR matrix for two artificial trunk sensor 
rotations over the Z axes is shown. A rotation of +3 0 de­
creases accuracy down to 76%. SB and SL tasks are incorrectly 
detected as SR task while the bag carriage on the right hand 
is estimated as N. Viceversa, on a rotation of -3 0, opposite 
considerations can be done. Table V presents results in terms 
of accuracy obtained from simulations in which the position 
of sensors has been rotated. The rotation of +5 0 on Z axis 
produced very inaccurate results. 

D. Minimal sensors setup 

A sensors setup for a real-life scenario requires a simple 
design that involves the minimum number of sensors, to 
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Table V 
ACCURACY ON ARTIFICCIALY TRUNK SENSOR DISALIGNEMENT OVER THE 

Z AXES 

be integrated in garments. This VISion can be explored by 
performance evaluation for a single sensor. We assume that 
a user wears a shirt integrating a sewed accelerometer on the 
chest. A performance comparison between the setup based on 
the single chest sensor and the four sensors setup is reported 
in Table IV. The average accuracy of 90.2% can be reached 
taking advantage from the online calibration on the day of 
use. A single sensor on the chest can be used to detect each 
defined task for a single user over time. 

Note: this setup does not involve sensors on heels, used 
to detect gait phases for signal segmentation. A different 
approach to extract gait phases from the sensor placed on the 
trunk can be used (Figure 10 - red curve). Trunk acceleration 
on forward direction defines toe off instances for each foot as 
well as the signal on the vertical direction from the sensors 
on the feet. 

110' III III' II: II:' Tiuk" :I 

Figure 1 O. Swing and stance phases identification by the trunk sensors 

V. CONCLUSION 

We presented a study to identify relevant features character­
izing gait alteration due to load. We applied a user specific and 
time dependent analysis, demonstrating that the most relevant 
features are those related to upper trunk rotation both on the 
coronal and the sagittal plane. Each task can be identified 
for a single user with high accuracy when sensors placement 
calibration is introduced. In fact, the study demonstrates that 
the sensors placement affects performance evaluation. 

A minimal sensors setup was identified to guarantee classi­
fication accuracy. It is based on a single sensor placed on the 
upper trunk. 

In a future work, we will address time independent analysis 
methodologies to ensures robustness against natural daily 
fluctuations in gait. Assessment on multiple users is the 
final challange to obtain a user independent system. Among 
the approaches that may be used to improve the detection, 



segmenting the population (e.g. in terms of weight and sizes) 
could be further explored. 

REFERENCES 

[I] ht!p:!/www. emedicinehealth. com, Sept. 2009 
[2] http://www.ninds.nih.gov/disorderslbackpain, Sept. 2009 
[3] http://www.personneltoday.com/articles/2005/06/03/30 163/, Sept. 2009 
[4] J. Bobet, R.w. Norman, "Effects of load placement on back muscle 

activity in load carriage", 1984, European Journal of Applied Physiology, 
Vol. 53, Pagels): 71-75 

[5] T. Ledin et al. , "Effects of postural disturbances with fatigued triceps 
surae muscles or with 20 % additional body weight", 2004, 1. Gait & 
Posture, Vol. 19, Pagels): 184-193 

[6] B.E. Maki, P1. Holliday, AK. Topper, "A prospective study of postural 
balance and risk of falling in an ambulatory and independent elderly 
population", 1. Gerontology, 1994, Vol. 49(2), Pagels): 72-84 

[7] S. Negrini et al. ,"Backpacks on Scoolchildrends perceptions if load, 
associations with back pain and factors determining the load", Spine 2002, 
Vol. 27, Pagels): 187-95 

[8] D. Pascoe et al. , "Influence of carrying book bags on gait cycle and 
posture of youths", 1997, Journal of Ergonomics, Vol. 40(6), Pagels): 
631-641 

[9] C.C. Norkin, PK. Levangie, "Joint Structure and Function: A Compre­
hensive Analysis", 2nd ed. , Philadelphia, PA: FA Davis Company, 1992 

[10] J. Xian Li et al. , "Age difference in trunk kinematics during walking 
with different backpack weights in 6 to 12 years old children", 2004, 
In-Proceedings of the XXII ISBS 

[II] http://www.nlm.nih.gov/medlineplus/ency/article/003199.htm. Sept. 
2009 

[12] M. Bachlin et al. , "Quantifying gait similarity: user suthentication and 
real-word challenge", 2009, Advances in Biometrics, Pagels): 1040-1049 

[13] K. Grimmer et al. , "Gender-age environmental associates of adolescent 
low back pain", 2000, Applied Ergonomics, Vol. 31, Pagels): 343-360 

[14] RP. Johnson et al. , "Symptoms during load carrying: effects of mass 
and load distributions during 20 Km road march", 1995, Perceptual and 
Motor Skills, Vol. 81, Pagels): 331-338 

[15] Y Hong et al. , "Gait and posture responses to backpack load during 
level walking in children", 2003, Gait & Posture, Pagels): 28-33 

[16] D.L. Skaggs et al. , "Back pain and backpack in school children", 2006, 
J. Pediatr. Orthop. , Vol. 26, Pagels): 358-63 

[17] A Steele et al. ,"The postural effects of load carriage on young people: 
a systematic review", 2003, BMC Muck. Dis. , Pagels): 4-12 

[18] M.P. Heller, "Changes in postural sway as a consequence of wearing a 
military backpack", Gait & Posture 30 (2009), Pagels): 115-117 

[19] J.J. Vacheron , "Changes of contour of the spine caused by load 
carrying", 1999, Surg. Radiol. Anat. , Vol. 21(2), Pagels): 109-113 

[20] N.E. Fowler, "Changes in stature and spine kinematics during a loaded 
walking task", Gait & Posture, 2006, Pagels): 133-141 

[21] PE. Martin et al. "The effect of carried loads on the walking pattern of 
men and women", 1986, Ergonomics, Vol. 29, Pagels): 1191-1202 

[22] T. C. Cook, "The effects of load placement on the EMG activity of the 
lower back muscles during load carryin by men and women", 1987, Vol. 
30, Pagels): 1413-1423 

[23] D. Hardin, B. Kelly, "You and your gear: physical fitness", 1975, 
Backpacker, Vol. 3, Pagels): 3-31 

[24] H.1. Voll, "Strain in children caused by schoolbags", O.G. , Vol. 39, 
Pagels): 369-378 

[25] H.M. Brackley, J.M. Stevenson, "Are children's backpack weight limits 
enough? A critical review of the relevant literature", 2004, SPINE, Vol. 
29, Pagels): 2184-2190 

[26] V Medved, "Measurement of human locomotion", 2001, Journal of 
Biomechanics, Vol. 36(1), Pagels): 147-148 

[27] http://lmam.epfl.ch/page2856.html, Sept. 2009 
[28] http://www.xsens.com/enlproducts/machine_ motionlmti.php, Sept. 2009 
[29] V Van Acht, E. Bongers, N. Lambert, R Verberne, "Miniature Wireless 

Inertial Sensor for Measuring Human Motions", 2007, Engineering in 
Medicine and Biology Society, Pagels): 6278-6281 

[30] http://www.mcroberts.nll. Sept. 2009 
[31] http://www.btsbioengineering.com/. Sept. 2009 
[32] http://www.memsense.com. Sept. 2009 
[33] S.J. Morris Bamberg, A Y Benbasat, D.M. Scarborough, D.E. Krebs, 

1.A Paradis, "Gait Analysis Using a Shoe-Integrated Wireless Sensor 
System", 2008, Vol. 12(4), Pagels): 413-423 

Digital Object Identifier: 10. 41 OBACSTPERVASIVEHEAL TH20 10. 8894 

htlp:lldx.doi.org/10.410BACSTPERVASIVEHEAL TH2010. 8894 

[34] AM. Sabatini, C. Martelloni, S. Scapellato, P. Cavallo, "Assessment 
of Walking Features", Foot Inertial Sensing", 2005, Vol. 52(3), Pagels): 
486-494 

[35] !.P!. Pappas, T. Keller, S. Mangold, M.R Popovic, V Dietz, M. Morari, 
"A Reliable Gyroscope-Based Gait-Phase Detection Sensor Embedded in 
a Shoe Insole", 2004, IEEE Sensors Journal, Vol. 4(2) 

[36] E. Vildjiounaite, E-J MaIm, J. Kaartinen, P Alahuhta, "Location estima­
tion indoors by means of small computing power devices, accelerometers, 
magnetic sensors, and map knowledge", Lecture Notes in Computer 
Science, 2002, Vol. 2414, Pagels): 211 

[37] H. Chambers, M.D. and D.H. Sutherland, "A Practical Guide to Gait 
Analysis", 2002, 1. Am Acad. Orthop. Surg. , Vol. 10(3), Pagels): 222-
231 

[38] M.w. Whittle, "Clinical Gate Analysis: A Review", 1996, Human 
Movement Science, Vol. 15, Pagels): 369-387 

[39] K. Osaku, H. Minakata, S. Tadakuma, "A Study of CPG Based Walking 
Utilizing Swing of Arms", 2006, In Proceedings of the Conference AMC 

[40] S. Leteneur et al. , "Effect of trunk inclination on lower limb join and 
lumbar moments in able men during the stance phase of gait", 2009, 
Journal of Clinical Biomechanics, Vol. 24, Pagels): 190-195 

[41] E. Hirasaki, "Effects of walking velocity on vertical head and body 
movements during locomotion", 1999, Exp. Brain Res. , Vol. 127, Pagels): 
117-130 

[42] M. Orendurff et al. , "The effect of walking speed on center of mass dis­
placement", 2004, Journal of Rehabilitation Research and Development, 
Vol. 41(6A), Pagels): 829-834 

[43] M.J. Mathie et al. "A System for Monitoring Posture and Physical 
activity using Accelerometers", 2001, Proceedings of 23rd EMBS 

[44] K. Aminian, "Temporal features estimation during walking using minia­
ture accelerometers: an analysis of gait improvement after hip arthro­
plasty", 1999, Medical & Biological Engineering & Computing, Vol. 37, 
Pagels): 686-691 

[45] PH. Veltink et al. , "Detection of static and dynamic activities using 
uniaxial accelerometers", 1996, IEEE Transactions on Biomedical Engi­
neering", Vol. 4(4), Pagels): 375-85 

[46] B. Jonghun et al. , "Accelerometer Signal Processing for User Activity", 
2004, Lecture Notes in Computer Science, Vol. 3215, Pagels): 610-617 

[47] M.P Murray et al. , "Treadmill vs. floor walking: kinematics, elec­
tromyogram, and heart rate", 1985, Journal of Applied Physiology, Vol. 
59(1), Page: 87 

[48] D. Roggen, M. Bchlin, J. Schumm, G. Trster, "A Bluetooth and wired 
sensor kit for wearable activity recognition", ETHZ Technical Report, 
2010 

[49] D.A Winter, "The Biomechanics and Motor Control of Human Move­
ment", 2nd ed. , 1991, Wiley 

[50] ATh.M. Willemsen et al. "Automatic Stance-Swing Phase Detection 
from Accelerometer Data for Peronal Nerve Stimulation", 1990, IEEE 
Transaction on Biomedical Engineering, Vol. 37(12) 

[51] S.D. Kolodinsky et al. , "Axillary vein thrombosis in a female back­
packer: Paget-Schrotter syndrome", Canadian Association of Radiologists 
Journal, 1989, Vol. 40, Pagels): 230-231 

[52] E.L. Sutton, "Preparing for combat: athletic injuries occurred and per­
formance limiting orthopedic and medical conditions", Medical Science 
in Sports and Exercise, 1976, Vol. 8, Pagels): 74 

[53] B. Smith, "Influence of carrying a backpack on the pelvic tilt, rotation, 
and obliquity in female college students", 2006, Gait & Posture, Vol. 23, 
Pagels): 263-267 

[54] S.S.M. Yusuf AI-Khabbaz et al. , "The effect of backpack heaviness on 
trunk-lower extremity muscle activities and trunk posture", 2008, Gait & 
Posture, Vol. 28, Pagels): 297-302 

[55] L. Atallah, "Detecting Walking Gait Impairment with an Ear-worn 
Sensor", 2009, Pagels): 175-180 

[56] H. George et al. , "Estimating Continuous Distributions in Bayesian 
Classifiers", Proceedings of the Eleventh Conference on Uncertainty in 
Artificial Intelligence", Pagels): 338-345 

[57] M.A Hall et al. , "Correlation-based feature subset selection for machine 
learning", 1999, PhD Thesis, University of Waikato, Hamilton, New 
Zealand 




