
Low Power Compression of EEG Signals Using 

JPEG2000 

Garry Higgins, Brian Me Ginley, Martin Glavin, Edward Jones 
Bioelectronics Research Cluster, NCBES 

National University of Ireland Galway 
Galway, Ireland 

g.higginsl@nuigalway.ie, brian.mcginley@nuigalway.ie, martin.glavin@nuigalwayje, edward.jones@nuigalwayje 

Abstract- This paper outlines a scheme for compressing 

EEG signals based on the JPEG2000 image compression 

algorithm. Such a scheme could be used to compress signals in an 

ambulatory system, where low-power operation is important to 

conserve battery life; therefore, a high compression ratio is 

desirable to reduce the amount of data that needs to be 

transmitted. The JPEG2000 specification makes use of the 

wavelet transform, which can be efficiently implemented in 

embedded systems. The standard was broken down to its core 

components and adapted for use on EEG signals with additional 

compression steps added. Variations on the components were 

tested to maximize compression ratio (CR) while maintaining a 

low percentage root-mean-squared difference (PRD) and 
minimize power requirements. Initial tests indicate that the 

algorithm performs well in relation to other EEG compression 

methods proposed in the literature. 
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I. INTRODUCTION 

Recent advances in health care have seen an increased 
focus on at-home care and monitoring of patients. Portable 
devices allow patients to be monitored at home on an out­
patient basis, thus advancing the goal of providing ubiquitous 
and pervasive healthcare. This in turn, relieves pressure on 
over-burdened hospital systems, and allows the patient remain 
in an environment they are comfortable in. It also allows more 
comprehensive monitoring with patients involved in a variety 
of activities in their day-to-day lives. For a device to be truly 
portable, there is a minimum battery life that would be 
required of it so that the wearer would not need to constantly 
remain beside a power source. It is for this reason that one of 
the main factors in designing a portable health care device is 
ensuring power consumption is at a minimum. 

Multichannel electroencephalogram (EEG) is a tool 
commonly used for measuring the electrical activity of the 
brain. The application of EEG to diagnose a variety of 
neurological conditions such as Epilepsy and Alzheimer's 
disease [1] has long been established. Diagnosis of these 
conditions however, often requires long-term monitoring of 
the patient's EEG activity. A portable device that monitors 
EEG activities at home, could allow patients remain at home 
in comfort and allow the data to be processed offline by a 
technician or classification tool. Wireless transmission of data 
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allows for the possibility of near-constant remote monitoring 
of the patient by a clinical expert. Due to the nature of EEG 
signals however, even a short period of capture can result in 
large amounts of data being recorded. This can cause 
difficulties in transmitting the data, particularly if wireless 
transmission is being used to permit remote monitoring, as 
wireless communications can be a significant contributor to 
power consumption in a portable system [2,3]. Therefore, 
effective compression of the data is important to minimize the 
amount of information that needs to be transmitted wirelessly. 
A coexisting goal is that the compression itself needs to be 
carried out in an efficient manner so as not to unduly add to 
the power consumption of the device. 

In comparison to other measures of biomedical electrical 
activity, such as ECG, there has been relatively little work 
done in the field of EEG compression. Of the work that has 
been done, most have focused on lossless compression, with 
only a comparative few having tested some form of lossy 
compression. Lossless compression maintains complete signal 
integrity in the decompressed signal but this limits the 
compression ratio (CR) that can be achieved. Lossy 
compression can achieve much higher CRs but results in a loss 
of some signal fidelity. Using a slightly lossy codec can 
achieve significantly greater compression, with minimum 
impact on the integrity of the signal. 

This work proposes a scheme for lossy EEG compression, 
based on the JPEG2000 image compression standard, targeted 
at implementation on an ambulatory device. JPEG2000 was 
chosen due to its use of efficient compression methods and the 
choice of lossless or lossy compression, thus allowing a range 
of trade-offs between compression ratio, signal fidelity, and 
computational complexity. Work has already been done on 
low-powered implementations of this algorithm for portable 
hardware [4,5], thus indicating that efficient implementation 
of the core elements of the algorithm is feasible. 

Section II of the paper describes the JPEG-2000 algorithm, 
in particular the wavelet transform and arithmetic coder used 
in the algorithm. Section III describes modifications made to 
the algorithms in order to increase EEG compression 
efficiency. Section IV details results of performance 
evaluation, while Section V presents conclusions. 
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Figure 2: Core components of JPEG2000 Part 1 

II. JPEG2000 

JPEG2000 is a compression algorithm designed for both 
loss less and lossy compression of image files. JPEG2000 Part 
1 was ratified by the Joint Photographic Experts Group in 
2000 [6]. It was designed to replace the older JPEG file format 
with more advanced features such as superior low bit-rate 
performance, loss less and lossy compression and good error 
resilience [7]. Part 1 contains the specifications for the core 
image coding system. These core components include, 
Discrete Wavelet Transform (DWT), quantisation and an 
Arithmetic Coder (AC) (Fig. 1). 

Asides from the image specific changes in the Pre­
Processing stages and Quantisation stages, the main areas of 
change are in the use of the DWT and AC. 

The DWT replaces the Discrete Cosine Transform (OCT) 
of the original JPEG format. While OCT performs well at low 
compression ratios, it deteriorates quickly as compression 
ratios increases above 30: 1. DWT meanwhile, has a much 
more gradual degradation [8]. The JPEG2000 Part 1 standard 
includes two types of DWT. The first is the Le Gall 5/3 
integer-to-integer DWT. This DWT is used for loss less 
compression of images due to its fixed-point implementation. 
This allows faster transforms with a true lossless 
reconstruction, at the expensive of some loss in CR. A 
floating-point version of the CDF 9/7 DWT is used for lossy 
image compression to achieve a higher CR. This DWT has 
already achieved wide-spread use in a variety of fields such as 
compression of FBI finger prints and also for biomedical 
signal compression applications [9] 

The Adaptive Binary Arithmetic Coder replaces the 
Huffman coder as the entropy coder for the compression 
standard. The AC can perform near optimal entropy coding on 
a given data set [10] and does not encounter the limitations

. 
of 

Huffman when probabilities approach one [11]. The adaptIve 
arithmetic coder allows the message to be coded with no prior 
knowledge of the probability distribution function (PDF) of 
the message by either the encoder or the decoder. 

A. Wavelets 

The wavelet transform (WT) decomposes a signal into a 
set of basis functions known as wavelets [13-15]. The initial 
wavelet, also known as the mother wavelet, is used to 
construct the other wavelets by means of dilation and shifting: 

1 (t - b) 
1fJa,b(t) = �1fJ -a- (1) 
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Figure 1: DWT of signal x(n) 

where a is the scaling parameter, b is the shifting parameter, 
and 'l' (t) is the mother wavelet. Wavelets can be stretched or 
compressed to obtain low and high-frequency basis functions 
to analyse a signal at different resolutions. 

The DWT is used to perform a fast computation of the WT 
of a discrete signal. It is normally computed quite efficiently 
with a recursive set of low and high pass filters. After the 
signals are filtered, they are downsampled by a factor of 2. 
The transformation is applied recursively on the low-pass 
series until the desired number of iterations is reached (Fig. 2). 
The high pass filter, Go, produces detail information, d[n], 
while the low pass filter, Ho, produces approximations, a[n]. 

For the inverse DWT, the transform operates in the 
opposite way. Each subband is interpolated by a factor of 2 by 
inserting zeros between samples and filtering each resulting 
sequence by the corresponding low or high-pass synthesis 
filter bank. Finally the filtered sequences are added together to 
form an approximation to the original sequence. 

The complexity of the DWT depends on a number of 
factors such as the filter size, the use of floating point or fixed­
point arithmetic, and the method used to compute the wavelet 
coefficients. In general the DWT is more complex than 
transforms such as the direct cosine transform (DCT). The use 
of fixed point filters instead of floating point filters reduces 
complexity of the operation and allows for truly lossless 
compression, because there are no approximations in the 
forward or inverse transform operation. However, integer 
implementations also reduce the CR achievable by the 
transform. 

The lifting scheme is an alternative method of computing 
wavelet coefficients. Proposed by Sweldens et al. [12], it has a 
number of advantages over traditional methods. It requires less 
computations and memory to calculate the coefficients so is 
better suited for ambulatory applications where efficient 
implementation is important. The inverse transform has the 
same complexity as the forward transform and no signal 
extension is required at the boundaries. It can also easily be 
expanded to use integer-to-integer WT for loss less 
compression. 



TABLE I: PROBABILITIES AND RANGES FOR SYMBOLS an IN 

EXAMPLE: 

Symbol Probability Range 

al 0.5 [0,0.5) 

a2 0.25 [0.5,0.75) 

a3 0.125 [0.75,0.875) 

'4 0.125 [0.875,1) 

B. Arithmetic Coding 

Arithmetic coding is an entropy encoding algorithm used 
for loss less data compression. It encodes the required data 
stream into a single fractional value between 0 and I. Similar 
in operation to Huffman coding, the coder converts the 
symbols to be encoded into a form where the most frequently 
used symbols are encoded using the least number of bits and 
the most infrequently used symbols using the most. The basic 
ideas of arithmetic coding can be traced back to the 1960's 
with more efficient implementations of it appearing later [13]. 

Arithmetic coding reduces the symbols to be encoded to a 
single, unique binary fraction based on the probability 
distribution function (PDF) of the symbols. In order to 

understand its operation, take for example, a source I that 
generates symbols from an alphabet of size 4, 

A = { aJ, a2, a3, a4} 
These symbols have probabilities: 

P(al) = 0.5 , P(a2) = 0.25 , P(a3) = 0.125 , P(a4) = 0.125 

which all lie on the interval [0,1) 
The encoder begins with the interval [0,1) which is divided 

up into ranges for each symbol based on the probability of 
them appearing, as seen in Table 1. When the first symbol is 
passed to the encoder, the encoder updates the total range to 
correspond to the range of the symbol being encoded. This 
range is again divided based on the probability of the symbols 
occurrence. The next symbol is passed to the encoder, which 
again updates the range depending on the symbol passed. This 
continues until all the symbols in the sequence are encoded 
(Fig. 3). Any number within the final range can be outputted 
as part of the encoded sequence. 
To decode the message, the decoder accepts the fractional 
value as input and again compares it to the range values from 
the table. In this case it sees that the value falls between the 
lower and upper bound of a] and so an a] is outputted. It then 
must update the encoded value to remove the effects of the 
first symbol. A new range is calculated by taking the lower 
bound of the decoded symbol from the upper bound. The 
encoded value is then calculated by taking the lower bound of 
the first symbol from the initial encoded value and dividing by 
the upper bound. This process continues until all symbols are 
decoded. It should be noted that the decoder will continue to 
decode unless the length of the original signal is passed as an 
argument or a predetermined escape character is received. 
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00 0,0 0,25 0,34375 0357421875 

015 

0.875 

1.0 0.359375 0.35937 
Figure 3: Example of arithmetic coder for encoding a four symbol long 

message 

III. ALGORITHM IMPLEMENT A nON AND ENHANCEMENTS 

A number of modifications were made to the JPEG2000 
algorithm for implementing an EEG compression algorithm. 
The EEG signal was processed in non-overlapping frames of 
size 1024. This window size was selected based on (a) 
preliminary tests of compressing varying sized signals and (b) 
previous findings in similar research [14]. 

While the JPEG2000 Part 1 specification allows use of a 
lossy and 10ssless WT, this research centred on the lossy CDF 
9/7 WT. This allows us to maximise the attainable CR for the 
EEG signal with this algorithm with only a slight increase in 
computational requirements. 

After the DWT has been performed, a new step was added, 
to threshold the resulting wavelet coefficients. All coefficients 
below this threshold are deemed to be not significant and set 
to zero. Zero values are efficiently encoded by the entropy 
coder and so the greater the number of zeros in the signal, the 
greater the compression that is achievable. The threshold level 
can be selected to allow different trade-offs between 
reconstruction error and compression ratio. The quantisation 
step is performed using standard uniform quantisation. 

The Arithmetic Coder implemented was based on 
Sayood's work [15]. A variation on the coder was used 
whereby a static PDF is used by the encoder and decoder. This 
PDF is based on the average PDF of a large number of sample 
signals. The motivation for this was to give greater efficiency 
of implementation, at the expense of a slight decrease in CR. 
Alternative methods for adaptive coding require the encoder to 
continually update symbol ranges, as symbols are encountered 
and encoded. This mechanism adds a level of complexity that 
is not desirable in a low-power algorithm. 

IV. EXPERIMENTAL EVALUATION 

For the testing of this algorithm, EEG data from the 
Epilepsy Centre of the University Hospital of Freiburg was 
used [16]. This database includes 24 hours of seizure and non­
seizure data for 20+ patients. 

During the algorithm's evaluation, two parameters were 
used. Firstly, the quality of the reconstructed signal is tested 
by comparing its similarity to the original input signal, and 
expressing the difference as Percentage Root-mean squared 
Distortion (PRO), defined as follows: 

_ (IIX - XII) 
PRD - IIxll (2) 



where x and x are the original and reconstructed signals, 

respectively, and II II represents the Euclidean or • norm. 
Secondly, to check the efficiency of the compression, the 
Compression Ratio for each window was calculated as 

L.r 
CR = -::::­

b 
(3) 

where L is the length of the input signal in samples, r is the 

resolution of each sample and [j is the number of bits of the 
compressed signal. We wish to achieve the best trade-off 
between PRD and CR. Initial tests have been carried out with 
a selection of data from four different patients, two of which 
contain seizure data and two containing non-seizure data. It 
was observed that variations in the quantisation level and 
threshold level had the greatest impact on signal CR and PRD 
and that wavelet levels above 8 did not provide a significant 
advantage. Three tests were carried out: 

• The Threshold level was set to zero and varying 
quantisation levels were tested. The PRD and CR of 
each quantisation level were recorded. 

• The Quantisation level was fixed at a midpoint and the 
threshold levels were varied. Again the resulting PRD 
and CR were recorded. 

• Varying threshold and quantisation levels were used to 
try to achieve maximum CR. 

Figure 4 plots the compression ratio (CR) as a function of 
Percentage RMS Distortion (PRD) for all three cases. It can be 
seen from the graph that the use of both quantisation and 
thresholding results in far greater compression ratio for a 
given PRD value, than either of the other two approaches 
individually. This increase in CR can be achieved at a very 
small cost in computational complexity. 

V. CONCLUSIONS AND FUTURE WORK 

While initial results are promising, complete testing of the 
algorithm must be performed before conclusive results are 
determined. In particular, a larger data set needs to be 
analysed. While we see a gain in the use of quantisation and 
thresholding, further testing will reveal what levels of each 
produce the optimum results. Analysis of the power usage of 
the algorithm will also be completed, as initial testing has 
focused on achieving the highest CR. It has already been 
established by other researchers [6-8] that the main elements 
of JPEG-2000 can be efficiently implemented, while the 
addition of thresholding proposed here will not add 
significantly to the computational complexity. 

Expert clinical analysis of the decompressed EEG signal in 
relation to the original signal is desirable to ensure that signal 
integrity is maintained. Similarly, it is proposed to test the 
algorithm in conjunction with established automated diagnosis 
algorithms to ensure detection rates are maintained. 
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