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Abstract-Mobile phones' increasing ubiquity has created 
many opportunities for personal context sensing. Personal activity 
is an important part of a user's context, and automatically rec· 
ognizing it is vital for health and fitness monitoring applications. 
Recording a stream of activity data enables monitoring patients 
with chronic conditions affecting ambulation and motion, as well 
as those undergoing rehabilitation treatments. Modern mobile 
phones are powerful enough to perform activity classification in 
real time, but they typically use a static classifier that is trained 
in advance or require the user to manually add training data 
after the application is on his/her device. This paper investigates 
ways of automatically augmenting activity classifiers after they 
are deployed in an application. It compares active learning and 
three different semi· supervised learning methods, self-learning, 
En-Co-Training, and democratic co-learning, to determine which 
show promise for this purpose. The results show that active 
learning, En-Co-Training, and democratic co-learning perform 
well when the initial classifier's accuracy is low (75-80%). When 
the initial accuracy is already high (90%), these methods are no 
longer effective, but they do not hurt the accuracy either. Overall, 
active learning gave the highest improvement, but democratic co­
learning was almost as good and does not require user interaction. 
Thus, democratic co-learning would be the best choice for most 
applications, since it would significantly increase the accuracy 
for initial classifiers that performed poorly. 

I. INTRODUCTION 

As mobile phones become increasingly pervasive and so­

phisticated, they are being used for a greater variety of 

applications. With their GPS speed and accelerometer motion 

sensors, they can be used to monitor activity levels for health 

applications. For example, Ambulation [11] is an application 

that uses activity classification to monitor mobility patterns 

over time to help doctors accurately determine the progress 

of ambulatory patients. This type of system automatically 

determines the user's mobility mode (still, walking, running, 

etc). The user's activity data stream can be primary data, 

contextlmetadata, and user interface input. 

As primary data, activity levels can indicate disease pro­

gression and clinical care plan efficacy in the context of heart 

disease, neuromuscular disease, and mental illness. Activity 

level tracking also provides quantitative feedback for health 

behavior changes, as pedometers are currently used [4]. Ac­

tivity is also a good metric by which to compare the efficacy 

of rehabilitation treatments for stroke, hip replacement, and 

other mobility-impacting treatments. 
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Activity data are also useful as contextual data or meta­

data. They provide context for other health measures such as 

physiological self-tests (blood pressure, blood glucose, weight) 

as well as reporting of symptoms and side effects. Finally, 

activity traces can improve the user interface mechanisms 

across a range of applications by increasing the relevance and 

adherence of its users. For example, they could be reminded 

or triggered for action or input at a convenient moment, or a 

moment of interest to the study. Because of the importance of 

this activity data stream, we investigate how to improve the 

performance of activity classification using smartphones. 

Smartphones classify activities using models created by 

machine learning algorithms. The machine learning process 

uses training data to create a model for the different activ­

ities. These data serve as examples to the machine learning 

algorithm, so it can associate certain attributes of the data 

with each activity. Each training data point includes the label 

of its associated activity as well as the attributes that are 

chosen as indicators of the activity. In this case, activity 

classification uses speed and acceleration data, which are 

indicative of the user's motion, which is linked to hislher 

activity. After a machine learning algorithm uses the training 

data to create a model, it can be used to classify unlabeled 

data to determine what activity was being performed when 

the data were sampled. 

In the past, activity classifiers for mobile devices have 

been statically created ahead of time and then used as-is for 

classification. Labeled data are collected and used to build 

the model, which is then used in applications. To work well 

for various users, classifiers must be robust to variations in 

how each user does the activities. This is typically achieved 

by training on data from multiple users, so that the classifier 

is not overtrained towards any one user's particular data. 

Applications like Apple's Nike+iPod [1], supplement this by 

allowing the user to calibrate the classifier, but this requires 

the user to indicate which activity they are calibrating and then 

doing it, which is the same process as the original training of 

a classifier. 

This paper investigates ways of improving the classification 

model even after the user has begun using the activity classi­

fier. The reason for this is twofold: first, it is time-consuming 

and difficult to collect all the training data necessary to create 
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a robust classifier that is accurate out-of-the-box, and second, 

even if a classifier is trained on multiple users, it can still 

improve by adapting itself to the particular user. This work 

investigates methods of further training classifiers after a user 

begins to use them, using active and semi-supervised learning. 

We compare versions of self-learning [14], democratic co­

learning [15], En-Co-Training [5], and active learning [6] to 

determine which has the most potential for improving the 

accuracy of mobile activity classifiers. 

II. RELATED WORK 

Activity classification has been an interesting field of re­

search in machine learning. Most of the work has focused 

on creating a static classifier, which would then be used for 

activity classification as-is. For example, Bao and Intille [2] 

developed algorithms to classify physical activities using data 

from accelerometers worn on different parts of the body. They 

collected user-annotated data by asking participants to perform 

a series of everyday tasks. They then trained classifiers on 

these user-annotated data, using mean, energy, frequency­

domain entropy, and correlation of acceleration data. The 

features were calculated on an overlapping sample window of 

several seconds (each sample appears in two windows). Deci­

sion table, IBL, C4.5, and naIve Bayes classifiers were tested, 

and the C4.5 decision tree classifiers were found to be the 

most accurate. The classifier was tested both by including and 

excluding data from the test user in the training data. While 

some activities were recognized well with subject-independent 

training data, others required user-specific training data to be 

accurate, and suggested the need for further study of the power 

of user-specific training sets. 

Lester et al. [7] developed a personal health activity recog­

nition system using multimodal sensor devices at 3 locations 

on the users' bodies: the waist, shoulder, and wrist. The 

devices used a microphone, visible and IR light sensors, 

an accelerometer, a compass, a barometer, and sensors for 

detecting temperature and humidity. The data from these were 

used to compute 651 features, of which the top 50 were se­

lected for classification. Static classifiers were used to provide 

inputs for hidden Markov models, which recognize activities 

in continuous time chunks. They compared the accuracy of the 

activity classifier when it was trained on a varying number (one 

to twelve) of users and found that their classifier works well 

out of the box if trained on a larger set of people. It performed 

well even when the users whose data were used for testing 

was not in the training set. However, when training with data 

from users in the test set, accuracy was higher, showing that 

personalized training data can improve accuracy. 

Several different methods of improving an existing classifier 

have been investigated [17]. One type, self learning, has been 

shown to work for text analysis. Yarowsky [14] developed 

an algorithm for classifying ambiguous word meanings, such 

as "plant," which can be a life form or a manufacturing 

facility. The classifier uses a small amount of labeled "seed" 

data to train a classifier, which then is used to classify the 

unlabeled data. Confidently classified samples are then added 
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to the seed set and the classifier is augmented. This process 

is repeated iteratively until the algorithm converges on a 

stable set of training samples. If a previously added example 

drops below the expected confidence with a later version of 

the classifier, it is removed from the training set to remove 

initial misclassifications. This method was able to achieve 97% 

accuracy, an improvement to the 92% given by the existing 

Schutze Algorithm. 

Self-learning is also applied to image processing by Li et 

al. [8], who introduced OPTIMaL, an algorithm which uses 

Bayesian incremental learning to simultaneously build datasets 

and learn the model describing them. It runs the classifier 

on new images and accepts some that are selected by the 

classifier. It then augments the dataset with the accepted new 

data, and trains a new classifier on only these new data. It then 

repeats the process. During each iteration, OPTIMaL only 

accepts some of the images that the classifier selects in order 

to avoid overly favoring images with a large resemblance to the 

current ones, which would result in overspecialization. Also, 

the classifier is only trained on the new data chosen in the 

current iteration so that OPTIMaL can work with very large 

datasets without having memory issues. In tests, OPTIMaL 

achieved near-human accuracy in accurate dataset collection. 

Another type of algorithm, co-learning, was first developed 

by Blum et Mitchell [3]. Unlike self-learning, co-learning is 

a multi-view semi-supervised algorithm. Co-learning uses two 

classifiers, each trained on a different view, with the strong 

assumption than each view is independently sufficient for 

classification. The views must also not be perfectly correlated. 

For example, web pages might be classified both by words on 

the page and by the text of hyperlinks to that page on other 

webpages. First, co-learning trains the two classifiers with the 

labeled data. Both were naIve Bayes classifiers. These data 

include all the features for both views. The classifiers then 

iteratively label unlabeled data, and each classifier adds its 

most confident predictions to the training set. Both classifiers 

are retrained with the augmented data. The co-training method 

was tested with the aforementioned web page example, and 

had fewer than half the errors of a simple supervised training 

method. 

Guan et al. introduced En-Co-Training [5], which modifies 

Blum's algorithm to work without requiring multiple views. 

It uses three classifiers that are trained on the same view of 

the data, and relies on different machine learning methods to 

create the diversity required for co-learning to perform well. It 

adds unlabeled data to the training set when all three classifiers 

agree on the prediction. By using three classifiers instead of the 

two used by Blum, they can use majority voting for predictions 

and also ensure a higher degree of confidence in the samples 

that are added to the training set. They implemented this with 

activity classification using 40 accelerometers strapped to the 

users' legs and found that it resulted in a lower error rate than 

using each classifier separately. Just using the voting method to 

decide using three classifiers helped, but the semi-supervised 

learning also contributed to decreasing the error rate as well. 

Zhou and Goldman[15] have a method called democratic 



co-learning, a single-view semi-supervised technique that uses 

multiple classifiers with different inductive bias. These classi­

fiers are trained on the same data to vote for predictions for 

unlabeled data. Their predictions are used to label unlabeled 

data which are then added to the training sets of the classifiers 

that voted differently than the majority. This approach is 

different from co-learning because it is single view instead 

of multi-view. It relies on the difference in inductive bias 

instead of different feature sets. This relaxes the restrictive 

constraint imposed by [3], so it can be used when there 

are not multiple sufficient and redundant feature sets. They 

also presented another use for democratic classifiers in active 

learning. This method uses multiple classifiers to make a 

prediction on an unlabeled sample and takes their confidence­

weighted vote entropy to determine the priority for active 

sampling. The greater the disagreement among the classifiers 

is, the less confident the combined prediction is, so the priority 

of prompting the user for a label is higher. 

Zhou and Li [16] describe tri-training, which overcomes 

[3]'s requirement for multiple sufficient and redundant fea­

tures sets as well. Tri-training first generates three different 

classifiers with the same labeled training data, and then uses 

them to classify unlabeled data. When two of them agree on 

a prediction, they label the example with their prediction and 

augment the third classifier with the newly labeled example. 

They tested the tri-training algorithm using 14.8 decision trees, 

BP neural networks, and naIve Bayes classifiers as the three 

classifiers. When tested on UCI data sets, it had a lower 

average classification error rate than self-training and co­

training, although the co-training was not done under ideal 

circumstances, since there were not two redundant, sufficient 

views. Instead, the features were randomly partitioned. 

Unlike self-learning and co-learning, active learning re­

quires user input. Thus, the challenge changes from choosing 

the most accurately classified samples to deciding which 

samples to ask the user to label. Kapoor and Horvitz [6] 

compare several methods of determining when to prompt the 

user for data labels, the goal being to prompt the user to 

label a data sample when the value of the label justifies the 

cost of interrupting the user. The methods used were random 

probe, uncertainty probe (uncertain classification), decision­

theoretic probe, which weighs the costs as well as the benefits 

of the probe, and decision-theoretic dynamic probe, which 

has different models for different contexts. The random probe 

issues probes at random times. The uncertainty one uses a 

predictive model on the data collected up to that point and 

issues probes when the classifier's prediction in the current 

situation has low confidence. The decision-theoretic probe 

takes into account the user's state (busy or not) as well 

as the benefit of the probe. When the benefit outweighs 

the predicted cost, a probe is sent. Finally, the decision­

theoretic dynamic probe extends the decision-theoretic one 

by adding flexibility across different contexts that the model 

may not necessarily recognize. To test the different methods, 

a program named BusyBody was installed on subjects' PCs. 

It would issue probes asking the subjects if they were busy 
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or not to build a model to predict when the user is highly 

uninterruptable. Versions of BusyBody with the four different 

probing policies were given to different users. The annoyance 

the interruptions caused and the accuracy of the generated 

model were measured. The best methods built a better model 

and were less annoying to users. The decision-theoretic ones 

performed better because they considered the cost of issuing 

a probe, rather than just when it was beneficial to get a label. 

Uncertainty probing was slightly better than random probing 

because it prompted for the most valuable labels even though 

it did not take into account the cost. 

Stikic et al. [12] examined semi-supervised (both self­

training and co-training) and active learning for improving 

activity recognition. For self-training, a classifier was built 

with labeled data, and then iteratively augmented with the 

samples having the fifty most confidently predictions from 

each iteration. The co-training algorithm was multi-view, like 

in [3], using two types of sensors, each of which is sufficient 

for classification. They used accelerometers and infra-red mo­

tion sensors. Co-training performed better than self-learning, 

but the latter usually increased performance as well over the 

starting classifier. The active learning algorithm had two ways 

of triggering a user prompt, both based on classification uncer­

tainty. The first was to prompt for the classifications which had 

the lowest confidence, and the second was two prompt when 

the two classifiers (from co-learning) disagreed. Performance 

was better with the former method, but both provided accuracy 

improvements. Unlike the approach analysed in this paper, 

these active and semi-supervised learning algorithms were 

only evaluated as a way to facilitate the creation of the initial 

classifier by requiring less training, rather than as a way to 

improve a classifier in use. 

Lu et al. also worked on a machine learning system for 

mobile devices. They created SoundSense [9], an application 

which uses sound recorded by the microphone on iPhones 

to determine the context and sound type. It starts with some 

general classes of sound contexts, such as music or talking. It 

uses an unsupervised learning algorithm to discern new classes 

of context and prompts the user to identify them. For example, 

if the user is driving and the phone detects from the noises 

associated with driving are a different from or a subclass of 

the existing classes of sound, it will prompt the user, who will 

input driving as the name. From then on, the phone will be 

able to classify driving by the sound. SoundSense, like this 

work, uses the phone for machine learning, but for a different 

purpose. They used unsupervised learning to distinguish new 

classes for classification, while here it is used to improve the 

classification accuracy within predetermined classes. 

In this paper, we compare the performance of semi­

supervised and active learning methods for personalization of 

activity classifiers. Activity classification can work well out of 

the box, but training it for each user can improve accuracy, 

so an automatic or convenient way of making the classifier 

more personalized would be useful. We implement a self­

learning technique similar to Stikic et al.'s method, where the 

most confident predictions are used to label unlabeled data and 
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augment the existing classifier. We implement two co-learning 

algorithms. The first is Guan's En-Co-Training. The other one 

is a version of Zhou and Goldman's democratic co-learning 

that is slightly modified to work on a mobile phone. Since we 

do not have two sufficient and redundant views, we could not 

use Blum's original co-learning method. Finally, we simulate 

the active learning method of prompting the user when the 

confidence of classification was low, similar to Stikic's method 

and Kapoor's uncertainty probe. Kapoor's decision-theoretic 

probing methods would not work in this case however, since 

the activity classifier needs to learn uncertain data from all 

of the mobility classes, and there is no additional busyness 

classifier. Thus, the decision to request a label is based solely 

on the confidence of the prediction. 

III. METHODS 

A typical way of implementing activity classification in 

mobile systems is to first train a classification and then 

implement that classifier as static logic in the program. It does 

not change unless the software is updated. However, this does 

not allow the classification to adapt to the user or improve 

over time. Work in semi-supervised learning suggests that if 

learning continues after deployment of the software, it can 

improve the accuracy of the classification over time. These 

improvement algorithms collect new samples to add to the 

training data and the classifier is periodically retrained on the 

augmented training dataset. Figure 1 shows the basic logic of 

this process. In this paper the performance of several semi­

supervised learning methods, as well as the potential of active 

learning, are compared in the context of activity classification. 

A. Self-learning 

The first of the semi-supervised learning methods investi­

gated is self-learning. Self-learning employs a single classifier, 

which is used to classify unlabeled data. When the classifier's 

confidence in its prediction for a sample is high, it labels that 

sample with its prediction and adds it to the training set. If 

only the most confident predictions are used as labels, it should 

increase the accuracy of the classifier. In general, adding more 

data tends to increase the accuracy of a classifier. However, 
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adding a data point with the wrong label can decrease it. To 

make the ratio of new training data with the correct label 

to those labeled incorrectly high enough to raise the overall 

accuracy, only the samples with the highest confidence are 

used. 

B. Co-learning 

Another type of semi-supervised learning method is co­

learning, which uses multiple classifiers which can learn from 

each other. There are two different approaches considered 

here: En-Co-Training [5] and a method based on democratic 

co-learning [15]. Both of these are single-view adaptations 

of Blum's [3] co-learning algorithm; all the classifiers are 

initially trained on the same data, but differ in the machine 

learning method (for example, one may be a decision tree, 

while another could be a naive Bayes classifier). 

1) En-Co-Training: En-Co-Training is like self-learning but 

with two important differences. First, it uses the consensus of 

three different classifiers, rather than the confidence of one, 

to determine that it is confident enough with a prediction. It 

labels data for the training set when there is consensus and 

all three classifiers are retrained on the common training set. 

The second difference is that it takes advantage of having 

three classifiers and takes the majority vote to determine the 

prediction for each sample. 

2) Democratic co-learning: Democratic co-learning also 

uses multiple classifiers, but has a different way of select­

ing and using new samples as training data than En-Co­

Training does. Each classifier has its own separate data set, 

although all are initialized with the same starting data. Then 

the classifiers are run on new, unlabeled data. The majority 

classification of each sample is used to label it, and then the 

labeled sample is added to the training set of the classifiers 

whose predictions disagreed with the majority. Zhou and 

Goldman's version of democratic co-learning ran tests on these 

values to predict whether the potential noise of mislabeled 

data would be offset by the larger training set. The version 

implemented in this comparison instead uses the confidence 

of the predictions to indicate the priority, so the new training 

data will have the largest difference between the sum of the 

confidences of the majority predictions and the sum of the 

confidences of the dissenting predictions. This modification 

would allow a mobile phone to identify the samples to use for 

retraining without having the entire original training set stored 

on the phone. That way the phone could identify the samples 

for retraining, but offload the classification process to a server, 

which would receive the new samples from the phone, update 

the model, and send the updated classifier to the phone. 

C. Active learning 

Active learning, as opposed to semi-supervised learn­

ing methods like co-learning and self-learning, does not use 

predictions as labels. Rather, it chooses samples of interest 

and asks the user to label them manually. The data labeled by 

the user are then added into the training data to recreate the 



classifier. Samples are chosen based on the confidence of pre­

diction, but instead of using those with a high confidence like 

self-learning, those with the lowest confidence are selected. 

Since the prediction is not going to be used as the label, there 

is no reason to want an highly confident prediction. Rather, 

active learning seeks to find the most informative samples so 

as to get the most benefit out of inconveniencing the user. 

Predictions that have a low confidence indicate that the model 

could benefit from that kind of example. 

IV. ApPROACH 

This work used a simple activity classification scenario to 

compare the different semi-supervised learning methods. The 

possible activities were staying in one place, walking, and 

running. These activities were accessible to all participants, 

since they required no specific equipment (bicycle, car, etc.). 

The features used for classification were GPS speed and 

statistics on the magnitude of acceleration calculated once per 

second. These statistics were the mean, variance, and the FFT 

coefficients between 1 and 10 Hz, similar to those used by 

Reddy et al. [10] in their activity classifier. Reddy achieved a 

high level of accuracy using GPS and accelerometer features, 

so they were a good choice for the classifiers in this research. 

The subjects who collected the data for the classifier used 

an HTC Android Dev Phone 1, which had an application 

that allowed them to keep track of the amount time they 

had recorded for each activity. First, 17 participants collected 

labeled training data for the base classifiers. This relatively 

large group size provided a variety of training data so the initial 

classifier can be more robust. Then, 15 other subjects collected 

data to use as the unlabeled data in the tests, although the data 

were collected with labels to determine the accuracy of the 

results. They collected 30 minutes of each activity, for a total 

of 90 minutes of data per participant. The walking and running 

paces were left to individual preference, as was the position 

(standing or sitting) of the still activity, since a real application 

should be able to detect activities as each user is accustomed 

to doing them. The phones were held in the hand or worn 

on the hip (belt or pocket) or armband of the participants. 

Participants were requested to consistently wear the phone in 

the same place on their bodies for all the activities, but users 

could individually choose where they preferred to keep it. 

The machine learning algorithms used Weka's [13] imple­

mentation of machine learning algorithms. The performance of 

the semi-supervised learning methods were tested with several 

different sizes of initial training datasets. To compare the 

quality of the samples chosen by each method fairly, the same 

number of samples was added to the training data for each 

method. Each method ranks the samples it chooses according 

to its selection criteria. For instance, self-learning ranks by 

confidence (with high confidence coming first). Multiple itera­

tions were tested, so that the training set could be updated after 

each part of the new data is classified to allow the algorithm 

to augment the classifier as it went along. For example, 

algorithm 1 shows the algorithm for testing self-learning. The 

co-learning algorithms classify with a vote since they use three 
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classifiers. To discern the effect of this from the effect of the 

actual co-learning process, the performance of the classifier is 

measured both democratically and with only a decision tree. 

The democratic one would be used in practice, but the decision 

tree shows the effect of the augmented classifier without the 

added advantage of voting. 

For self-learning and active learning, the machine learn­

ing method was a C4.5 decision tree. The co-learning al­

gorithms use three types of classifier: a C4.5 decision tree, 

naIve Bayes classifier, and a support vector machine using the 

Sequential Minimal Optimization algorithm. All decision trees 

had a minimum leaf size of 10. 

Algorithm 1 Self-learning test 

for i E iterations do 
new Data *- unlabeled.subset( i) 
for sample E new Data do 

prediction *- classifier.classify(sample) 
priority *- 1 - prediction.getConfidenceO 
priorityQueue.add( sample, prediction, confidence) 

end for 
for j � newSamplesPer Iteration do 

trainingData.add(priorityQueue.popO) 
end for 
classi fier. rebuild( training Data ) 

end for 

V. RESULTS 

The comparison of the active and semi-supervised learn­

ing algorithms revealed several results. First, all but self­

learning significantly increase the accuracy if the base clas­

sifier is around 80%. However, they did not improve on clas­

sifiers that already had an accuracy closer to 90%. Adding new 

data over multiple iterations instead of all at once increases 

their effect on the accuracy of the classifier. Table I shows 

the performance of the different methods. The "Unlabeled" 

column specifies what percentage of the total data used was 

unlabeled. The table gives the mean and 95% confidence inter­

val of the change in accuracy between the original classifier 

and the one augmented with new data. These values reflect 

the increase or decrease of the percentage of the correctly 

classified instances, rather than the percentage increase of the 

original number of correct instances. For example, a value 

of 5% would mean that if the original classifier had 85% 

accuracy, the new one would have 90% correct. The top 

480 points (about 10%) of new data chosen by the learning 

algorithms were added to the classifier. Evaluation was done 

using 1O-fold cross-validation over the new data. 

For six of the ten starting classifiers, the active learning and 

two of the three semi-supervised learning methods signifi­

cantly boosted the classification accuracy. For the remaining 

four initial classifiers, most or all of the results do not 

deviate significantly from zero. The methods that improve the 

accuracy (active learning, En-Co-Training, and democratic co­

learning) perform consistently for a given starting classifier; 



TABLE I 
PERCENTAGE CHANGE FROM BASE CLASSIFIER WITH 480 NEW DATAPOINTS OVER EIGHT ITERATIONS AND A CONFIDENCE INTERVAL OF 95% 

Self-Learning Active Learning En-Co-Training Democratic Co-learning 
Unlabeled DT only DT only DT only Democratic DT only Democratic 

50% -l.27% ± 2.07% 2.15% ± 2.85% -0.91% ± 2.15% -0.34% ± 2.67% -2.06% ± 3.08% -0.63% ± 2.85% 
55% -5.35% ± 5.66% 3.17% ± 4.87% -6.64% ± 6.46% 0.67% ± 0.66% -l.46% ± 3.14% 0.38% ± 0.87% 
60% 3.31 % ± 4.41 % 17.13% ± 7.95% 5.53% ± 5.29% 13.05% ± 7.20% 14.38% ± 8.31 % 15.07% ± 8.00% 
65% 0.05% ± 0.28% 12.38% ± 7.28% 0.88% ± l.66% 6.34% ± 3.43% 8.59% ± 8.08% 10.48% ± 6.34% 
70% 0.17% ± 0.54% 9.35% ± 6.41% 0.04% ± 0.58% 5.04% ± 3.14% 7.99% ± 5.76% 8.41% ± 5.82% 
75% 3.31 % ± 4.41 % 9.79% ± 6.44% l.65% ± 6.51 % 6.69% ± 4.61 % 9.03% ± 6.31% 9.12% ± 6.31 % 
80% -0.02% ± 0.03% 1.48% ± 2.31% -0.01 % ± 0.03% 1.14% ± 0.80% 0.54% ± 1.40% l.03% ± l.11% 
85% l.38% ± l.87% 8.77% ± 6.57% 0.23% ± 0.55% 5.45% ± 3.51 % 7.80% ± 6.40% 8.84% ± 6.12% 
90% -0.63% ± 0.89% 3.13% ± 4.50% 0.10% ± l.54% l.41 % ± l.56% 0.51% ± 2.15% l.02% ± l.95% 
95% -l.74% ± l.33% 8.90% ± 5.03% l.82% ± 2.79% 6.27% ± 4.08% 8.72% ± 6.48% 8.97% ± 6.56% 
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Fig. 2. Correlation between initial classifier accuracy and average increase 
in accuracy from the four methods 

either they all perform well or none of them do. This suggests 

that the potential effectiveness of the semi-supervised and 

active learning methods are highly dependent on the starting 

classifier. If the starting classifier is conducive to improvement, 

then they are more successful. As Figure 2 shows, the overall 

performance is correlated to the accuracy of the original 

classifier. When the initial accuracy is low (around 75-80%) to 

begin with, active and semi-supervised learning increase accu­

racy, whereas when it starts at around 90%, the improvement 

methods have little effect. Since all the methods (except self­

learning, which has little effect) exhibit this trend, it is not 

specific to a particular algorithm. Rather, it shows that active 

and semi-supervised learning algorithms increase accuracy 

when the initial classifier has a lower accuracy, but if the 

accuracy is already high, then the algorithms have little effect. 

While this keeps these learning methods from producing a 

classifier that approaches perfection, they are still able to 

significantly increase performance when the existing classifier 

is in need of improvement. 

Another detail to note in Table I is that the En-eo­

Training algorithm only performs well when using the vote of 

the three classifiers instead of just the decision tree, indicating 
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Fig. 3. Classification accuracy by method and number of iterations 

that the democratic classification, not just the co-learning, 

is responsible for the success of the method. On the other 

hand, democratic co-learning increases accuracy even when 

only classifying with the decision tree. The democratic clas­

sification process offers an added boost to performance, but 

democratic co-learning's semi-supervised learning algorithm 

that is responsible for most of the improvement. 

A final point to consider in Table I is that democratic 

co-learning is quite competitive with active learning, which 

means that application developers can achieve comparable 

accuracy without the drawbacks of active learning. As a 

supervised learning method, active learning does not have to 

rely on the classifier's guesses, but it has the disadvantages 

of disturbing the user or missing data when the user is too 

busy to provide a label. When possible, an automatic process 

is preferable, so it is very fortunate that one of the semi­

supervised learning algorithms provides similar performance. 

In an application using one of these methods, the user would 

periodically run the algorithm to update the classifier with new 

data collected since the previous time. To evaluate the effect 

of multiple iterations, the algorithms were run with different 

numbers of iterations. Figure 3 shows the results with 1, 2, 

4, and 8 iterations. The amount of new data added is the 



same regardless of how many iterations there are. For more 

iterations, a corresponding fraction of the new data is added. 

The original classifier's performance is shown by a horizontal 

line. For most of the methods, the more iterations, the higher 

the accuracy. This is because, even though the same amount of 

new data is being added, multiple iterations allow the classifier 

to improve while it is still selecting and labeling new points. 

VI. FUTURE WORK 

Another interesting area of investigation is the effect of 

semi-supervised and active learning on a classifier's accuracy 

when the user's way of performing activities differs from how 

it was done when the training data were recorded. For example, 

someone who has a limp or uses a walker would have a 

different gait from those of the people in the training set, so 

the classifier would be less accurate for them. In applications 

like Ambulation [11], this case would not be uncommon, since 

it is designed for ambulatory patients. Data for cases such as 

these would show if the personalization methods described in 

this work could help the classifier adjust to these variations. 

VII. CONCLUSIONS 

This paper tested the feasibility of using various semi­

supervised and active learning methods to improve activity 

classification on mobile phones after application deployment. 

This would allow health and fitness monitoring applications 

to record the user's activity data stream with an increasing 

degree of accuracy as it adapts to each user. In cases where 

the original classifier's performance was around the 75-80% 

accuracy range, most of them had significant improvement 

over the original classifier, but when the starting accuracy 

was already high (about 90%) they did not. Self-learning 

never demonstrated any improvement, while active learning 

and both varieties of co-learning performed well, depending 

on the initial classifier. For any given starting classifier, either 

all three classifiers succeeded, or none did. On average, none 

of the methods (except self-learning in one case) showed a 

statistically significant decrease in accuracy, so an application 

could implement one of them for the possible improvement 

without a corresponding risk of losing accuracy. Although the 

drop could be significant for some individual users, the gain 

could be as well. This is nothing new to classification however, 

as the initial classifier will vary in accuracy between users even 

without applying semi-supervised or active learning methods. 

Finally, one of the most encouraging results is the fact that 

this version of democratic co-learning performs almost as well 

as active learning. Active learning is much more difficult to 

implement effectively and requires user interaction, which is 

a considerable drawback. Many patients would not want to 

burden themselves with the task, so it is very advantageous 

to have a semi-supervised learning method that can perform 

as well or better than supervised ones. Taking this into 

consideration, the algorithm that shows the most promise is 

democratic co-learning. However, it does have the downside 

of running three classifiers at once on the mobile device. If 

this becomes too energy-intensive or difficult, active learning 

Digital Object Identifier: 10.410Bl/CST.PERVASIVEHEALTH2010.8851 

http://dx.doi.org/10.410Bl/CST.PERVASIVEHEAL TH2010. 8851 

could be used instead, but it would force the user to provide 

input. There is no reason to prefer En-Co-Training because 

it has the same requirements as democratic co-learning and 

does not increase performance as much. Overall, democratic 

co-learning is the best choice for medical applications, since it 

significantly increases accuracy without burdening the patient 

with additional interaction with the device. 
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