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Abstract-A novel approach to precise and reliable computa­
tion of self-selected gait velocity in domestic environments based 
on the measurements of a laser range scanner is presented. The 
computation does not require a priori knowledge of the environ­
ment. The sensor is part of an ambient assessment system under 
development which is meant to objectively measure and compare 
capacity and performance in mobility. Possible application fields 
may be early detection or differential diagnosis in dementia 
and assessment of fall risk. Regarding the challenges of future 
health systems due to the demographic change delaying need 
of care or preventing falls in dementia can help decrease costs 
while increasing perceived quality of life for people concerned 
and their carers. Within this paper we present our theoretic 
concept and algorithm for computing self-selected gait velocity 
utilizing measurement from a laser range scanner. Results of an 
experiment show that the laser range scanner delivers precise 
measurement and in the future may be used for absolutely 
unobtrnsive analysis of spatio-temporal parameters of gait even 
in demented people. 

Index Terms-mobility assessment, gait velocity assessment, 
laser range scanner, LIDAR, smart homes, ambient sensors 

I. INTRODU CTION 

A person's mobility is closely connected to his or her 
perceived quality of life and a fundamental requirement for 
an independent lifestyle [1]. Starting at the age of 60 years, 
elderly people expose a slower gait velocity [2]. This age­
related change in mobility is not pathological. Nevertheless, 
many pathologic diagnoses can be directly deduced from an 
impaired mobility [3]. The most obvious impairment visible 
even to layman is a reduced self-selected gait velocity. 
Due to the demographic change especially industrial countries 
are steering towards a graying society. In 2050 approximately 
16,4% of the wordwide population and 27.6% of the European 
population will be older than 65 years, while in the year 2000 
it have been 6.9% respecitelvy 14.7% [4]. This change poses 
many problems due to the decline of the care ratio (ratio of 
people aged 20-65 years to those aged older than 65 years). 
Regarding Germany, in 2005 61 % of the population has been 
in working age and only 19% was in retirement age. For 2050 
these numbers are estimated to change to 50% respectively 
30% [5]. Considering that elderly people have a proportionally 
higher demand on health services, this ratio change leads to 
less people paying taxes for financing the health care system 
while there will be more people requiring health services. 
Costs due to need of care of demented people and by their 
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high fall risk are two of the major factors influencing the 
proportionally higher costs to the health care system caused 
by elderly people. Dementia is an old-age disease. Starting 
at the age of 60 years the prevalence reduplicated every five 
years reaching 13% for octogenarians and up to 45% for those 
aged 95 years and older [6]. Due to the demographic change, 
the total amount of demented persons will increase. In the 
year 2010, approximately 35.6 million people worldwide will 
suffer from dementia. The amount will nearly reduplicate each 
20 years, reaching 115,4 million people in 2050 [7]. Falls are 
a major problem in demented people. 30% of all European 
elderly aged 65+ years and 50% of those older than 80 years 
fall once a year [8]. Demented elderly have a proportionally 
higher risk of falling [9]. Overall direct and indirect costs 
imposed to the health system due to the need of care by 
demented persons were 315,4 billion US-Dollar in 2005 [10]. 
In order to meet the increased challenges on the health systems 
imposed by the demographic change and the overall increasing 
number of demented people, new approaches for delaying the 
need of care and for prevention of acute incidents like falls 
need to be developed. Long-term monitoring of mobility may 
provide the required means. Mobility impairments have a high 
prevalence in dementia [11] and are an early indicator [12]. 
Severity of gait and balance disorders increases with severity 
of neurological disorders [13]. Research suggests that certain 
gait disorders prevail in certain types of dementia [11] and 
might thus be used for differential diagnosis. Gait and balance 
disorders have shown being related to a higher risk of falling. 
Especially slow self-selected gait velocity has found being 
related to an increased risk for falls, admission to hospital, 
and need of care [14]. 
Nevertheless, the full potential of long-term mobility monitor­
ing is currently not exploited. Nowadays mobility is often only 
assessed after an acute incidence took place, most often by uti­
lizing geriatric assessments which require personal supervision 
by an expert. This is mainly because domestic environments 
are only fractionally integrated into health care systems. It is 
widely expected that only through use of technology more 
efficient health care can be realized [15]. Therefore, various 
approaches to mobility telemonitoring have been developed 
utilizing either wearable sensors or ambient sensors. Never­
theless, existing approaches have serious limitations especially 
regarding the monitoring of demented people. Additionally, 
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most systems do only assess capacity or performance in 
mobility. Comparison of objective measurements regarding 
both is required in order to reliably detect environmental 
factors and pathological causes. 
Within this paper we present our first work towards a mobility 
assessment system for objective measurement of capacity and 
performance in mobility. The system is exclusively based on 
ambient sensors and requires no interaction with the patients 
monitored. Light barriers are used for assessment of general 
trends in mobility and a laser range scanner is utilized for 
detailed gait analysis. We establish a novel concept of assess­
ing gait velocity using measurement of a laser range scanner. 
An experiment was conducted within a domestic environment 
in order to compare usage of light barriers and laser range 
scanner for gait velocity assessment comparing precision of 
measurements and opportunities for detailed gait analysis. 

II. MEDICAL MOTIVATION 

The International Classification of Functioning, Disability 
and Health (ICF) from the World Health Organization (WHO) 
lists mobility as one of nine domains in the component "Ac­
tivities and Participation". Mobility has two aspects dealing 
directly with the human. These are "changing and maintain­
ing body position (d41O-d429)" and "walking and moving 
(d450-d469)". Two qualifiers describe resources in mobility: 
performance and capacity. Performance describes what an 
individual does in his or her current environment regarding all 
natural environmental influences. Capacity describes what an 
individual is able to do under ideal circumstances and may thus 
only be measured in a standardized environment excluding 
as many environmental factors as possible. An identified gap 
between capacity and performance may guide the conclusion 
on whether reduced performance is caused by environmental 
influences or pathological reasons. 
Human gait patterns change with increased age. Starting at 
the age of 60-70 years, self-selected gait velocity decreases 
each decade by 12%-16% during self-imposed activities. The 
decrease is often caused by a reduced step length whereas 
the step frequency remains stable. This age-related change in 
gait patterns is meant to contribute to a more stable gait, it is 
not pathological [2]. A recent clinical study with more than 
700 particpants aged between 20 and 90+ years has found an 
average gait velocity during a six metre walk of 1.1 mls for 
men aged between 75-89 years, decreasing to 0.9 mls when 
being even older. Women aged 75-79 years were found to 
walk with an average velocity of 1.1 mis, respecitvely 1.0 mls 
when aged 80-84 years and 0.8 mls when being older than 
85 years [16]. Impairments of mobility due to pathological 
reasons lead to more significant changes in parameters of gait 
than age-related changes [2]. Therefore, significant long-time 
changes in mobility may point to pathological causes and may 
thus be utilized for early diagnosis. 
One of the most frequent pathological reasons for mobility 
impairments are neurological diseases, especially dementia 
[13]. Prevalence of gait disorders for 245 neurological patients 
was 93% when being diagnosed with Parkison's disease with 
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dementia, 79% with vascular dementia, 75% with dementia 
with Lewy Bodies, 43% with Parkinson's disease without 
dementia, and 25% with Alzheimer's disease [11]. In general, 
severity of gait and balance disorders increased with severity 
of neurological disorders [13]. Comparing studies showed that 
Alzheimer patients had the least severe disorders, patients with 
Parkinson's disease without dementia were slightly more ef­
fected. All other patient groups had more severe disorders but 
using the Tinetti mobility assessment no significant differences 
among the remaining groups were found [11]. Step-to-step 
variability in gait parameters of demented people seems to be 
more specific and sensitive than changes in mean values of 
gait parameters [17]. 
In certain dementia types and stages different higher-level 
gait disorders may prevail. Frontal gait disorders are specific 
with 87% for vascular dementia with a sensitivity of 76%. 
Parkinsonian gait points to dementia with Lewy Bodies or 
Parkinson's disease with a specifity of 84% and a sensitivity 
of 87% [11]. 
Due to their gait and balance disorders, dementia patients show 
an increased risk for falls [9]. In clinical studies, self-selected 
gait velocity slower than 0.7 mls was related to an increased 
risk for falls, admission to hospital, and need of care [14]. 
From a clinical perspective long-term monitoring of changes 
in mobility has a high-potential for early diagnosis of various 
diseases and for assessment of fall risk [ 17]. In todays health 
systems this potential is most often not exploited, especially 
regarding demented people. Rather, mobility assessments are 
only applied infrequently or after an acute incident like a fall 
took place. In order to enable prevention of those incidents or 
delay need of care mobility assessment needs to be technically 
supported in professional as well as in domestic environments. 
Comparing performance in professional environments and ca­
pacity in the domestic environment may provide new insights. 
On a more personal level early detection may help furthering 
an independent lifestyle by enabling early and purposeful 
prevention and may therefore increase quality of life for 
affected people, relatives, and carers. 

III. STATE OF T HE ART 

Today, mobility of elderly people is often assessed using 
geriatric assessments. A geriatric assessment is a multidimen­
sional process designed to assess an elderly person's functional 
ability, physical health, cognitive and mental health, and 
socio-environmental situation [18]. The most frequently used 
assessment from the field of mobility is probably the Timed­
Up & Go [19]. In case of severe injuries or problems with 
prostheses or implants laboratories equipped with camera­
based systems for cinematic gait analysis based on marker 
tracking, fluoroscopy systems, systems for cinetic gait anal­
ysis of ground reaction forces utilizing force platforms, and 
dynamic electromyography may be utilized. Recent research 
investigated mobility telemonitoring directly in the home of 
affected people. Two main approaches arose using either wear­
able sensors or sensors installed into the environment [20]. For 
the state of the art we explicitly focus on research assessing at 



least one spatio-temporal parameter of gait, therefore leaving 
out systems measuring general activity. A special focus is on 
monitoring elderly or demented people. 

A. Wearable Assessment Technologies 

Wearable sensors may be placed either on one or many 
positions directly on the body or in cloth and objects worn. 
Several wearable sensors are also referred to as body area 
networks (BAN). The most frequently used wearable sensors 
are accelerometers and gyroscopes. In recent research there 
is a clear trend towards combining several sensors into one 
sensor node placed on the person's center of mass instead of 
placing single sensors on various positions of the body. 
Accelerometers and gyroscopes have been applied to gait 
phase detection and measurement of various parameters of 
gait. Stance and swing of the human gait cycle have been 
detected with an overall accuracy of up to 98% utilizing three 
uniaxial accelerometers underneath the knee [21]. Detection 
of five gait phases worked with an overall accurcy of up to 
86-9 1 %. Menz et al. [22] measured various parameters of 
gait, e.g. walking velocity, cadence, average step length, and 
step timing variability, while walking on irregular surface. 
Two triaxial accelerometers were placed on a helmet and 
on a belt near the sacrum. They concluded that older adults 
adopted a more conservative gait pattern resulting in reduced 
gait velocity and step length in order to maintaine balance 
despite age-related deficity in physiological function. Auvinet 
et al. [23] utilized two accelerometers and a recording 
device placed on a belt in the middle of the lower back of 
282 healthy adults aged betwen 20 and 98 years. Various 
parameters, including gait velocity and stride length, were 
found to be age-dependent and being higher in men than in 
women starting to decrease in the sixth respectively in the 
seventh decade. Similar results were obtained by Zijlstra [24] 
and colleagues placing a triaxial accelerometer on the dorsal 
side of the trunk. They found a limited range of walking, 
a smaller step length, and a higher variability of temporal 
parameters in older participants. 
Pressure sensors under or integrated into the sole of shoes, 
later combined with accelerometers and gyroscopes, have 
been used to measure pressure distribution on certain points 
of the feet in order to infer gait phases or detect abnormal 
gait patterns. Zhu et al. [25] developed a wired shoe insole 
with seven pressure sensors each in order to determine the 
role of pressure in causing damage to insensate diabetic feet 
and to distinguish between normal and shuffling gait [26]. 
Hausdorff et al. [27] placed only two pressure sensors in each 
insole and were able to detect start and end of gait cycles 
with an accuracy of up to 97% compared to measurement 
of a force platform. Skelly et al. [28] used four pressure 
sensors, Pappas et al. [29] three pressure sensors in each 
insole in order to detect five respectively four gait phases and 
compute the strength of the required stimuli for functional 
electrical stimulation (FES) systems. Hanlon and Anderson 
[30] combined a footswitch and two accelerometers placed 
on a foot and knee in order to further enhance algorithms 
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for gait event detection, especially initial contact (IC), 
for FES stimuli computation. They found that foots witch 
systems must be recommended over accelerometer systems 
for accurate detection of IC, at the moment. Bamberg et al. 
[31] placed overall 14 sensors in and on a shoe in oder to 
detect heel-strike and toe-off during gait. Huang et al. [32] 
used nine sensors in order to detect five gait phases with 
an accuracy of up to 9 1  %. The shoe was later on used to 
detect four abnormal gait disorders [33]. Recently Kong et al. 
published a series of papers on a system incorporating only 
four pressure sensors in each insole in order to reliably detect 
all eight gait phases which may be used to infer several gait 
disorders [34]. 

B. Ambient Assessment Technologies 

Ambient sensors are integrated into the environment or in 
objects used by the person monitored. Environments equipped 
with such sensors are also referred to as health smart homes 
[20]. Very few systems for detailed mobility analysis based 
on ambient sensors have been described so far. This might be 
due to the difficulty of measuring relevant parameters using 
available ambient sensors. 
Chan et al. [35] used active motion sensors and magnetic 
contacts placed in door frames in order to determine a person's 
walking direction, while passive motion sensors placed on 
the ceiling were used for localization purposes. The gathered 
information was used to determine a person's walking distance 
per day. Optical and ultrasonic sensors placed in door frames 
to determine a person's walking speed and direction each 
time he or she passed were used by Cameron et al. [36]. 
The application field was estimation of fall risk. Pavel et 
al. [37] published a series of papers on a system based on 
passive motion sensors placed in various rooms of a flat. First, 
gait velocity was computed dividing known distance between 
rooms by measured transition times. In order to generate more 
reliable results, they additionally placed three passive motion 
sensors into a frequently used area within the flat. Transition 
times between the sensors were recorded and used to compute 
more reliable gait velocity values. However, a sufficient long 
area with a restricted motion path has to be available in a flat 
in order employ this approach. 
Recent technical advances have enabled researchers to build 
large sensor mats. Applications include analysis of dance steps 
[38] and identification of persons based on analysis of various 
parameters of gait like step width and cadence utilizing a 
sensor mat with 1536 binary sensors [39]. 
Tung et al. [40] have equipped a walker with several sensors in 
order to assess mobility of a person. The iWalker is equipped 
with optical sensors for measuring wheel rotation and mov­
ing direction, a six-dimensional gyroscope and accelerometer 
measuring speed and distance, several load cells in the handles 
and on the frame measuring weight distribution and propulsion 
forces, and a portable camera for recording the environment 
while walking. 



C. Comparison of Technologies 

With regard to our objective of assessing capacity and 
performance in mobility of demented people the different 
approaches to mobility monitoring have advantages and disad­
vantages regarding reliability and precision of measurements 
and applicability in different environments. 
Clinical assessments have been widely adopted in geriatrics. 
Nevertheless, they only provide a short-term inside into the 
capacity of a person and are often perceived as some kind 
of test resulting in patients performing at their best. Despite 
standardized descriptions professionals perform assessments 
differently. There is only very little technical support for clin­
ical assessments, therefore manual supervision and documen­
tation of the results are required. Clinical assessments do only 
detect existing impairments, they do most often not provide a 
detailed insight into the reasons for these impairments. 
Technical advance has led to wearable sensors with reduced 
size, weight, and costs. Wearables can provide detailed biome­
chanical information about the person wearing the device, 
ideally in any environment. Nevertheless, most wearable sen­
sors are not suitable for unsupervised use by layman or 
demented people. Wearables require direct interaction, there­
fore donning, charging, or operating the device every day. 
Not or incorrectly donning the device heavily influences the 
measurements. Studies indicate that simply being aware of 
wearing a sensor may influence the measurement results [41]. 
Mobility monitoring utilizing ambient sensors has been rather 
imprecise so far. Nevertheless, ambient sensors are totally 
unobtrusive and suited even for demented persons. Ideally, 
monitored persons do not recognize present sensors in their 
everyday life, thus measurements might be more reliable. Am­
bient sensors may monitor several persons in their coverage at 
the same time. However, identifying the monitored persons is 
often difficult. This issue has been addressed by using RFID 
technology [37], height recognition [35], footstep analysis 
[42], and audio recognition [43]. Installation of sensors may be 
costly. Combination systems of wearable and ambient sensors 
combine advantages and disadvantages of both approaches. 
Laboratory equipment for mobility monitoring provides the 
most precise measurements, so far. Nevertheless, the equip­
ment is too large or complicated for being applied outside of 
a large laboratory and can only be handled by experts. Some 
systems require the patient to perform difficult calibration 
tasks which are not suitable for cognitive impaired or elderly 
people. 
In conclusion, a system based on ambient sensors is desirable 
due to its unobtrusiveness and suitability for monitoring even 
demented people but current solutions do not provide precise 
measurements which are sufficient for detailed diagnoses of 
e.g. gait disorders. Additionally, deployment in environments 
with more than one person is difficult due to identification 
purposes. Existing systems require a priori knowledge about 
the environment e.g. distances between rooms in order to 
compute desired output variables. 
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IV. ApPROACH 
Our novel approach to mobility monitoring is based on the 

comparison of capacity and performance regarding mobility 
measured by a combination of ambient sensors. Light barriers 
for measurement of general trends in mobility mainly in 
the home environment and a very precise ambient sensor, a 
laser range scanner. We hypothesize that laser range scanners 
are applicable for precise measurement of capacity regarding 
mobility in an environment mainly free of environmental 
influences like a hospital as well as for measuring performance 
in a domestic environment. Gathered information should be 
sufficient for analyzing various spatio-temporal parameters 
of gait and even for diagnosis of various gait disorders. 
Additionally, there is no need for the patients to interact with 
the sensor which may lead to more reliable results and makes 
the sensor even suitable for measuring mobility of cognitively 
impaired people. As a first step towards realizing the desired 
assessment system, within this paper we focus on our approach 
to measuring self-selected gait velocity. The approach does not 
require a priori knowledge about the environment and delivers 
reliable and precise results. 
Figure 1 shows the principle of computing a person's move­
ment trajectory from measurements taken by a laser range 
scanner at the height of the subject's legs. Briefly said, the gait 
velocity Vk for point in time To * k is computed by dividing the 
distance walked dk by the time elapsed To. The distance dk 
is the length of the vector pointing to the difference in range 
means between two consecutive measurement sets. Therefore, 
computing the self-selected gait velocity does not necessarily 
include differentiating the two legs of a subject. However, 
depending on the position of the laser range scanner relative 
to the subject measured, trajectory and gait velocity computed 
based on the measurements may differ from the trajectory 
defined by the subject's center of mass and the actual gait 
velocity due to two reasons. First, the laser range scanner 
measures only the surface of legs facing the scanner. The 
scanner is not capable of measuring the depth of an object. 
Therefore, the computed mean distance vector will point to 
a position slightly more into the direction of the laser range 
scanner than the vector pointing to the real center of mass. 
The difference in these two vectors depends on the depth 
of the object measured. Second, looking from the position 
of the laser range scanner one leg may be covered by the 
other while walking, especially during the gait phases mid 
stance and initial swing of the human gait cycle [44]. The 
computed mean distance for such measurements differs from 
those including both legs resulting in either a longer or shorter 
mean distance depending on the leg covered. However, being 
aware of those limitations an approximated gait velocity may 
be computed in a process involving three steps: environment 
recognition, dynamic object measurement, and gait velocity 
computation. 

A. Environment Recognition 

Prerequisite for measuring the movement trajectory of a 
subject is the ability to distinguish moving objects like humans 



Fig. I. Principle of computing gait velocity from laser range scanner's 
measurements 

from stationary objects. This may be achieved by measuring 
ranges within the static environment before any dynamic 
object enters. In order to compensate for noise, caused by 
the scanner's hardware itself, our approach is to compute the 
mean range fC(a) and the standard deviation aC(a) from mea­
surement values rk c<' Values rk c< define the range measured 
for each angle a i'n the measu�ement sector [startc<, endc<] 
over a given number kC of measurement sets by the scanning 
function scan(k, a). The number of required measurement 
sets kC for the calibration may vary among scanner models. 
According to a Gaussian distribution, 68.27% of all measured 
values for the corresponding measurement angle a fall into the 
interval [fC (a) - aC (a), fC (a) + aC (a)]. Therefore, computed 
mean range fC(a) and standard deviation aC(a) can be used to 
distinguish static from dynamic objects during measurements 
and for filtering most noise. 

B. Dynamic Object Measurement 

During a measurement process computed values fC (a) 
and aC( a) may be used for differentiating static and dy­
namic objects. Range values rk,c< measured by the scanning 
function scan(k, a) lying in between the defined interval 
[fC(a)-aC(a), fC(a)+aC(a)] may be treated as static objects. 
The value of rk,c< will be NaN (Not a Number) for those 
measurements falling into the interval, therefore excluding 
them from the following computations, or the measured range 
otherwise. For visualization purposes measured values are 
also transformed into a cartesian coordinate system during 
measurement resulting in a position vector fh,c< pointing to 
the location of a detected moving object for each angle a and 
measurement set k. Depending on the preferred orientation 
of the coordinate system, a may be rotated prior to the 
transformation. Formula 1 shows computation of the position 
vector Pk,c< dependent on the value of the range rk,c< measured 
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by the scanning function scan(k, a). ( NaN ) _ 
NaN 

= Pk,c< 

scan(k, a) = 
::::: rk,c< ::::: 
fC(a) + aC(a) ( rk,c< * cos(a) ) 

rk,c< * sin( a) 
= Pk,c< else 

(I) 

C. Gait Velocity Computation 

Using the measured position vector Pk,c< for each mea­
surement angle a and measurement set k the movement 
trajectory and the self-selected gait velocity of the subject 
measured may be approximated. For each measurement set 
k the mean range vector Tk computed points approximately 
to the subject's center of mass at the point in time To * k. 
The distance walked dk between two measurement sets k and 
k - 1 is approximately the length of the vector Zk between 
two consecutive mean range vectors Tk and Tk-l. Dividing 
dk by the time elapsed To * k - To * (k - 1) between 
the two corresponding measurement sets k and k - 1 gives 
approximately the self-selected gait velocity Vk for point in 
time To * k. Formula 2 sums up the previous steps. Applying 
an additional mean filter to all computed velocity values Vk 
within one second gives the approximated gait velocity per 
second. 

I ( L:�ds�artg ih,a ) (L:�ds�artg Pk-l,a ) I I enda starta I 
-

I enda starta I Vk = �----------�--��----------�� 
To 

V. EXPERIMENT 

(2) 

An experiment for comparing feasibility and precision of 
measuring self-selected gait velocity using light barriers and a 
laser range scanner was conducted. The experiment took place 
in a living lab in Oldenburg, Germany. The floor plan of the 
living lab is shown in figure 3. A Hokuyo URG-04LX-UGOI 
laser range scanner and two IR light barriers were used for the 
experiment. The URG-04LX-UGOI includes a safety class I 
semiconductor laser diode with a wavelength of 785nm that 
measures ranges from 20mm to approximately 4000mm with 
an accuracy of 30mm to 3% of measurement above 1000mm 
range. Each series of measurements takes 100 milliseconds and 
covers a scan angle of 240 degrees with an angular resolution 
of 0.36 degrees. However, for the experiment measurements 
were taken with an angular resolution of only 1 degree. Two 
common IR light barriers were combined with a FS20 tramitter 
in order to wirelessly transmit "on" and "off' states to an 
FHZlOOOPC FS20 base station. The FHZlOOOPC and the 
Hokuyo URG-04LX-UGOI were connected to a PC using the 
USB port. 

A. Methods 

Five healthy people aged 25-39 participated in the experi­
ment. For each participant ten measurement sets were recorded 
while walking along two paths within the flat's entrance hall. 
The laser range scanner was placed at a height of 38cm in 



1.5 F-�=====::;-r----'----"----'-I _ light baniers 
r
] 

c:::::J laser scanner 
c:::::J stopwatch 

0.5 

participant 

Fig. 2. Computed gait velocity for first experiment 

the entrance hall of the flat. The light barriers were mounted 
to the door frames in the living room and the bedroom. 
Doors to living room and bedroom were open, front door and 
bathroom door were closed. Before starting the experiment the 
scanner was calibrated with kC = 100 in the static environment 
according to the algorithm described in section IV-A. Results 
of this calibration are shown in figure 3 as black dots. 
For the first part of the experiment participants were asked to 
walk directly from the living room to the bedroom and vice 
versa. For the second part, participants had to walk from the 
living room to the front door, lock the front door, and then walk 
to the bedroom. On their way back they were asked to reopen 
the front door before entering the living room. Participants 
were instructed to walk at their normal speed and to start 
from a standing position placing their first step right between 
the light barriers. In order to make results comparable while 
not restricting participants too much in their normal gait, the 
paths to walk included walking over a cross in the middle of 
the entrance hall. The first path had a length of 2.7m measured 
by adding the distance from the middle of the living room's 
doorway to the mark and from their to the middle of bedroom's 
doorway. The second path was additional 2.2m long. The time 
to walk the paths was recorded directly by the laser range 
scanner, by computing the time between reception of "on" 
states of the light barriers, and manually using a stopwatch. 
The manual measurement is thought to be the gold standard 
since it is commonly used in clinical environments e.g. during 
Timed Up & Go. 

B. Results 

Results show that during the first part of the experiment 
(walking straightly from living room to bedroom and vice 
versa) self-selected gait velocity could be precisely computed 
from measurements of light barriers as well as from those of 
the laser range scanner compared to the stopwatch measure­
ments. Gait velocity was computed by dividing the distance 
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walked by the time measured. While the laser range scanners 
measured both values itself, distance had to be manually 
determined before the experiment for the other computations. 
Mean difference compared to the gold standard was only 
0.023m1s for the light barriers and 0.063m1s for the laser 
range scanner. Standard deviations were 0.05m1s respectively 
0.10mls. Figure 2 shows computed mean self-selected gait 
velocity for the first part of the experiment based on the time 
measured by the light barriers, the laser range scanner, and the 
stopwatch for each participant. Mean self-selected gait velocity 
across all participants was 0.99m1s, ranging only from 0.90mls 
for the first participant to 1.1 mls for the third participant. 
The second part of the experiment was conducted in order to 
demonstrate the advantages of using a laser range scanner's 
measurements for computing self-selected gait velocity. Com­
putations based on the time measured by the light barriers and 
the stopwatch for the second part were very imprecise due to 
the participants not walking directly from the living room to 
the bedroom but standing in between while opening or locking 
the front door. There is no possibility to compensate for this 
using only light barriers on room doors and in a real setup 
there would even be no chance to detect the longer walking 
distance. However, using the measurements of the laser range 
scanner, self-selected gait velocity could be computed pre­
cisely even for the second part of the experiment. This is due 
to the fact that the laser range scanner continuously measures 
the movement of the participants, measuring real distance 
walked and times walking and standing still. Figure 3 shows 
three measurement sets of the first participant recorded by the 
laser range scanner during the second part of the experiment. 
However, even while standing in front of the door the laser 
range scanner measures small movements e.g. because people 
move their feed slightly. Including these measurements into 
the gait velocity computation would heavily influence the 
results. Therefore, all measurements whose three consecutive 
movement vectors d�, d�+l' and (1+2 did not result in a 
distance walked longer than a certain threshold dthres were 
excluded from the gait velocity computation (equation 3). The 
threshold used for the experiments dthres = 500mm was 
determined empirically. By filtering measurements represent­
ing rest computed self-selected gait velocity for the second 
experiment had a mean error of only O.OIm1s and a standard 
deviation of 0.22m1s compared to the computation for the first 
experiment based on the laser range scanner's measurements. 

Vk = { N aN 112:�!% la I < dthres (3) 
(2) else 

C. Discussion 

The conducted experiment was a first proof of concept for 
verifying that self-selected gait velocity may be reliably and 
precisely computed based on measurements of a laser range 
scanner in an unknown domestic environment. However, in 
order to sufficiently proof test-retest-reliability of the method, 
measurements with more and elderly participants over a 
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Fig. 3. Laser range scanner's measurements for three measurement sets of 
the second experiment displayed into the living lab's floor plan 

longer period of time have to be evaluated. 
The current version of the algorithm for computing gait 
velocity from laser range scanners' measurements has two 
serious limitations. First, the algorithm relies on a static 
environment during the calibration and measurement phases. 
If the environment is changed e.g. by opening a door after 
the initial calibration, the measurements are heavily effected. 
The algorithm is not capable of distinguishing more than 
one dynamic object at once. The second limitation regards 
the differences between the computed movement trajectory 
and the trajectory defined by the subjects center of mass 
mentioned in section IV. By incorporating background 
knowledge about the human respectively the human gait 
cycle, the computation may be further enhanced. Knowing 
that during the human gait cycle, especially during the 
gait phases mid stance and initial swing [44], one leg may 
be covered by the other may be used to guess missing 
measurement data and thus to compensate for the computed 
trajectory moving too far into the direction of the scanner. 
Results of the experiment revealed possible new approaches 
to identifying residents, a common problem in ambient 
systems. Significant differences in computed self-selected 
gait velocity e.g. when comparing the first participant to all 
other participants were found. Thus, the gait velocity might 
be utilized for identification purposes. However, using only 
self-selected gait velocity may not work in all households 
especially if residents have similar age and health status. 
Another possibility for identification may be the resident's 
walking paths. The experiment revealed that participants chose 
characteristic walking paths (figure 3) which remained stable 
during measurement sets of each experiment part. However, 
by instructing participants to walk over a mark we may have 
influenced these results. Nevertheless, measurements of the 
laser range scanner are very precise and may be sufficient to 
compute more individual spatio-temporal parameters of gait 
which may be utilized for more reliable identification. 
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Self-selected gait velocity computed during the experiment 
was much slower than reference values reported in [16]. 
Butler et al. found an average gait velocity of 1.5mJs 
for healthy male people aged 20-39 years. However, the 
experiment set ups were very different. Values reported 
by Butler et al. may be regarded as capacity values since 
they were measured during a six meter walk in a clinical 
environment. Our experiment measured performance since 
it was conducted in a domestic environment and included 
walking around comers on a path with only 3m length. 

V I. CONCLUSION 

A novel approach to reliable and precise measurement of 
self-selected gait velocity in domestic environments has been 
presented. The approach is our first effort to developing an 
ambient assessment system capable of objectively measuring 
capacity and performance in mobility. The system is ex­
clusively based on ambient sensors, therefore being totally 
unobtrusive and suitable even for demented people. The con­
ducted experiment suggests that light barriers shall be used 
for measuring general trends in mobility covering a whole flat 
while the laser range scanner provides detailed measurements 
in a smaller area. The computation works without a priori 
knowledge of the environment and even if people walk around 
in a single room. Combining both approaches promises a good 
insight into the mobility of people. The theoretic concept was 
established and the algorithm for computing gait velocity from 
the scanner's measurement was described. 
Currently, the algorithm still has serious limitations. Com­
putation results may become more reliable by incorporating 
background knowledge about human gait. We are working on 
computing additional spatio-temporal parameters of gait by 
applying object identification techniques to the scanner's mea­
surements. These parameters may be used for identification of 
residents which is future work as well. Further on, we are 
currently working on balance assessments utilizing the laser 
range scanner and additional sensors. Evaluation of the system 
with elderly people is already scheduled for the next year. 
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