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Abstract-Walking speed is an important determinant of 
energy expenditure. We present the use of Gaussian Process­
based Regression (GPR), a non-linear, non-parametric regression 
framework to estimate walking speed using data obtained from 
a single on-body sensor worn on the right hip. We compare the 
performance of GPR with Bayesian Linear Regression (BLR) and 
Least Squares Regression (LSR) in estimating treadmill walking 
speeds. We also examine whether using gyroscopes to augment 
accelerometry data can improve prediction accuracy. GPR shows 
a lower average RMS prediction error when compared to BLR 
and LSR across all subjects. Per subject, GPR has significantly 
lower RMS prediction error than LSR and BLR (p<O.05) with 
increasing training data. The addition of tri-axial gyroscopes 
as inputs reduces RMS prediction error (p<O.05 per subject) 
when compared to using only acclerometers. We also study the 
effect of using treadmill walking data to predict overground 
walking speeds and that of combining data from more than one 
person to predict overground walking speed. A strong linear 
correlation exists (rx,y = .8861) between overground walking 
speeds predicted from treadmill data and ground truth walking 
speed measured. Combining treadmill data from multiple sub­
jects with similar height characteristics improved the prediction 
capability of GPR for overground walking speeds as measured 
by correllation between ground truth and GP-predicted values 
(rx,y = .8204 with combined data). 
Keywords: Gaussian processes, Accelerometers, Gyroscopes, 
Walking speed estimation 

I. INTRODUCTION 

Nearly half the United States population (45%) is expected 
to be obese by 2020, decreasing life expectancy and quality 
of life significantly [1]. It is believed that weight gain could 
be prevented by achieving small changes in behavior, such 
as 15 minutes per day of walking [2]. Walking is the most 
common type of activity among people who are physically 
active [3]and a critical component in energy expenditure[4]. In 
the face of the current obesity epidemic, findings suggest that 
encouraging walking habits in the general population could 
be effective in preventing and reducing obesity [5]. Therefore, 
accurate detection of walking speed could be a valuable tool 
in enhancing public health. 

Over the past decade, there has been considerable research 
directed towards the detection and classification of physical 
activity patterns from body mounted inertial sensors [6]. Typ­
ical inertial sensors contain an accelerometer with two or more 
gyroscopes to provide kinematic information. Accelerometers 
and gyroscopes have been combined to determine orientation 
of human body segments [7] and to track the center of 
mass of trunk movement [8]. These studies make the implicit 
assumption that an inertial sensor provides motion information 
of the segment to which it is attached. We adopt the same 
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assumption and rely on data-driven pattern recognition tech­
niques to derive estimates of motion from inertial data. The 
use of pattern recognition techniques to determine parameters 
of energy expenditure is not new [9], [10]. Accelerometer 
outputs have been correlated to treadmill and overground 
walking speeds using linear and quadratic regression models 
[11]. These parametric models need to adequately represent the 
structure of the modeled data to be accurate. They also require 
a lot of clean, complete, and uncorrelated data to be properly 
validated. In this context, we introduce the application of 
Gaussian Process based Regression (GPR), a non-parametric 
data driven regression technique in estimating walking speeds. 
In non-parametric methods such as GPR, the model structure 
is not specified a priori but is instead determined from data. 
Accelerometers have also been used with neural networks in 
detecting speed and incline of outdoor walking[12]. Choosing 
the optimal number of hidden units (and hence the complexity 
of the hidden layer) in conventional neural networks relies 
on heuristics or cross-validation. Also, a large number of 
parameters to train for means that neural networks are prone 
to overfitting. By contrast, since GPR is data-driven, model 
complexity is derived from the data itself. GPR also uses a 
probabilistic approach to model prediction uncertainty thus 
eliminating the need for cross-validation. 

The human body can be modeled as a series of inter­
connected rigid objects, each of which can be rotated or 
translated relative to its neighbors in free space [13]. The 
assumption behind using accelerometry for physical activity 
monitoring is that data from an accelerometer represents 
body movement [14]. Rigid body movement however consists 
of both accelerations and rotations. Therefore, to track a 
rigid body one should track both translations and rotations. 
However, rotational data cannot be completely separated from 
translational data from a single triaxial accelerometer [15]. 
Thus, there is merit in tracking rotational rates separately. We 
use this idea to examine whether addition of gyroscopes can 
enhance walking speed estimation. 
Walking speed estimation algorithms lack a consistent, scal­
able ground truth on which to base training. One approach 
is to use ground truth obtained from a treadmill to estimate 
overground walking speed. Studies have explored whether 
activity parameters derived from treadmill walking could be 
used in overground walking [16]. We build on these studies 
with an experimental evaluation of using data from treadmill 
walking to predict speeds in overground walking using inertial 
sensing. 

In this paper, we address the problem of estimating walking 
speed using on-body inertial sensing using GPR. We use an 
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(a) An example of periodic signals obtained from the right hip of a single 
subject while walking at a constant speed of 2.5 mph. 
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(b) The Fourier transforms of the accelerometer stream from a single subject 
on the X-axis for steady state walking at 2.5 mph and 4 mph. Definite 
peaks that are characteristic of the walking speed suggest speed estimation 
by monitoring the frequency spectrum 

Figure 1: Periodicity in walking signals obtained from inertial sensor data from one subject on the illiac crest of the right hip 

inertial sensor that combines data from a tri-axial accelerom­
eter and a triaxial gyroscope and show how the frequency 
characteristics of these signals are related to speed of walk in 
Sec. II. We show how one can take advantage of functional 
maps between periodicities and speeds to train a Gaussian 
Process based Regression (GPR) model in Sec. III. To our 
knowledge, GPR with inertial sensing has not been used 
for walking speed estimation. We describe two experimental 
studies in Sec. IV. The first is a comparative analysis of GPR 
with well-known regression techniques such as Least Squares 
Regression (LSR) and Bayesian Linear Regression (BLR). We 
also study the effect of varying window size and addition of 
gyroscopes. The results of this study are in Sec. V-A. The 
second study describes the effects of combining treadmill and 
overground walking data on predicting overground walking 
speeds. The results of this study are in Sec. V-B 1. 
Our results demonstrated that GPR had a lower average RMS 
prediction error when compared to BLR and LSR across 
all subjects and a significantly lower RMS prediction error 
(p<0.05) on one subject. A strong linear correlation existed 
(rX,y = .8861) between overground walking speeds predicted 
from treadmill data and ground truth walking speed measured. 
Combining treadmill data from multiple subjects with similar 
height characteristics improved the overground speed predic­
tion capability of GPR. 

II. A FREQUENCy-BASED INTERPRETATION OF WALKING 

A. Periodicity in Walking 

Steady state walking is cyclic. There is a wealth of literature 
in examining the gait cycles in walking and the associated 
periodic limb movements [17], [18]. Our approach involves 
capturing this inherent periodicity from a single inertial sensor 
worn above the illiac crest on the right hip. Fig. 1 a shows 
a typical plot of the signals received while walking at a 
constant speed of 2.5 mph. Movement data are captured in 
the form of six time series using a tri-axial accelerometer and 
tri-axial rate gyroscope. These signals correspond directly to 
the accelerations and rotational rates of the hip as felt by the 
sensor in its local frame of reference. 
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We examine the periodicity of this signal by computing 
its Fourier transform. The blue area of Fig. l b is the Fourier 
transform of the accelerometer signal as measured on the X­
axis. The transform consists of peaks at definite frequencies. 
The peaks occur at the same frequencies for the other sensor 
streams (in all 3 axes) as well. Furthermore, the location 
of these peaks is a function of walking speed. In the same 
figure, the red area is the Fourier transform of the X-axis 
acceleration signal while walking at 4 mph. The peaks are 
shifted to the right indicating higher frequency components. 
This is because walking at higher speeds takes a smaller time 
period per gait cycle implying higher frequency components. 
This suggests that one can track walking speeds using the 
frequency spectrum as a representation of periodicity. 

B. A Visualization of Signal Periodicity with Changing Walk­
ing Speed 

To visualize how walking speeds evolve with changes in 
the frequency spectra of movement signals, and to explore 
whether these features can be mapped to their corresponding 
speeds, we performed a Principal Component Analysis (PCA). 
Fig. 2 illustrates a 3-dimensional visualization of the first three 
components of the frequency spectra for a range of walking 
speeds from 2.5 mph to 4 mph increased in steps of 0.1 mph 
for five minutes per speed. Ground truth for these speeds was 
recorded on a treadmill. Data recording and feature extraction 
procedures are outlined in Sec. IV. Variance preserved in the 
first three components is 76%. The visualization shows that 
there is indeed a continuous evolution of feature vectors with 
changing speed. We thus formulate the hypothesis that one can 
estimate walking speed by tracking these features and aim to 
find this estimation map. 

C. Mapping Periodicities to Walking Speeds 

We use Gaussian Process based Regression (GPR) to find 
the correspondence between feature vectors and the speed of 
walking. GPR was chosen because it represents a data driven 
regression method. The utility of GPR stems from its ability 
to define a probabilistic model over data, mitigating the effects 
of overfitting and avoiding cross-validation. GPR is described 
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Figure 2: A PCA Based Visualization of Walking Speeds: The color bar indicates ground truth speed. Each figure shows an 
evolution of the top 3 principal components of the Fourier transforms of windowed sensor signals. A clear evolution of features 
with increasing speed is seen. This shows that speed can be tracked by observing the periodicity in walking signals using 
Fourier transforms. 

in terms of kernels, avoiding the explicit introduction of a 
feature space allowing us to use feature spaces of infinite 
dimensionality thus allowing non-linear mapping. 
We compare our approach to Least Squares Regression (LSR) 
and Bayesian Linear Regression (BLR). LSR offers a baseline 
performance comparison with GPR. BLR allows comparison 
of GPR to a probabilistic parametric model. BLR was chosen 
to avoid the issues of cross validation and over fitting (BLR 
also incorporates a probabilistic framework). We restrict our 
experiments to straight line walking to isolate the effect of 
speed on inertial sensor data. 

Ill. GAUSSIAN PROCESS BACKGROUND 

A. Definition 

A Gaussian Process (GP)[19], [20] is defined as a proba­
bility distribution over functions f(XI), J(X2), ... f(XN) eval­
uated at points Xl, X2, ... X N such that any finite sub­
set of the functions {J(Xi)}�l has a joint multivariate 
Gaussian distribution. Consequently, for a given set of 
points X=[Xl X2 ... XNV, we have a corresponding vector 
Fx =[f(xI) f(X2) ... f(XN )Vthat belongs to a multivariate 
Gaussian distribution, 

Fx rv N{j.t(x), k(x, x)} (1) 

where j.t(x) is the prior mean function [j.t(xI) j.t(X2) ... j.t(XN)] 
and k is the kernel function. The kernel function for two 
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points Xi and Xj, given by k(Xi ' Xj), returns the covariance 
between the corresponding Fx variables f(Xi) and f(xj). To 
completely specify a GP, it is enough to specify the parameters 
j.t(x) and k(x, x'). Each f(Xi) is marginally Gaussian, with 
mean j.t(Xi) and variance k(Xi ' Xi). 
In our work, the input data space {Xd�l is the Fourier 
transform of the windowed time series of all six sensor 
streams. The output functions {f(Xi)}�l are the ground truth 
speeds. These are measured off-body using ground truth from 
a treadmill or a distance wheel as outlined in Sec. IV. 

B. Gaussian Process Regression 

Training a GPR model is equivalent to modeling a joint 
distribution over the speed mapping functions {J(xi)}�land 
using this model to map an unknown data point to its cor­
responding speed. Consider a target quantity tXn that needs 
to be predicted for a given Xn. In general, t Xn need not be 
a linear map nor observable directly. We assume that our 
mapping function f(xn) is the required tXn with an additive 
noise component, i.e., tXn = f(xn) + t, where t rv N(O, (j;). 
This ensures that the expected value of txn, E[txnl = f(xn). 

It follows that p(txn I f(xn)) = N(txn I f(xn), (j;) or in 
general, p(tl f(x)) = N(tl f(x), (j; IN), where N is the size of 
the data space. Also, we know that Fx rv N{j.t(x), k(x, x)}. 
In the absence of prior knowledge about j.t(x) , we assume 
j.t(x)=O. 
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Figure 3: An example of predicting walking speeds using 
GPR on one subject. The black line indicates ground truth 
from treadmill data, the blue line indicates the predicted value 
and the grey background is one standard deviation interval. 
Modelling uncertainty is a key-property of GPR 

It can be shown that, 
p (t) = N(t IO, CN), (2) 

where C(Xi, Xj) = k(Xi, Xj) + IJ;oijVi,j = 1,2, ... N. For a 
new point X, there exists a corresponding target quantity tx. 
Since tx also belongs to the same GP, it can be appended to 
the original target set to obtain a larger set tN+I, such that, 

(3) 

Because this joint distribution is Gaussian by definition, we 
have, 

(4) 

where k has elements k(xn, xN+d for n = 1, ... , N and c = 

k(XN+I, XN+I) + IJ;. From this, we evaluate the conditional 
distribution, p( t N + 11 t), which is a Gaussian distribution with, 

= kTCNIt 
= c - kTCNIk 

(5) 

(6) 

Thus estimating a target speed from training data amounts to 
evaluating C N, k and c and using these values shown in Eqs. 
5 and 6. 

C. Choosing an Appropriate Kernel Function 

To reflect that feature vectors with small interpoint Euclidian 
distance are more likely to output the same walking velocities 
while capturing the common periodicity represented by feature 
vectors due to an underlying periodicity in walking we choose 
the radial basis function kernel. The complete kernel with 
noise modelling is therefore, 

(7) 

D. An Example of GPR in Estimate Walking Speeds 

Fig. 3 illustrates an example of a particular training-testing 
instance of GPR on a single subject. The grey background 
indicates the confidence interval for the prediction up to 
one standard deviation. The usage of confidence intervals 
illustrates the merit of using a probabilistic approach. Using a 
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probabilistic approach means that one need not rely on cross­
validation or heuristics to determine model complexity. It also 
means that one can evaluate the confidence of a prediction 
when making decisions based on that prediction. 

IV. EXPERIMENTAL STUDY 

We present a comparative experimental study to evaluate 
the utility of GPR applied to walking speed estimation from 
inertial sensor data. The study is in two parts. In order to 
test the algorithm with a readily available ground truth and 
examine the tradeoffs in tuning parameters, we performed 
a series of tests on a treadmill. The results of this study 
are described in Sec. V-A. Second, we studied how GPR­
based speed estimation is affected by using training data from 
treadmill walking alone and from combinations of treadmill 
and overground walking. These results are described in Sec. 
V-8. 

A. Hardware 

A modified version of the Sparkfun 6DoF Inertial Measure­
ment Unit (lMU) [21] was used to collect motion information. 
Data were sampled at 100 Hz. The unit uses Bluetooth to 
transmit data to either a nearby PC or mobile phone. The use 
of sensors in all three axes allows us to capture periodicity in 
all three planes - sagittal, frontal and transverse. 

B. Test Population and Experimental Methods 

Eight healthy adults (four men, four women) of varying 
heights, weights and ages (subjects 1-8) walked at 7 pre­
determined speeds (2.5 mph, 2.8 mph, 3.0 mph, 3.3 mph, 
3.5 mph, 3.8 mph, 4.0 mph), or until breaking into a run. 
The duration of walking at each speed was 5 minutes. Table I 
describes the study subjects. All subjects wore a single inertial 
sensor above the iIIiac crest on the right hip as shown in Fig. 
4b. Subjects were asked to wear the belt tightly to prevent 
any slippage. The treadmill used for the experiments was the 
research quality NordicTrack A2550 PRO. Subjects were de­
liberately chosen to represent a cross-section of heights, ages, 
Body Mass Indices (BM!) and both genders to demonstrate 
the utility of GPR across a diverse population. Ground truth 
for treadmill walking was the displayed treadmill speed. 

I Attribute I Mean I SO I Max Value I Min Value I 
Age (yrs) 33 10 48 23 

Height (m) 1.75 0.12 1.85 1.58 
BMI 26.4 5.3 34.5 22.0 

Table I: Statistics of Test Population 
Additionally, data of a finer granularity were obtained from 

a different healthy adult (Subject 9, Age 23, Height I.82m, 
BMI 21) who walked at 16 pre-determined speeds from 2.5 
to 4.0 mph for 10 min per speed in intervals of 0.1 mph. 
For each recording of overground walking, Subject 9, wearing 
an inertial sensor on the right hip walked for a period of 11 
seconds in a straight line on a flat, hard surface indoors. The 
distance moved during the recording (in metres) was measured 
using a distance wheel, as shown in Fig. 4c. A set of 80 such 
recordings were made. 

C. Feature Computation 

Each signal was passed through a bandpass filter with 3dB 
cutoff between 0.1 Hz and 20 Hz. These cut-off frequencies 
were chosen keeping in mind that everyday activities fall in the 
frequency range of 0-10 Hz. The feature vector is computed 



(a) Modified Sparkfun 6DoF inertial sensor used, (Dimensions: (b) Example mount of the inertial Sensor on (c) Overground walking data ground truth 
collection using a distance wheel 3.6" x 2.4" x l") the right hip 

Figure 4: Hardware Setup shows the inertial sensor, its mounting on the hip and a typical data collection in free walking 
situation 

on sliding windows with 50% overlap by finding their N-point 
FFT. The optimum window size was chosen in hindsight from 
experimental results (Sec.Y-A3) as 1024 samples per window 
over 512 samples. From experimental results it was shown 
that the increased frequency resolution of the 1024 point FFT 
results in lower average RMS error. The complete feature 
vector consists of the Fourier transforms of the respective 
window instants for each sensor stream. 

V. RESULTS 

We describe the experimental results in two sections. Sec. 
Y-A shows results from studies conducted on treadmill data 
alone. Sec. Y-B describes results predicting overground walk­
ing speed using models based on treadmill data. 

A. Predicting Treadmill Walking Speed 

1) Testing Procedure: For treadmill walking, a fraction 
of recorded data was randomly sampled and partitioned into 
training data for each subject. The remaining fraction consti­
tuted test data. For each algorithm, five separate training runs 
were executed for each subject. After each training phase, 
the algorithm was tested on the remaining data points to 
predict the walking speeds. RMS error was calculated for 
each instance of test data and the results were averaged 
over the five runs to combat sample bias. This constitutes a 
measure of performance of each algorithm per subject. These 
results were then averaged over all subjects to provide a 
complete comparative picture of the performance of the three 
algorithms. 

2) Relative Performance of Algorithms: Fig. 5 summarizes 
the results of increasing the relative size of the training data 
on the mean and variance of average RMS prediction error 
across subjects. This provided insight into how much of the 
dataset should be partitioned and used for training, beyond 
which reduction in RMS error is minimal. Average RMS 
error reduced with increase in training data size. Beyond 50% 
training data, additional training data yielded small reductions 
in RMS error. For small percentages of training data, the 
performance of all three algorithms was comparable. With 
more training data, both GPR and BLR performed better than 
LSR. 

It is important to put in context the high variance in RMS 
prediction error across users. This variance indicates how 
RMS prediction error changes from subject to subject. The 
variance was comparable to the mean error and appeared to be 
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Figure 5: Relative performance of GPR, BLR and LSR on 
multiple subjects. Each bar shows average RMS error ± 1 
standard deviation. Average RMS error across users decreases 
with relative increase of training data. GPR has a lower error 
than BLR or LSR. The variance across users is high indicating 
the diversity of the population. 

independent of the algorithm used. These errors were averaged 
across a diverse range of subjects. The inherent diversity 
of the test subjects, while providing an adequate proof of 
concept for the algorithm contributed greatly to the variance 
of the prediction error. Walking speed has been shown to be 
a function of height, BM!, age and gender. The variances in 
prediction error were on the order of .1 mph. However, GPR 
had significantly lower RMS errors at 70%, 80%, and 90% 
training (all p < 0.05). Using large percentages of training data 
can still counter the effects of variance across users. Average 
error per user had a lower variance of .01 mph. 

To provide a complete picture of algorithm performance, 
consider Fig. 7 which shows the average RMS prediction error 
for all three algorithms as a function of increasing training 
data in a single subject (subject 9). Data from subject 9 was 
chosen because of fine-grained speed information, though the 
results were equally valid on all other subjects. The variance 
was across multiple training instances with different randomly 
sampled training data and provided a measure of the re­
peatability of the speed-prediction capability. RMS prediction 
errors for both GPR and BLR decreased as a function of 
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Figure 6: Effect of addition of gyroscopes across multiple 
subjects. Each bar shows average RMS error ± 1 standard 
deviation. Average RMS error is lower with addition of 
gyroscopes regardless of percentage of training data used. 

increasing training data. OPR performed increasingly better 
than BLR under the same conditions. By contrast LSR showed 
much larger error with higher variance. This was expected 
as LSR is prone to overfitting and is not robust to outliers. 
Using ANOYA, the p < 0.05 at all training data percentages 
indicating that all results were statistically significant. 
When data from each subject was analyzed individually, we 
saw that OPR showed a lower average RMS prediction error 
when compared with BLR and LSR. Even across subjects with 
a wide range of physical characteristics, OPR showed a signif­
icantly better performance when a larger relative percentage of 
training data was used. This indicates that OPR shows superior 
performance when a large quantity of data is available. 
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Figure 7: Relative performance of OPR, BLR and LSR on a 
single subject (subject 9).Each Bar shows average RMS error 
± 1 standard deviation. Relative performance of OPR is far 
superior to LSR and better than BLR (p>0.05 in all cases). 
OPR has the least average RMS prediction error. 

3) Effect of Window Size: The fundamental assumption in 
our approach is that the signal on which we train is periodic 
in nature. Each sliding window represents a time evolving 
snapshot of the signal. The FFT of this snapshot must capture 
this periodicity. This implies a minimum window size below 
which the periodicity is not sufficiently captured. Larger win-
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dow sizes will provide increasingly finegrained information 
about the spectral components. However, the window cannot 
be made arbitrarily large as we have only a finite dataset. With 
this in mind, the choice of window sizes was narrowed down 
to 512 samples per window and 1024 samples per window. At 
100 Hz sampling frequency, this approximately corresponds to 
a time window of 5 seconds and 10 seconds respectively. Fig . 
8 illustrates the effect of using window sizes. Using a window 
size of 1024 resulted in a smaller RMS error (p<0.05 at 70% 
training and above). However, one can still use a window size 
of 512 if there is only a small training data set available. 
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Figure 8: Comparison of window sizes of 1024 points per 
window (�10s) and 512 points per window (�5s) across 
multiple SUbjects. Each bar shows average RMS error ± I 
standard deviation. Average RMS error across users is less for 
1024 points per window due to increased frequency resolution 
leading to fine-grained features being tracked. 

4) Effect of Addition of Gyroscopes: The addition of gyro­
scopes provides information about torso rotational rates. Fig. 6 
shows the average RMS prediction error across all users with 
and without gyroscopes for OPR. With increasing amount of 
training data, the difference in average RMS prediction error in 
the OPR case decreases. This suggests that one can offset the 
effect of not using gyroscopes with more training data. Using 
ANOYA, the p-values were greater than 0.05 in all cases, 
which must again be put in context considering variations 
across subjects. Per subject analysis shows that the addition of 
gyroscopes significantly reduces average RMS error (p<0.05 
for all cases). 

5) Per-Speed Accuracy: Fig. 9 shows the speed-wise RMS 
prediction error on test data (70% of data used for training, 
1024 samples per window) on Subject 9. All speeds were uni­
formly sampled during the training phase. The prediction error 
was not uniform for all speeds. This leads to the interesting 
hypothesis that faster speeds constitute a different regime of 
walking. If so, there would be merit in separately training for 
these speed ranges thus offering the prospect of being able 
to separate out walking regimes. It must be remembered that 
our per-speed error results hold only for one subject and the 
same result might not generalize to other subjects. We aim to 
explore this in future work. 

B. Predicting Overground Walking Speed 

The second half of our experiments examined how treadmill 
data could be used in estimating overground walking speeds. It 
is easy to record samples and train models of movement data 
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Figure 9: Per-speed accuracy as observed to subject 9. Ac­
curacy is not unifonn across speeds. Higher errors at higher 
speeds indicate a different walking regime. 
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Figure 10: Increasing relative percentage of training data 
reduces the average RMS testing error. RMS errors are in 
the range of the speed themselves. This is due to consistent 
underestimation of OPR and the presence of a bias tenn. 

for pre-detennined speeds on a treadmill in closed laboratory 
settings. If this learned model could be used to predict over­
ground walking speeds, it would present a scalable training 
method for obtaining personalized models. We focused on data 
collected from Subject 9. For each recording of overground 
walking, Subject 9 walked for a period of 11 seconds in a 
straight line on a flat, hard surface indoors. Treadmill data 
from subject 9 was used to train a OP model and speeds 
(in mph) were predicted for each overground walking dataset. 
Speeds were converted to appropriate units and multiplied by 
time travelled to give the predicted distance moved. Feature 
vectors were extracted (as explained in Sec. IV-C) using a 
window size of 1024 samples and using gyroscopic data. 

1) Training and Testing on Overground Walking: We first 
trained and predicted from overground walking data alone. 
Fig. 10 shows our results. Training was done with OPR and 
average RMS testing error was calculated. Both the average 
error and variance did not decrease when more than 50% of 
the data was used for training. This was attributed to the small 
size of the original dataset due to which the algorithm would 
over-train and can be mitigated with larger sized recordings. 

2) Using Treadmill Data to Predict Overground Walking 
Speeds: The second analysis addressed predicting overground 
walking speeds using only treadmill data for training. Fig. 
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Figure 12: Combining data from two subjects with the same 
height significantly improves prediction of overground walking 
speed in one subject. 

11 shows a scatter plot of OPR predicted values versus 
actual distance covered. We plot distance instead of speed 
as in our analysis, the two are related by Distance = 

Speed(inmph) x .44704 x 11 (m). The red-line indicates 
the line of best fit. The black line indicates the ideal line 
representing perfect correlation between ground truth and 
OPR predicted values. The slope tells us whether we over­
estimate or understimate the distance travelled. The y-intercept 
tells us how biased the treadmill dataset is for prediction. 
The slope and y-intercept of this line were 0.68 and 3.2 
respectively. A value of 0.68 indicated that the distance was 
being underestimated. This was explained by the fact that in 
the beginning of each recording session, Subject 9 spent the 
first few seconds accelerating to a constant velocity, so the 
steady state walking assumption does not strictly hold. We 
tested for linearity with the Pearson's correlation coefficient 
defined as TX y = 

cov(X,Y)
. Analysis shows that TX y = 

.8861, indicati�g a highp��itive linear correlation (p<0.05). 
3) Effect o/ Combining Treadmill Training Datafrom Multi­

ple Subjects: We explored whether the use of data from people 
who share similar physical characteristics can significantly 
improve overground walking speed estimation on one of 



them. Data from Subject 3 (Height: 1.85 m, BMI 29) were 
chosen along with data from Subject 9 (Height: 1.82 m, BMI 
21). Data from Subject 9 was downsampled by pruning out 
those speed recordings for which there was no analogous 
recording in Subject 3 thus forming the same equivalence 
class. Data from each subject were used separately as a source 
of training to predict distances covered by Subject 9. Data 
from both subjects were then combined into one training set 
as if from a "pseudo-subject" to predict the same distance. 
Fig. 12 shows the lines of best fit for each of the cases. An 
encouraging result was that although the equations of the lines 
of best fit for individual subjects (y=0.47x+7.9,rx,Y = 0.7328 
and y=0.54x+6.1,rx,Y = .7556) were comparatively less 
accurate, the combined data showed a much better match 
(y=0.71x+2.4,rx,Y = .8204). If generalizable this would 
mean that recording movement data for subjects with similar 
heights and grouping them together would enhance estimation 
accuracies. This would also facilitate practical data collection 
by encouraging small recordings on a large number of indi­
viduals. We aim to explore this further in future work. 

V I. CONCLUSION 

This paper described an application of Gaussian Process 
based Regression (GPR) in estimating walking speed from an 
on-body inertial sensor. GPR is a non-linear, non-parametric 
regression method. The frequency characteristics of signals 
from a tri-axial accelerometer and a tri-axial gyroscope were 
used to train a data-driven regression model. We compared the 
efficacy of GPR with well-known parametric techniques Least 
Squares Regression (LSR) and Bayesian Linear Regression 
(BLR). 

Our results showed that GPR had a lower average RMS 
prediction error when compared to BLR and LSR across all 
subjects. Beyond 50% training data used, additional training 
data yielded small reductions in RMS error. Analysis on a 
single subject (Subject 9) showed that GPR had significantly 
lower RMS prediction error than LSR and BLR (p<0.05). 
Increase in relative percentage of training data in one subject 
greatly improved estimation of accuracy of both GPR and BLR 
with LSR displaying effects of over-fitting. Using a window 
size of lO24 samples resulted in a lower error across users 
as compared to using a window size of 512 samples because 
of an increased resolution in frequency features. The addition 
of tri-axial gyroscopes reduced the RMS prediction error of 
walking speeds when compared to using only acclerometers. 
The effect of introducing gyroscopes could be offset by using 
more training data. Prediction across all speeds on awas not 
uniform. Using GPR to estimate overground walking speeds 
from overground motion data alone resulted in reduced error 
with increase in relative percentage of training data. A strong 
linear correlation existed (rx,y = .8861) between overground 
walking speeds predicted from treadmill data and ground 
truth walking speed measured. Combining treadmill data from 
multiple subjects with similar height characteristics improved 
the prediction capability of GPR for overground walking 
speeds as measured by correllation between ground truth and 
GP-predicted values (rX,y = .8204 when data from two users 
was combined). 

One limitation of our work is the generalizability of our 
approach across multiple subjects due to a large inter-subject 
variance. We plan to address this issue by performing a study 
on the prediction of treadmill walking speeds for a much 
larger population while labelling individual models in terms 
of physiological parameters such as age, height, gender and 
BMI. We aim to explore whether each of these models can 
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be organized as clusters, each of which is a function of these 
parameters. The use of clusters would facilitate data collection 
by grouping people with similar physiological parameters in 
the same equivalence class. Using clusters might also enable 
extrapolation to new subjects who do not fall in a particular 
category. Finally we plan to explore the use of our techniques 
to map feature vectors directly to a measurement of energy 
expenditure. If successful, this will involve learning a data­
driven functional mapping from the periodicity of walking to 
energy expended thus bypassing walking speed estimation. 
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