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We present a decision-level data fusion technique for
monitoring and reporting critical health conditions of a
hypertensive patient at home. Variables associated to the
patient (physiological and behavioral) and to the living
environment are considered in the solution, contributing to
improve the confidence on the system outputs. In the paper, we
model the problem variables as fuzzy, aiming to capture their
intrinsic essence, and draw rules based on medical
recommendations to identify the health condition of the patient.
This initiative move towards to build an abstract framework for
context-aware telemonitoring applications. We also describe
the relevant components of the framework and provide an
initial evaluation of its decision component. Our results
demonstrate that a principled choice of rules and variables may
lead to a consistent identification ofcritical patient's conditions.

Pervasive health care, context-awareness, home care, decision
making

I. INTRODUCTION

All around the world, the elderly population is increasing,
putting an enormous pressure on health systems. This is
particularly serious in underdeveloped countries, where there
are insufficient economic resources to cater for hospital
maintenance, as well as a small number of specialized doctors
to care for the aging population. In this context, remote health
assistance represents a potential solution towards helping an
overloaded hospital system and provides better health care for
the population. However, the benefits of home care involve
demands for hardware and software infrastructures in the
homes in order to collect and manage the relevant information
for implementing health care services.

In a pervasive computing context, the monitoring of the
patient can be revolutionized. Firstly, the relevant physiological
data can be collected during different times of the day. Several
variables related to environmental conditions (humidity,
temperature, wind, among others) can be collected and
interpreted in real-time. Additionally, activities related to a
person's behavior (e.g., going to the bathroom, sleeping, eating,
etc.) can be inferred by processing data from sensors located in
the environment. Context-aware systems that consider this kind
of information in a comprehensive fashion can help improve
the quality ofmedical care [1].
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In home health care applications, pervasive computing may
help implement monitoring services, but it may also have a
relevant role in improving the patient's comfort (e.g.,
automating tasks and supporting daily life activities) and in
promoting health education (e.g., providing useful information
to the patient through various devices). According to [2], long
term telemonitoring provides clinically useful trend data,
allowing doctors to make decisions with greater knowledge
(e.g., identifying beforehand the need for changing medication
or even diagnosing a disease in its initial phase), to monitor
chronic deterioration in a patient's conditions, or to assess the
patient's response to a treatment.

A typical architecture involves sensors that collect data
from the patient and send this data to a monitoring center (a
clinic, a doctor, a hospital). In our vision, we take a step further
by incorporating local intelligence at home: the sensors
throughout the house and close to a person's body constantly
generate data and their values are monitored by a local
computer system that interprets them using medical
knowledge. The identification of a patient's abnormal condition
can activate a local device (e.g., turning on an air conditioning
appliance), start an interaction with the person (e.g., through a
TV screen) or send an emergency message to the monitoring
center.

In this work, we describe a decision-level data fusion
technique, as categorized in [14], for monitoring and reporting
critical health conditions of a hypertensive patient at home.
Taking advantage of pervasive computing technologies, the
proposed solution integrates medical guidelines, environmental
conditions, and physiological and behavioral data. As a case
example, we consider a hypertensive patient living alone and
show how the decision function can help medical doctors
identify critical situations and also to report emergency
situations.

II. PERVASIVEHoMECARE

A primitive home care system requires the patient to press a
button to report an emergency. It is also possible to engineer
automated real-time health monitoring systems that can react
autonomously when pre-set limits of physiological data are
violated, e.g., as described in [3]. Clearly, for the latter, it is
necessary to identify critical situations with efficiency and
confidence, making a trade-off between keeping silent and



having a paranoid behavior, informing every minor disturbance
in the patient's condition.

An architecture for pervasive healthcare is described in [4].
It discusses the importance of data collection, data cleaning,
data fusion, context and knowledge generation, and data
analysis. However, it does not contemplate mechanisms for
identifying critical situations. The platform presented in [5]
considers ECG measurements (electrocardiogram) and the
identification of walking and running activities for real-time
health monitoring. However, the authors do not present results
based on patient's data.

By assuming a pervasive computing infrastructure, and
focusing on identifying critical health conditions our approach
starts by selecting a set of variables that are relevant for the
case of hypertensive patients; these variables were represented
using a fuzzy model. We also identified some issues that
should be considered in order to improve the confidence on the
system outputs. Then, relying on medical guidelines, we drew
a set of weighted rules which allowed us to identify some
potentially critical situations; the weighting factors for these
rules were assigned and calibrated in order to improve de
confidence on the system outputs. Finally, we used a rule
extraction technique to synthesize additional rules to select
which of these critical situations really deserve urgent
attention.

III. CLASSES OF MONITORED INFORMATION

In our project, we have identified three relevant classes of
information that can be gathered through pervasive devices.
Specifically:

• Environmental: Collected by sensors dispersed
throughout the home. Examples include light, sound,
smoke, fire, humidity, floor pressure, or those
associated to domestic activities that may present some
sort of hazard, such as using ovens and heaters.
Depending on the patient's disease, some sensors can
be specially required. For example, detecting floor
humidity can be of assistance to patients suffering from
Amyotrophic Lateral Sclerosis who are more
susceptible to falls.

• Physiological: Collected by sensors added to the
patient's body through wearable devices that can
compose a Wireless Body Area Network. Common
examples are blood pressure, glucose level, body
temperature, and heart rate. More sophisticated devices
are also becoming available: pulse oximeter (analysis
of the concentration of hemoglobin and the coagulation
trend of the blood), spirometer (pulmonary capacity),
and electrocardiography devices.

• Behavioral or Activity-Related: Sensor networks are
used to collect data that allow the identification of
activities of daily life, such as bathing, getting dressed,
using the bathroom. Other activities are also relevant:
sleeping, leaving and coming back to the house and
carrying out domestic activities. Contact sensors in
doors, RFIDs in objects and accelerometers are
commonly used, together with artificial intelligence
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techniques, in order to analyze the collected data and to
identify the specific activity. In our research, we
assume that this information can be reliably inferred
using techniques such as those presented in [6] and [7].

IV. RELATED ISSUES

The useful interpretation of the previously described
information involves considering issues such as those described
in this section:

• Individualization of treatment. The physiological data
may vary for each patient. A possible solution to this
problem is the definition of rules that establish the
individual limits, or consider historical data for making
decisions. Thus, alarms will not constantly trigger for a
person who already has high blood pressure.

• Influence of the patient activity and of the home
environment. Examples are: room temperature
interfering in a person's heartbeat; a domestic activity
causing an increase in the patient's blood pressure. The
system should be aware of these relationships in order
to classify them within specified limits as well as to
assist in the detection ofdifferent causes.

• Relaxation (or loosening) of the limits of each
monitored variable. The values that try to express a
rigid concept or situation are not appropriate for
different variables, especially the physiologically
related ones. For example, if a person is eating, her
blood pressure can increase up to 8.8mmHg above the
average blood pressure ([8], p. 84). Only if this limit is
exceeded, a change happens to a situation different to
the normal.

• Correlation between variables. The worsening in
physiological data may be accompanied by a
worsening in another type of data. For example, in
some circumstances, the increase in heart rate may be
followed by a drop or increase in blood pressure.

Uncertainty in the reading of the sensors is also a relevant
issue. Bad physical sensor attachment to a person's body, the
person's movements (or position), or even problems inherent in
data transmission on wireless networks, may affect the
measurements. Currently, we do not address this complex
issue; we rather assume that, in the near future, progress in the
field of sensor technology will provide the necessary reliability.

V. A FRAMEWORK FOR PERVASIVE HOME CARE

The general issues discussed in the previous sections
highlight key features in telemonitoring applications. Pervasive
home care with health monitoring purposes require a platform
with online support, inferring information or making decisions
when relevant events happen. This scenario includes real-time
activity-recognition algorithms [9] and techniques to realize
physiological and behavioral data fusion [10]. In order to
generate a context for a particular situation, data fusion
techniques can be used to aggregate and combine data as
proposed in [4].



Our proposal is based on a conceptual framework called H
SAUDE (Health Support in Aware and Ubiquitous Domestic
Environments - SAUDE means health in Portuguese), which
includes functions for Context-Management, Reasoning, and
Learning and are respectively implemented by modules with
the same name (Figure 1). In particular, the solution described
in this paper, includes a decision-level data fusion technique
that helps the identification of critical health conditions.
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Figure 1. H-SAUDE: Framework Modules

The essential requirement of generating reliable alarms
makes the Reasoning module the core of the framework. The
decision-making function of the Reasoning module (described
in section VI) receives preprocessed data from sensors as input,
conducts an analysis to determine critical situations, and
identifies which of them must effectively generate emergency
notifications. The rules component contains different types of
configurations. Each configuration establishes a combination of
variables and rules, used by the decision component according
to current context.

The Context-Management module contains primary
mechanisms for the treatment and refinement of data. Initially,
it performs data filtering and extracts relevant features. Data
fusion and inference may be used to generate new information
that is useful for reasoning at higher levels. For example, a rule
can define that if the person is in the sleeping room, his/hers
vital signs are normal, and does not present movement, then
he/she is sleeping. This module can also interact with
environment devices; for example, changing the sampling rate
ofa sensor.

The Learning module aims to meet the requirement of
adapting the system to the needs or special circumstances of an
individual. The initial training data may be formed by
examinations carried out previously by the patient. Examples
include data from ABPM (Ambulatory Blood Pressure
Monitoring), and data gathered on mental stress tests. A
training database can also be formed by a process of
calibration, which consists in demonstrating to the system an
activity or situation involving the patient. For example, heart
rate variations and the position of a person near a gym
equipment may represent a session of physical exercise. Other
works adopt real demonstrations to teach the system to
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recognize personal activities [7] [11]; however, they do not
make associations with the physiological data like we do.

The interaction between the framework modules may occur
in several ways. For example: the Context-Management
module may infer a movement of transition (for example, from
lying to standing) and then trigger a reasoning rule in the
Reasoning module that performs a measurement. The
Reasoning module updates Context-Management with the new
situation of the user (normal, alert, or emergency) and can use
the Notification service in the emergency case. If the Reasoning
module detects a state of alert, it can determine a sampling rate
increase in the measurement ofvital signs.

VI. REASONING MODULE

As a first case study, we chose an Arterial Blood Pressure
(ABP) monitoring application to illustrate the design of the
Reasoning module. As a specific scenario, we assumed the
daily life ofa hypertensive person living alone in a house.

The first issue to be addressed is expressing medical
knowledge, considering the complexity of the monitoring
activity. A simple way to do this, which can be well understood
by physicians, is by using rules if-then. In the sequel, we
present some examples of rules using environmental,
physiological and behavioral (activity of a person) variables 
rules are obtained from medical guidelines, mainly carried out
in 24-hour ABPM analysis:

• If the average systolic pressure is greater than
135mmHg and the diastolic is greater than 85mmHg
then the patient is considered hypertensive [12].

• If the patient is eating, the systolic pressure should rise
no more than 8.8mmHg above the average and the
diastolic to 9.6mmHg ([8], p. 84).

• If the patient is performing domestic activities, the
systolic pressure should rise no more than 10.7mmHg
above average and the diastolic pressure no more than
6.7mmHg ([8], p. 84).

• It is always permitted for the heart rate to be between
61 and 99bpm at rest.

The physiological variables chosen were: diastolic blood
pressure (DBP), systolic blood pressure (SBP) and heart rate
(HR). These variables can be easily collected and change
rapidly according to the clinical picture of the patient. Among
the environmental factors that influence the health of the
patient (light, temperature, noise, smoke and humidity, among
others), for simplicity, we initially chose the ambient
temperature. Regarding the patient's activity, we consider:
sleeping, resting, eating, walking, or general domestic
activities.

Table I shows some variables considered in our prototype.
While the accelerometer and the physiological data sensors are
wearable, the temperature and presence sensors are placed in
the main living places in the patient's home (for example,
bathroom, bedroom, kitchen and living room). The activity
carried out by the patient is obtained by a sub-system that
infers this high-level information using raw data from sensors,



and provides it to our system. This sub-system uses techniques
such as those proposed in [6] [7] [9], involving data filtering,
feature extraction, and classification. We envisage a topology
in which all measured values are transmitted by a wireless
network to a computer (in the house) where the system runs.

TABLE!. VARIABLES AND SENSORS
SSP variation in mmHg

Variables Sensors
Physiological - > ABPmonitor

- DBP, SBP, HR => heart ratemonitor
Behavioral => accelerometer, presence detector,

- sleeping, resting, eating, walking, etc
nerforminz domestic activity

Environmental => temperature sensor
- temperature

Besides the "normal situation" of a patient, the system is
expected to reliably identify "alarm" situations, which indicate
a deviation from the expected medical recommendations, and
"emergencies", which require urgent medical assistance. In the
first case, the warning output is useful in the medium term to
improve the quality of medical decisions, since it identifies
specific contexts where abnormalities occur. In the second
case, the output serves to notify someone that the patient needs
urgent care.

A. Definition of Variables

The dynamics of human behavior, the inherent variability
of vital signs, and the uncertainties associated with the sensor
collected data must be considered when defining the variables
of interest. In addition, medical knowledge is expressed in a
way that makes the application of exact techniques difficult.
Rules such as those presented in this subsection are based on
quantitative data, but these data items are subject to
fluctuations and require an appropriate approach to be
manipulated in a useful way. Considering this context, we
adopt a Fuzzy Logic Model to represent the relevant variables
and to implement decision-making functions in decision
component.

The physiological variables, SBP and DBP, were modeled
both separately and together with the variables associated with
the patient's behavior. For example, the variable SBP is
important in defining what is loosely abnormal; even if a
person suffering from high blood pressure feels well, she can
be considered hypertensive (people at home with an average
SBP greater than 135mmHg). We also model the variables for
each patient situation. For a sleeping person (Figure 2), SBP is
between 0 and - lOmmHg, this is considered normal; values
above are considered high and values below are considered
negative-high. Figure 3 represents the medical
recommendations regarding SBP when the person is at rest. In
this case, the variation of SBP must be around the average
(computed for the vigil period), that is, great variations in blood
pressure values should not occur. The results produced by the
fuzzy function that identify the patient's current situation
(normal, alert or emergency) are shown in (Figure 4).
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As for the "activity" variable, there is a singularity. The
order of the states in this variable is related to the increase in
SBP variation: sleeping, resting, eating, walking, and domestic
activities. These states represent very specific home care
situations, which do not exclude others, such as making a
phone call or taking medication. The "activity" variable is
treated as fuzzy singleton, i.e., only the integer values that
represent each activity have a complete and full membership.

Activity recognition can be based on information gathered
from different sensors. In order to identify an activity, a process
using one or more sensors should accurately classify the
activity. As stated before, this work does not aim to explore
activity recognition techniques; we assume that the activity
information will be supplied to our system.

B. Reasoning Model

The interactions in the Reasoning module are presented in
Figure 5. Raw data coming from sensors is preprocessed by the
context management services, producing higher-level
information. After this, the fuzzy component identifies the
current state of the patient (normal, alert or emergency). This
can be achieved in two steps: in the first step, the fuzzy rules
are applied; in the second step, the individualization function
further examines the generated output. For example, if the
current input (physiological values) is atypical (e.g., does not
occur frequently) for the patient, an alert output can be
consolidated as an emergency. The generated data is stored for
helping the next decisions and for additional uses. Another



component can perform a context analysis in off-line mode
based on the stored alert reports. It is important to detect, for
example, whether the ambient temperature is higher in alerts
situations.

VII. EXPERIMENTAL EVALUAnON

Weare developing a prototype to validate the proposal.
Here we report some initial results using real data collected off
line in 24-hour ABPM exams. In a next step, we intend to use
real-time data collected through wireless devices. The main
objective was to evaluate the outputs of the fuzzy block after
submitting patient data.

Analyzing vital signs may produce better results when we
add variables and rules relevant to the decision component.
Improved results are observed by means of correctly
identifying critical situations, distinguishing alerts from
emergencies so as not to generate false alarms. Concurrently,
we intend to identify these situations in patients who possess
different blood pressure levels. This implies avoiding the
emission of repeated alerts or emergencies for hypertensive
patients.

The ABPM data of a patient probably presents just a few
alert situations and a much smaller number of emergency
situations. Thus, obtaining a higher average of normal outputs
and maintaining the identification of alert situations means a
better result, as long as it is confirmed through medical
analysis.

The model presented in this work contains "rules with
averages" (RwA). In other words, there is a pre-processing
step, where blood pressure values and the average pressure are
compared in order to obtain a pressure variation value. The
rules defining hypertension are traditionally "generic rules"
(OR) containing fixed values, such as the definition of a SBP
alert within the interval 140mmHg-179mmHg, or an
emergency for values above or equal to 180mmHg. Another
feature of the generic rules is that they only consider whether
the patient is sleeping (S) or in the vigil (V) state.

The ABPM data sets of patients were fed to the Reasoning
module, implemented with MATLAB/Simulink tools. Many
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trials were performed (using data of dozens of patients) in order
to calibrate the system outputs and satisfy its confidence
requirements. For evaluating the rules the "min" implication
and the "sum" aggregation operators were used. The "bisector"
defuzzification method was also employed. As a result we were
able to adjust the weight of the rules that identify normal, alert
and emergency situations.

For evaluating the sensibility of the system regarding the
relevance of variables and rules, we have defined two model
configurations for testing:

1) SBP, DBP, HR, VIS, and generic rules (GR);
2) SBP, DBP, HR, activity, rules with averages (RwA),

andGR;

-end a lerts -

The second configuration uses all activities types defined
for the activity variable: sleeping, resting, eating, walking, or
general domestic activities. The first configuration uses only
vigil and sleep. Some manual adjustments were made in the
"activity" variable. When the activity diary reports that the
patient is watching TV or when no activity is reported, it is
assumed that the patient is resting. In other exceptional cases, it
is assumed that the information of a meal or resting after lunch
is valid for 30 minutes; leaving the house becomes the activity
"walking".

The results for the two configurations are shown in Figure
6. The tests with dozens of patients showed a very similar
behavior, therefore we present only two patients for each
patient's blood pressure level (hypertensive is greater than
135/85mmHg).

The resulting average values of the system with a 95%
confidence interval indicate lower values for the first model.
This is true for patients with low blood pressure values
(normotensive) . However, in hypertensive patients, the best
alternative is a data entry with all the suggested variables, the
rules with averages (RwA) and the generic rules (OR).

We also ran experiments related to "individualization". In
order to extract association rules from the patient's history, we
used the APRIORI algorithm [13. At first, a discretization

-...
context analysis

Reasoning

situation decrement

eval uation

Figure 5. Reasoning Module

Context Management
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process is performed for each variable. Then the rules are
created using the variables that exceeded their limits.

Table II shows results of a "Manual Analysis" used in the
traditional process of ABPM data evaluation, which identifies
alerts for values higher than 135/85 during the vigil period and
120/70 during the sleep period.

Table III shows the outputs produced by using our "Basic"
fuzzy system and the "Individualized" system. The
individualization process verifies whether the input values are
within the blood pressure intervals that occur with greater
frequency for the patient. When this happens, it applies a
reduction factor on the outputs of the fuzzy system. In order to
improve the confidence, this adaptive process applies different
factors defined by physicians for abnormalities caused by SBP
and DBP measurements. These experiments indicated that
individualization step was efficient in reducing false outputs.

TABLE II. MANUAL ANALYSIS

Patients Manual

id Average normal Alerts

PI 121/72 66 12

P2 138/75 33 45

P3 167/71 1 68

P4 158/94 1 59

TABLE ill. Fuzzy SYSTEM OUTPUTS

Basic Individualized
id normal alerts emerg. Normal alerts emerg:
PI 68 9 1 70 7 1
P2 55 20 3 59 16 3
P3 40 25 4 58 7 4
P4 38 21 1 50 9 1

VIII. CONCLUSIONS

The presented approach for home health monitoring hinges
on the fusion of physiological, behavioral and environmental
information. Making the system aware of this kind of variables
helps a local reasoning mechanism to generate more accurate
emergency notifications.

According to our initial results, the proposed approach
performs reliably for hypertensive patients, probably because it
relies on averages and considers the vital signs overall history.
Currently, we are trying to improve on these results considering
other options, such as a history search based on restricted time
intervals. In addition to continuing to develop several aspects
of the system, we intend to perform experiments with a larger
number of patients in order to refine our initial results.
Furthermore, we intend to develop a methodology for system
confidence evaluation.

We believe that flexible decision mechanisms are essential
for producing accurate health reports. For example, diseases,
medicaments and physical activities cause variations in the
patient's physiological data, which should require a
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customization of the set of rules, for each particular case.
Thus, in a future research step, we intend to investigate
learning techniques to help to make automatic this
customization process.
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