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Abstract----Gait disorder is one symptom of neurodegenerative
disease. Using wearable motion sensors to monitor the motor
function of patients with neurodegenerative disease has attracted
more attention. Research has shown that machine learning
techniques can be applied to the classification of
neurodegenerative diseases from the gait data recorded by
footswitches. In order to identify the most valuable features from
10 raw temporal variables extracted from gait cycles to improve
the classification performance, we examine four types of feature
selection and construction methods, namely, maximum signal-to-
noise ratio based feature selection method, maximum signal-to-
noise ratio combined with minimum correlation based feature
selection method, maximum prediction power combined with
minimum correlation based feature selection method and
principal component analysis. Results show that using a set of
four features, a relatively high prediction performance has been
achieved with classification accuracies ranging from 79.04% to
93.96%. The continual increase of the number of features does
not significantly contribute to the improvement of classification
performance. This is consistent with clustering-based feature
analysis.

Keywords: feature selection, feature construction, classification,
neurodegenerative diseases

L. INTRODUCTION

Neurodegenerative disease is a group of conditions which
results from the lost of cells in brain and spinal cord leading to
movement disturbance [1]. Amyotrophic Lateral Sclerosis
(ALS), Parkinson’s disease (PD) and Huntington’s disease
(HD) are progressive neurodegenerative diseases for which
impacting gait are often reported. Gait impairments in patients
are typically examined by measuring spatial and temporal
parameters. Gait disorder is the main symptom used by a
clinician to diagnosis and assesses the progress of the
neurodegenerative disease. Hausdorff er al. [2] reported that
patients with ALS, compared to healthy controls, walk more
slowly, with a longer average stride time, and have a less
steady and more temporally disorganized gait. Patients with
HD exhibit walking with a shorter and more variable stride
length, and lower cadence and greater variability in stride time,
swing time and double support time [3]. Patients with PD show
some important features in walking, such as shortened stride
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length, reduced gait speed, increased stride-to-stride variability,
shuffling gait and freezing [4].

With the recent development of wearable sensor
technology, there has been a growing interest in utilising
wearable motion sensors in the area of activity monitoring and
motion function tests for mobility impaired person in out-lab
environments [4]-[13]. For example, Moore et al [11]
developed a wearable system for long term monitoring of gait
in PD, by which the variable stride length and the fluctuation of
motor function associated with levodopa efficiency can be
obtained. Salarian et al. [13] used wearable gyroscopes to
estimate spatial-temporal parameters of gait from Parkinson’s
disease patients. Recent advances in wearable sensor systems
have led to the accumulation of a large amount of movement
data. However, the techniques that can take full advantages of a
large amount of sensory data are lacking. There are many
research questions deserve further investigation. For example,
which information is most clinically relevant and can be
applied for clinical diagnosis, monitoring and/or assessment?
In this paper, we aim to identify optimum feature sets for the
classification of neurodegenerative patients and healthy control
subjects. A support vector machine (SVM) is employed. The
rest of this paper is organized as follows: In section 2, we
review the related work on machine learning and feature
selection techniques in gait analysis, followed by a brief
description of the data and method adopted in the study.
Section 4 we present the classify results and discuss the results
of feature reduction. The last Section reports the outlook and
conclusion.

II. RELATED WORK

There have been several attempts to use supervised or
unsupervised machine learning approaches for gait analysis and
to use different feature selection methods to identify the most
valuable features. For example, Kamruzzaman et al. [14] used
the three neural networks, namely, Standard Backpropagation;
Scaled Conjugate Gradient and Backpropagation with Bayesian
Regularization, to automated classification of young/elderly
gait patterns. 24 features were extracted from raw gait data
recorded by optical motion analysis system. With the help of a
forward selection algorithm, Backpropagation with Bayesian
Regularization attained 100% classification accuracy when



trained with 3 selected features. Pazit Levinger et al. [15]
applied SVM to classify gait patterns of patients with knee
osteoarthritis before and after knee replacement surgery using 8
spatial-temporal gait parameters as input features. When the
hill climbing feature selection algorithm is applied, the SVM
can identify the osteoarthritis gait from the healthy ones with
the highest accuracy of 97.1% using two symmetry index
features. In this study, the gait data were recorded in a
laboratory environment using a six-camera Vicon System.
Shyamal Patel ez al. [16] collected the daily movement of PD
patient using triaxial accelerometers placed on both side of
upper arm, forearm and shin. They ranked six features the
intensity, modulation, rate, periodicity and coordination of
upper and lower limbs movement based on clustering ability,
they also used classifiers to assess the impact of ranked features
on predicting accuracy in bradykinesia and dyskinesia.
However in this study, they only considered the impact of a
single feature, and did not consider the impact of combining
features. Zheng et al [17] investigated classification
performance of three classifiers ( SVM, Random Forest and
KStar) used in gait data recorded from neurodegenerative
diseases patients and control subjects by a pair of footswitches,
and applied a power prediction feature ranking method
combined with feature selection based on minimum correlation
to select the maximum-relevant and minimum-redundancy
feature set. Their results showed that SVM classifier with a
selected four features out of ten can achieve the best
performance in the classification of neurodegenerative diseases
and control subjects. However, no other feature selection
technique were examined or compared.

In this paper, we investigate three feature selection
techniques and one feature construction method, namely the
maximum signal-to-noise ratio (SNR) based feature selection
method (MSNR), maximum signal-to-noise ratio (SNR)
combined with minimum correlation based feature selection
method (MSNR&MC), maximum prediction power combined
with minimum correlation based feature selection method
(MPP&MC) and principal component analysis (PCA), for the
analysis of neurodegenerative patients gait datasets. A SVM-
based classifier is used to assess the prediction power of feature
combination.

I1I. METHODOLOGIES

A. Datasets under study

In this study, Neuro-Degenerative Disease Gait Dynamic
Database (NDDGD) was used, which was published by
Physionet [18]. The dataset contains stride interval time series
extracted from the vertical ground reaction force records of
subjects as they walked along a 77m hallway for 5 minutes.
The data includes records from 64 individuals, ie. 15
Parkinson disease subjects (age ranging from 44 to 77), 20
Huntington disease subjects (age ranging from 29 to 71), 13
Amyotrophic Lateral Sclerosis subjects (age ranging from 36 to
70) and 16 healthy control subjects (age ranging from 22 to
74). Readers are referred to [2] for more details.

B. Feature extraction

Human walking is a quasi-period movement consisting of
gait cycles. In this study, one gait cycle (stride) is used as an
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instance. Ten temporal features are extracted from patient gait
cycles, namely, Right Stride (rs), Right Swing (rw), Right
Stance (rt), Right Swing (% of stride) (rwp), Left Stride (Is),
Left Swing (Iw), Left Stance (It), Left Swing (% of stride)
(Iwp), Double Support (d), Double Support (% stride) (dp). As
illustrated in Fig 1, rs is the period of time from right heel
contacting with the ground to the same heel contacting with the
ground again; rt is the period of time for right foot contact with
the ground (from right heel contact to right toe off); rw is the
period time for right foot leave form the ground (from right toe
off to right heel contact again). Double Support (dp) is the
period of time for two feet contact with the ground in a cycle.

C. SVM classifier

SVMs have attracted a lot of attention since they were first
presented by Vapnik in 1992 [19]. SVMs nonlinearly map the
original data to a sufficiently high dimension space in which a
maximum margin hyperplane is identified to separate the data
from different classes. It has shown that SVMs can achieve
good performance in classifying nonlinear separate data found
in many areas such as handwritten digit recognition, speaker
identification etc..

Given some training data which is written as:

D= x,.,cijx,. eR,c e {—1,1}}

d
i=1

O]

where x;is a training example consisting of a k dimensional
vector, ¢; is class label either 1 or -1. The hyperplanes which
separate two classes can be described as:

f(x)=Wep(x)+b ()

where W is the normal vector of hyperplane, @(x) is the

function which define the nonlinear mapping from input space
to a higher dimensional space, and & is the hyperplane bias
from the origin. The main idea of SVM is to choose the # and
b which maximize the perpendicular distance between the class
boundary and the hyperplane.

In this study, SVM was applied and the radial basis
function kernel was selected. 10-folder-cross-validation was
performed to estimate the performance of the classifier. All the
models were implemented within the framework provided by
publicly available package RapidMiner [20] .

Figure 1. The illustration of a gait cycle

D. Features selection and construction

It has been generally recognized that high dimensionality of
data will lead to high complexity of the classifier. Feature
selection and construction technology are often used to reduce
the data dimensionality. There are two common methods for
dimensionality reduction, one is the selection of an appropriate
subset among the existing features and the other is



transformation of the original features to construct a smaller set
of new features [20]. In this study, we proposed 3 feature
selection methods: MSNR, MSNR&MC, and MPP&MC.
MSNR is a feature ranking based selection method, while
SNR&C and MPP&C are feature selection methods following
the maximum-relevant-minimum-redundant strategy [22].
PCA, one of feature construction methods, was also
investigated.

1) Maximum signal-to-noise ratio (SNR) based feature
selection method (MSNR): SNR defines the separation power
of a feature between two classes by the ratio of the difference
of feature mean values between two classes and the feature
variance within a class [23]. For each feature, the SNR is
calculated using (3)

SN R = (luclassl - luclas52 )/ (O-classl + O-class2) (3)

Where Hclasst and Hclass2 are the means of the features in

classl and class2 respectively; Oclasst and Pelass? are standard
deviations of the features in classl and class2 respectively. A
higher ratio of SNR means a stronger prediction power.

MSNR consists of two steps. Firstly, ranking features was
performed on the strength of SNR. A feature with minimum
SNR was removed from the feature set to obtain a smaller
feature set. The process was repeated until only one feature left
in the feature subset. The algorithm is shown as (4):

F,.1= Fo-foinsnr C))
Where n is the number of features, F,, is the features set
with the number of features is #n, f;,snr is the feature with the
minimum SNR in F,. If n change from 10 to 2, we can get 9
feature subsets.

2) Maximum signal-to-noise ratio (SNR) combined with
minimum correlation based feature selection method
(MSNR&MC): The method includes three steps. The first step
is ranking the features based on the SNR which is the same as
in the method 1. In the second step, the pairwise correlations
of each pair of features were calculated and formed a
correlation matrix. After that the feature with lowest SNR in
the feature pair with the highest correlation value was removed
to obtain a new feature subset. The process was repeated until
there was only one feature left in feature subset. The algorithm
is summarized in algorithm 1.
Algorithm 1:

1. Rank all the features (F) in terms of SNR. The SNR of
f> the SNR of f;, when i <j, where f; is the iy, feature.

2. Calculate the pairwise correlation of feature pairs to
obtain the correlation matrix R.

For n=10 to 2, (n is the size of feature set)

3. Search the maximum element r; in R, where i<j
4. Remove f; from F, to obtain a new feature set F,,.,
5. Remove the iy row and the ji column from R
End
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3)  Maximum prediction power combined with minimum
correlation based feature selection method(MPP&MC): The
method proposed by Zheng et al. [17] comprised two steps.
The first step is classifying two groups using one feature, and
ranking features based on prediction power (accuracy).

The second step is to calculate the correlation matrix of
features, and to remove the smaller prediction power feature in
the pair of features with the highest correlation. The process
was repeated until there was only one feature left. Further
details can be found in [17].

4)  Principal component analysis (PCA): The method is a
classical approach for finding optimal linear transformation
which can best represent the data in a least square sense. PCA
transforms a data set into a new coordinate system which
makes the largest variance of the data to lie on the first
coordinate (called principal component), the second largest
variance on the second coordinate, and so on [24]. The
dimension reduction is performed by keeping the first few
principal components which retain the most variance of the
data.

Here, first, a Z-transformation was performed on the
original feature set to make each feature have mean 0 and
variance 1. After that PCA was performed. Last, we can obtain
the new feature subset 1 which contained the first principal
component and the new feature subset 2 which contain the first
2 principal components, and so on.

IV. RESULTS AND DISCUSSION

A.  Classification analysis

We are interested in classifying subjects into four groups:
ALS, PD, HD and healthy controls using SVM with the
temporal features extracted from gait cycles as input. We
considered 7 binary classification problems, namely:

ALS vs. Control group (AC)
PD vs. Control group (PC)

HD vs. Control Group (HOC)
ALS vs. PD (AP)
ALS vs. HD (AH)
PD vs. HD (PH)

ALS + PD + HD vs. Control Group (CD)

The classification results for each problem with 10 features
using 10-fold-cross-validation are shown in table I [17]. The
results show that ALS can be most easily distinguished from
PD (accuracy 85.47%), HD (accuracy 86.52%) and the healthy
control group (accuracy 93.96%). PD and HD can be
distinguished from the healthy control group with accuracy
86.43% and 84.17%. However, the classification accuracy of
PD vs. HD is only 79.04% which is less than other
classification problems. This may due to the common cause of
PD and HD which is the impairment of basal ganglia. Their
gait patterns have similar characteristics. All in all, it is feasible
to use machine learning methods in classification
neurodegenerative patients with healthy controls. Readers are
referred to [17] for more details.



Table I.

THE CLASSIFICATION RESULT OF SVM WITH 10 FEATURES ACROSS 7 BINARY CLASSIFICATION PROBLEM

Ac Positive Class Negative Class
Classification Problem (%) AUC

Pr Se Sp Pr Se Sp

() | (%) | (B) | (0) | (%) | (%)
ALS vs. Control group 93.96 | 0.98 | 90.76 | 93.80 [ 94.06 | 96.07 | 94.06 | 93.80
PD vs. Control group 86.43 1 092 | 87.64 | 83.11 | 89.43 | 8544 | 89.43 | 83.11
HD vs. Control group 84.17 | 091 | 89.03 | 80.01 | 88.86 | 79.74 | 88.86 | 80.01
ALS vs. PD 8547 1 092 | 88.15 | 87.19 | 82.98 | 81.69 | 82.98 | 87.19

ALS vs. HD 86.52 1 093 | 91.76 | 869 | 85.83 | 78.29 | 85.83 | 86.9
PD vs. HD 79.04 | 0.85 | 80.45 | 82.32 | 7495 | 77.19 | 74.95 | 82.32
ALS+PD+HD vs. Control group | 86.85 | 091 | 9145 | 9033 | 77.6 | 75.17 | 77.6 | 90.33

B.  The impact of feature selection and construction methods
on the classification performance

Feature selection technologies are important in machine
learning for reasons such as generalization performance,
improved learning speed and building more robust models. In
some cases, feature selection technologies can help us to obtain
a better understanding of data by finding out which features are
most important and what is the relationship between features.
In this paper, four feature reduction and selection methods (i.e.
PCA, MSNR, MSNR&MC, and MPP&MC) were examined
using the classifier SVM. The prediction performance was
measured by the area under the receiver operating characteristic
curve (AUC). The results are shown in Fig 2. Where the x axis
indicates the number of features and the y axis represents the
AUC values obtained.

A close examination of the results presented in Fig 2
reveals that:

e In all four feature selection and construction
methods, when the number of features increases
from 1 to 4, the curves rise sharply indicating that
the prediction performance improved significantly
with an increase in feature number.

e In using MSNR&C, MPP&C or PCA, when the
feature number was more than 4, adding new
features did not improve the AUC significantly.

e The MSNR-based feature selection achieved the
best performance when using more than four
features in the most of classification problems
(PC, HC, AP, PH, and CD). In the other problem
(AC, AH), MSNR achieved its best performance
using 4 features.

e  When the feature number is greater than 4, three
curves (respectively representing MSNR&C,
MPP&C or PCA) nearly overlap except for PCA
which is smaller at feature number 9 and 10.

e As shown in the Fig 2, the AUC curves become
flat when the number of features is more then 4,
suggesting the continual increase of features did
not make significant contribution to the increase of
the prediction performance.
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C. The element of optimal feature subset

The results showed in Fig 2 indicate that the prediction
performance of SVM is sufficient with 4 features as input. To
find the composition of the feature subset with size 4 (subset
4), the elements of feature subset selected by MSNR&MC
which have better performance across 7 classification problem
were examined. Table II shows the feature ranking result of 7
classification problems and the elements of feature subset
which are formed by MSNR&MC. The elements of subset 4
are different, but in most problems except for Control vs.
Disease, we can find that the four elements come from four
groups (1t, 1), (Iw, lwp), (*w, rwp) and (d, dp). This is
consistent with the results obtained from hierarchical clustering
analysis of all the input samples. As shown in Fig 3 [17],
features Is and It, d and dp, Iw and lwp, rw and rwp are grouped
together in the hierarchical tree of 10 features. In order to
obtain an insight into the relationships between features
grouped in the same cluster, we replaced one feature in the
feature subset with the other one in the same group, for
example replace lw with lwp, and examine the impact of new
feature set on prediction power. In the problem Control vs.
Disease, the Iwp was replaced by dp and Iw was replaced by d.
The classification performance of the new feature set was
measured by AUC and a t-test was applied to assess the
significant difference between the performance of the original
feature set and the new feature set. As shown in Table III, the
AUC of the new feature sets have no significant difference
(>0.05) compared with the original features selected by
MSNR&MC. The feature sets in the last two columns of Table
III were formed by an element (rt, rs) replaced by one element
from the group (It, Is) which is nearest to the group (rs,rt) in the
hierarchical tree. In the classification of AC, PC, AP, no
significant different was observed in terms of AUC values.
Interestingly, the AUC values were found lower in the
classification problem of HC, AH, and PH. This may be due to
the unbalance of gait found in HD patients, which make
different left strides and right strides.

From Table II, it can be found that the elements of feature
subset 4 are different across 7 classification problem. We
wonder if a feature subset selected for a classification problem
is suitable for other problems. In order to test it, the feature set
(rt,d,rw,Iw) were examined using SVM classifier in every
classification problem. The prediction performances are shown
in Table IV. Compared with the AUC obtained with the
original feature subset 4 which is obtained by MSNR&MC in



each binary classification problem, the two results are nearly
same.

Figure 2. Impact of number of features on the predictive power (AUC) for seven classification problems based on three features reduction methods (PCA,
MSNR, MSNR&MC, MPP&MC)
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Table II. THE FEATURE RANKING BASED SIGNAL NOISE RATE
AND THE LAST 4 FEATURES SELECTED BY CORRELATION BASED
REMOVE METHOD
Classification problem Feature ranking based SNR 4 features
selected by
MSNR&EMC
ALS vs. Control group rt,rs,It,Is,lwp,rwp,d,dp,rw,lw | rt.d,rw,lw
PD vs. Control group dp,lwp,d,rwp,rt,ItIw,rw,rs,Is | dp,rwp,rtlw | | | | |
HD vs. Control group dp.d,rwp,it, It Iwp,rs,Is,lw,rw | dp.rt,lw,rw w  lwp W rwp Is It rs " d dp
ALS vs. PD 1s,Is,rt,Iw,1t,rw,d,dp,lwp,rwp | r1s,d,lwp,rwp
ALS vs. HD 18,1s,1t,rt,d,rw,dp,Iw,lwp,rwp | 1s,d,Iw,rwp, Figure 3. A hierarchical tree of 10 features based in the analysis of all the
PD vs. HD Iwp,rs,It Is,rw,rt,d,dp,rwp,lw | Iwp,rs,rw,d samples
ALS+PD+HD vs. Control | rt,d,dp,rwp,lt,lwp,rs,Is,rw,lw | rt,rwp,lwp,lw
group
Table III. THE AUC OF ORIGINAL FEATURE SUBSET 4 AND NEW FEATURE SET, THE VALUE IN BALCKETS ARE T-TEST VALUE
Classification Problem Ols'njm Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
0982 | 0982 | 0981 [ 0981 [ 0978 | 0978
ALS vs. Control group 0982 1=0045) [ (0.974) | (0.89) | (0.753) | (0.945) | (0.309)
0926 | 0926 | 0926 [ 0923 | 0921 0.92
PD vs. Control group 0925 =596y 1(0.792) | (0.808) | (0.618) | (0.561) | (0.449)
0908 | 0904 | 0901 [ 0908 [ 0878 | 0.879
HD vs. Control group 0908 -0:003) | (0.468) | (0.324) | (0.545) | (0.002) | (0.002)
0911 0.91 0917 [ 0912 | 0912 | 0.907
ALS vs. PD 0913 0.957) | (0749 10.359) | (09771 [ (0.719) | 0.334)
0933 | 0934 | 0931 [ 0932 [ 0918 | 0921
ALS vs. HD 0.934 (0.786) | (0.876) | (0.556) | (0.587) | (0.01) | (0.007)
0854 | 0851 | 0.851 [ 0.838 [ 0815 | 0811
PD vs. HD 0.848 (0.350) | (0.323) | (0.480) | (0.260) (0) (0)
0.91 0.906 | 0.907 | 0903 | 0.897 | 0.898
ALS+PD+HD vs. Control group | 0.907 =785 014) | (0.022) | (0.038) | (0.013) | (0.038)

Table IV.  THE AUC OF ORIGINAL FEATURE SUBSET 4 AND THE
NEW FEATURE SET (RT,D,RW,LW)
Classification Original feature New feature set
problem subset 4 (rt,d,rw,lw)
AC 0.982 0.982
PC 0.925 0.927
HC 0.908 0.908
AP 0913 0918
AH 0.934 0934
PH 0.848 0.855
CD 0.907 0.905

V. CONCLUSIONS AND FUTURE WORK

Gait analysis is an important tool for clinicians to assess
the state of neurodegenerative disease to support therapy. In
this study, we used the SVM to classify the ALS, PD, HD
and control condition achieving good performance (accuracy
ranging from 79.04% to 93.96). In order to find the most
valuable temporal gait features, we examined 4 feature
selection and construction methods. The result shows that
using a feature set including 4 features are sufficient to
achieve relatively high classification performance. The
continual increase of the number of feature does not
significantly contribute to the improvement of prediction
performance. These 4 features respectively come from four
groups, namely (Iw, lwp), (rw, rwp), (d, dp) and (rt, rs),
which is consistent with the result obtained from hierarchical
clustering analysis. In this paper we only considered
temporal gait features. We will examine the contribution of
other features, such as spatial features, balance features, and
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features derived from the gait data, in neurodegenerative
disease gait pattern classification in the future.
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