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Abstract - Recent research has underscored the potential role of
analysis of EEG signals as indicators of cognitive decline. In
addition, we have also seen the emergence of embedded systems
that are capable of analyzing biological signals in real time to
track a number of physiological variables and make accurate
conclusions about the individual 's physiological status and
health. This paper presents the design of an embedded system
which is capable of tracking relevant bio-signals from the person
in real time and facilitating a dependable decision making
process that provides alerts for potential brain activity changes.
The design focuses around the use of sensors and a processing
element. It incorporates the use of electroencephalography (EEG)
and oxygen saturation (Sp02) signals. As an early proof-of­
concept, our system collects data from the sensors, performs
initial processing and provides the framework to compute
significant physiological variables.
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I. INTRODUCTION

Recent research on mildly demented AD patients revealed
slowing of the EEG, that is higher theta power, less beta
power and lower peak frequency, were linked to cognitive
decline on the cognitive test [1]. Similar results were
confirmed by [2] using change in Global Deterioration Scale
(GDS) score as an indicator of cognitive decline in subjects
with subjective memory complaints. Increases in theta power,
slowing of mean frequency and changes in coherence among
regions were observed at baseline in subjects who declined
after 7-9 years follow-up. Cross-sectional studies in elderly
with different levels of cognitive impairment have also
reported correlations between EEG spectral parameters, i.e.
higher theta activity during rest and lower alpha activity
during memory activation and decreased GDS scores.

This research on cognitive decline underscores the need for
advanced embedded monitoring systems that are robust,
secure, relatively non-invasive for use in a number
environments, e.g. at home, in a residential facility, or
hospital. Our vision of such trustworthy, pervasive health
technologies is depicted in Figure 1, which shows the
conceptual framework and core architecture.

The proposed architecture is intended to represent the key
design philosophy of our system, which includes:
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• A multi-sensor network consisting of cost-effective
wearable sensors, room-mounted sensors, or other
types of sensors that gather heterogeneous data

• Signal and data processing module to provide
immediate feedback to caregivers and patients, and
also determine what information to transmit or draw
from remote decision-support systems.

• Secure, private, and trustworthy networking
capabilities that leverage novel distributed security
and privacy algorithms and hardware for low-cost
sensors on powerful networks.

• Remote intelligence/decision-support that interfaces to
relevant information for decision and control.
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Figure 1: Core Architecture

The result of applying our core architecture to monitoring
and management of cognitive decline are low-cost, highly
trustworthy systems that can be easy adapted to the needs of
individual users. While in this paper we focus on sensors and
systems for detecting symptoms of cognitive decline, the
discussed embedded monitoring architecture has the potential
for use in a number of environments.

II. BACKGROUND

Unlike the painfully obvious losses seen in Alzheimer's
disease and other forms of dementia, subtler changes in
cognitive functions such as memory, attention, perceptual and
motor skills, language and problem solving are common, in the
elderly but not universal. In addition, some older adults exhibit
"mild cognitive impairment" yet not enough to merit a
diagnosis of dementia. Age related cognitive decline usually
occurs gradually. Sudden cognitive decline is not a part of



normal aging. When people develop an illness such as
Alzheimer's disease, mental deterioration usually happens
quickly. In contrast, cognitive performance in elderly adults
normally remains stable over many years, with only slight
declines in short-term memory and reaction times.

Studies of healthy older adults have found a wide range of
prevalence of cognitive decline, from less than 10 percent to
more than 40 percent of those aged 60 or older, with incidence
increasing with age. The broad range may reflect, in part, a
lack of consensus about how age-related cognitive decline
should be defmed, measured and described [3]. Two
technologies which have proven effective in monitoring brain
activity is pulse oximetry and electroencephalography [4][5].

Pulse Oximetry. One benefit of pulse oximetry is that
oxygen saturation (Sp02) can be measured noninvasively. This
is important because studies have shown that cerebral oxygen
desaturation is associated with cognitive decline [6]. Another
added benefit of most pulse oximetry systems is the ability to
calculate the heart rate from the same signals used to calculate
oxygen saturation levels in the individual. Abnormalities in
the heart rate can be monitored and incorporated in the fmal
decision making process, thus eliminating the need for an
additional sensor.

Electroencephalogram (EEG). For many years, EEG has
been used extensively to monitor brain activity [5]. One
difficulty with EEG is that only trained clinicians are able to
interpret EEG waveforms. On the other hand, quantitative
electroencephalography (gEEG) takes the EEG signal and
transforms them into bands using a Fast Fourier Transform.
This provides a mechanism where decision can be automated.

III. SYSTEM DESIGN AND IMPLEMENTATION

The system design involves the use of sensors to detect
various events and produce data which are collected and
analyzed by the processing element.

A. Hardware Description

The prototype hardware architecture consists of a set of
sensors and corresponding hardware modules for reading,
collecting, and processing the sensed data.

Oxygen Saturation Module. Oxygen saturation measures
the percentage of hemoglobin binding sites in the bloodstream
occupied by oxygen. The device used to perform the
calculation is called a pulse oximeter. It relies on the light
absorption characteristics of saturation hemoglobin to give an
indication of oxygen saturation. The OEM III module from
Nonin with its Puresat® Signal Processing technique is used
as it is ideal in motion and low perfusion environments. This
approach provides more reliable readings over simple
microcontroller based pulse oximetry solutions. The sensor is
capable of providing a 4-beat average heart rate value and a 4­
beat average Sp02 value.

Electroencephalography (EEG) Electrodes. EEG refers to
the measurement of the electrical activity produced by the
brain. It is recorded using multiple electrodes placed on the
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scalp. Electrode locations and names are specified by the
'International 10-20' system ensuring consistency in the
naming convention. In most clinical applications, 19 recording
electrodes along with 2 reference electrodes are used.
However, for purposes of this research, only 4 electrodes are
used for monitoring abnormal activity. These 4 electrodes are
FP1, FP2, C4 and 01. The EEG is typically described in terms
of rhythmic activity. This rhythmic activity is divided into
bands by frequency Delta (1 - 3 Hz), Theta (4 - 7 Hz), Alpha
(8 - 12 Hz), Beta (13 - 24 Hz), and Gamma (24 - 70 Hz).

To develop and test this system we utilized EEG signals
generated by an EEG simulator (Grass Techonologies, Model
EEGSIM). The same stored signal is replayed with a period of
60 seconds. Several models of the EEG simulator are available
with each storing an EEG signal corresponding to different
types of EEG waveforms. The simulator that we used for this
research simulates the EEG of a person who suffered a
seizure. For comparison purposes, a sample of non-seizure
EEG signals was analyzed. This data set was taken from a
visual attention experiment described by [7].

Microcontroller. The information from the sensors is
collected and processed by a processor - a microcontroller is
used in our design. The MSP430FG4618 from the MSP430
line of microcontrollers from Texas Instruments is chosen.
The important peripherals included in the microcontroller are
the Analog to Digital Converter (ADC) and the Serial
Communication Interface. A hardware board with this
microcontroller is used for the prototype development.

B. System Operation

The sequence of operations carried out by the system can
be explained as follows. First, the signals from the sensors are
collected, namely the oxygen saturation module and EEG
electrodes. An initial data processing (if required) is carried out
in the pre-processing stage. This is followed by a sequence of
operations performed by the microcontroller, the fmal result of
which is the computation and display of the various
physiological metrics. The preprocessed signals are sampled by
the ADC integrated within the microcontroller. The monitoring
of sensor signals can be either event triggered or continuous.
While the prototype implementation employs continuous
monitoring, an event triggered monitoring scheme can be easily
established with minor software modifications to the
microcontroller. In the latter scenario, the trigger to begin
monitoring is a software-based detection of an abnormality in
the sensed data. For example, an abnormal heart rate or oxygen
saturation value (which is anything below/above the baseline
value for that person) can be used as a trigger for entering the
monitoring mode.

For the EEG electrodes, the preprocessing stage involves
amplification and level-shifting. Typical EEG voltages are of
the order of micro volts and the simulator generates voltages
typically in the range of 5- 50uV with a peak of 500uV. This
voltage is too low to be detected by on-chip ADCs. Hence, the
signals are amplified by a factor of 2000 using a high
impedance differential amplifier. EEG signals have a negative
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average power in the theta band, which can be computed from
the area under the power spectral density curve .
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Figure 2: EEG Signals with Oxygen Saturation

Another important analysis of EEG bands is the analysis of
the functional connectivity between hemispheres and within
hemispheres - coherence. Coherence, Cx/f), between two
waveforms can be defined as the following expression:

Cxy(f) = IPxy(f) 1
2

/ Pxx(f) Pyy(f) (1)

Where , Pxy(f) is the cross-power spectral density ofx and y;
Pxx(f) and Pyy(f) are the power spectral densities of x and y ,
respectively. Coherence values range from 0 to 1. As an
example, the coherence was calculated for the alpha frequency
band in the FPI and FP2 electrodes. The coherence across the
alpha band is generally used for studies pertaining to cognitive
decline though it can be computed for the other bands as well.

Table 1 lists the alpha-theta ratio, theta relative power, and
coherence values calculated across the alpha bands for some
of the electrode signals for the simulated seizure EEG signals
and for the non-seizure EEG signals. For example, the
computed alpha-coherence for FP 1 and FP2 is only 0.181,
which indicates weak correlation between the alpha waves
collected from the two electrodes. This may be due to
significant difference in the activity in the left and right site of
the brain. The purpose of showing these results is to
demonstrate that the proposed system, while relatively simple,
is powerful enough to collect real-time data and compute on­
line metrics, which can be used as health indicators, e.g.,
cognitive decline of the subjects.

voltage level which is translated to a digital O. To overcome
that, a de-level shifter is used to add a known DC voltage to
the EEG signals before sampling them.

The data values from the oxygen saturation sensor an
available in digital format through the serial interface am
hence, no pre-processing is required. The frequencies 0

interest from the EEG signals lie in the 0-70 Hz range. Th.
signals are sampled at a frequency of 500 Hz which is higl
enough to avoid aliasing. Oversampling can also be done tl
increase accuracy. Once the signals are sampled, the EE(
signals are digitally band-pass filtered to extract rhythmi:
activity in the different bands as per the classificatioi
described in Section lILA. The bands of interest in tlu
detection of cognitive decline are the delta and theta bands
The EEG used here is known to have abnormality on accoun
of seizures. Seizures are known to have spikes in the delt
band. Thus, the abnormality in the EEG signal along witl
oxygen saturation and heart beat information helps us comput
a signature or health indicator of cognitive decline.

IV. EVALUATION AND RESULTS

Real-time collection of sensor signals: The system i
capable of collecting the signals in real-time in a synchronou
manner. Figure 2 depicts the data sampled and collected by th:
microcontroller. The first four waveforms depict the signal
from the four EEG electrodes- FP1, FP2, C4 and 01- a
analog voltages while the last waveform indicates the oxygei
saturation value as a percentage. The samples were collecte
for a period of 1 minute. The ability to collect the samples
synchronously provides the foundation for further processing
and shows that an embedded design approach using EEG and
other sensors is indeed, a feasible and viable solution to
detecting cognitive decline.

Extraction of Frequency Bands: Figure 3 depicts the
frequency band information which was extracted from the FPI
EEG electrode. Five (5) different bands are depicted here. The
developed system permits the real time extraction of all
frequency bands for dynamic analysis of brain activity. It is
possible to do the same band information extraction with the
signals from other electrodes, but it is not shown here . As
mentioned in Section III.B, the EEG simulator generates the
signals for a patient who suffered a seizure, which is
characterized by spikes in the delta region. The spikes can be
seen clearly in the first waveform in Figure 3 (see data around
sample 15,000) and can be automatically extracted.

Closing the Loop. Different types of real time analyses of
the extracted waveforms can be done using the proposed
system. Three metrics are discussed here: theta-relative
power, alpha-theta ratio, and coherence.

All three of these metrics are affected by the absolute theta
power, which generally increases in patients with seizures.
The theta-relative power and the alpha-theta ratio of the EEG
signals are typical metrics used for biofeedback. The theta­
relative power is the ratio of average power in the theta band
to the total power in alpha and theta bands. The alpha-theta
ratio is the ratio of the average power in the alpha band to the
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Embedded Systems. The qEEG system described in this
article is one part of an embedded monitoring system
described in Figure 1. The physiologic data from the EEG and
SpOz sensors would be sent to the clinician, the caregiver, and
decision support algorithms to make the necessary clinical
judgments. The benefit of such a system is that it would be
faster than the traditional neuropsychological assessments
used in [1][2] . In such embedded monitoring systems , qEEG
analyses would allow clinicians to detect abnormalities related
to specific cognitive disorders, compare significant differences
in coherence, compare different activation states, and monitor
the process of rather than the presence of cognitive decline .

VI. CONCLUSIONS AND FUTUREWORK

In this paper, we present an embedded system framework
that is capable ofcollecting and analyzing data from sensors to
calculate suitable metrics from which we can infer the
physiological status of a person . Future work will focus on: (i)
adding more sensors to monitor other human body responses ,
(ii) maintaining redundant sensors to account for reliable
operation of the module, (iii) developing robust algorithms for
analyzing various types of brain injuries and mental disorders,
and (iv) adding support for the other features envisioned in the
core architecture, for example wireless communication in a
secure and trustworthy manner.
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Figure 3: Delta, Theta, Alpha, Beta and Gamma
Bands of FPI Electrode

Table I: Values of Computed Metrics

Metric Simulated Non-seizure
Seizure Value Value

Alpha-Theta Ratio forFP1 0.393 1.3658

Alpha-Theta Ratio forFP2 0.40 1.3696

Theta Relative Power for FP1 0.7179 0.4227

Theta Relative Power for FP2 0.7094 0.4220

Alpha-Coherence forFP1. FP2 0.181 0.7637

Theta-Coherence forFP1. FP2 0.768 0.5662

V. DISCUSSION

Pulse Oximetry. While research suggests that oxygen
desaturation is associated with cognitive decline , further work
is required to expand these conclusions [6]. The technology
described in this paper can be useful in alerting clinicians to
hazardously low seo, levels [8].

EEG. Studies have shown that power spectra from EEG
signals can be correlated to cognitive decline in specific
cognitive disorders [9]. One difficulty of qEEG analysis is the
wide variety of methodological choices needed to develop a
qEEG system. Since most of the research using EEG and
qEEG has been done while the patient is resting, it is
important to analyze EEG during an active state. Continuous
qEEG monitoring would provide a simple and effective way to
measure and analyze EEG signals during an active state .
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