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Abstract — Pervasive healthcare provides an effective solution for
monitoring the wellbeing of elderly, quantifying post-operative
patient recovery and monitoring the progression of
neurodegenerative diseases such as Parkinson’s. However,
developing functional pervasive systems is a complex task that
entails the creation of appropriate sensing platforms, integration
of versatile technologies for data stream management and
development of elaborate data analysis techniques. This paper
describes a complete and an integrated multi-sensing framework,
with which the sensing platforms, data fusion and analysis
algorithms, and software architecture suitable for pervasive
healthcare applications are presented. The potential value of the
proposed framework for pervasive patient monitoring is
demonstrated and initial results obtained from our current
research experiences are described.
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L INTRODUCTION

Recent advances in sensing technologies offer significant
potential for pervasive healthcare delivery in terms of
versatility and cost-effectiveness. For instance, wearable Body
Sensor Networks [1] are used for measuring postoperative
recovery for patients after elective minimal invasive surgery
where early signs of post-operative complication can be
captured in a home environment because patients are usually
discharged much more quickly compared to conventional
surgery [2]. Pervasive sensing also provides an appealing
approach for monitoring the wellbeing of the elderly, where the
general trend of an increasingly ageing population has placed
significant burdens on the current healthcare systems. To this
end, smart homes employing different sensors can monitor
patient interaction with the surrounding environment [3]. Such
pervasive healthcare environments support elderly independent
living, encourage the maintenance of physical fitness and
enable observing social activity while alleviating workload of
healthcare professionals. They also aid identifying transient
behaviour abnormalities that may indicate adverse events.

In practice, pervasive systems are only realizable by
integrating multiple sensing modalities and existing research
has shown that there is a complementary relationship between
wearable and ambient, i.e. background, sensing paradigms.
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Wearable sensing enables continuous monitoring of patient
motion and physiological parameters through a network of
body-worn sensors wirelessly linked to each other.
They are usually based on accelerometers [4, 5], pulse
oximeters (SpO,) [5], ECG [6] and temperature sensors [4].
However, wearable sensors only provide limited body
information and due to the lack of global reference, it can be
difficult to use this information to deduce the context of the
activities. For example, an accelerometer can detect local
motion, such as sitting down or walking about; however, it
cannot tell if the subject is sitting on a chair or lying on the
ground. It is also difficult to differentiate between low-impact
sedate activities performed within the home due to the
complexity in separating fine motion from the movement of the
body as a whole. It is only by the use of ambient sensing that
other essential information such as body posture can be
obtained with effective discrimination.

Ambient sensing employs a large number of sensors that
are ubiquitously placed in the environment such as video
cameras [7, 8], infrared sensors, water flow and utility usage
sensors, and pressure sensors mounted on furniture [9]. These
systems can provide information about the location and
activities of the subject within the environment and enable the
detection of critical events such as falls. Nevertheless,
pervasive systems based only on ambient sensors require the
use of a large number of sensors, which involve complex and
expensive deployments. They also suffer from other limitations
such as the difficulty of deducing detailed changes in motion
patterns and inability to detect vital signs related to the onset or
progression of chronic disorders. Furthermore, the need for
having large training data to be used for inferring activities
hinders the practical use of ambient-only sensing frameworks.

By integrating the strengths of ambient and wearable
sensing, it is possible to provide true pervasive systems that can
be used to accurately infer subject condition based on activity
and physiological parameters. In general, sensory data can be
fused at signal, data, feature, or decision levels [10]. For
instance, sensor signals can be combined by using simple
hardware thresholds [5], whereas at the data level, pattern
recognition methods such as Bayesian Networks [7], Hidden
Markov Models (HMMs) [11] and Gaussian Mixture Models
(GMMs) [12] are often used for data fusion and analysis.
Furthermore, due to the large volume of sensing data,
dimensionality reduction techniques such as Manifold
Embedding [13], Principal Component Analysis (PCA) and



feature selection [1] are often applied prior to applying actual
activity classification procedures.

Another major challenge associated with pervasive system
deployment is the integration and interoperability of diverse set
of components including sensors, middleware, web services,
databases as well as backend data mining and visualization
tools for different user groups and with varying levels of
security expectations. Additionally, the need to collect and
operate on continuous sensor data streams introduces
significant computational and storage loads that are
exacerbated in case of a large number of users. Therefore, the
development of efficient and scalable stream processing and
management architecture is essential for practical pervasive
system deployments. A number of light-weight software
architectures for scalable data processing, transmission and
storage have been recently introduced based on techniques
such as wavelets, histograms, sketches, sub-sampling and
synopsis data structures [14, 15]. These techniques optimize
resource utilization and reduce memory usage, lower database
access rate and enhance responsiveness for web clients.

The main contribution of this paper is the provision of a
complete and integrated framework for the development of
pervasive systems used in intelligent healthcare delivery and
patient monitoring. We describe individual framework
components that correspond to different phases from data
acquisition platforms, stream management to fusion and
analysis. We also present results of research experiments
carried out while developing the proposed framework.

II.  SYSTEM ARCHITECTURE

The software architecture for the proposed framework is
based on the push style [16] message broker model [17] which
is used by many established industrial systems such as J2EE
[18] and several research frameworks [19]. Fig. 1 illustrates a
schematic diagram outlining framework phases and data
workflow. Patient activity information capture by wearable
sensors, as well as data captured by ambient sensors, is
streamed through authorised gateway devices to broker
server(s) for logging and interface to databases. Further
processing, data fusion and analysis for patient activity
classification and behaviour profiling are carried out on
dedicated servers or distributed among clusters. Brokers work
as intermediary connectors that facilitate communication
between heterogeneous and distributed system components for
data acquisition, processing, storage and visualization.

Based on an asynchronous messaging paradigm, system
components can publish data under a topic and/or subscribe to
a particular topic or a category of topics. The broker delivers
data to registered subscribers. It also enables for querying data-
generating components that provide metadata in schema-
conformant XML. User interaction with the system is
implemented through web services and different stakeholders
connect to the system in order to retrieve stored information or
carry out specific data processing algorithms. The loose
coupling of heterogeneous framework components allows for
flexible and scalable pervasive system architecture that
facilitate monitoring and knowledge discovery. Moreover, the
use of secure connectivity and data abstractions is essential for
protecting patient privacy.
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Figure 1. System architecture for pervasive systems where loose coupling
between heterogeneous components ensures efficiency and scalability.

III. AMBIENT AND WEARABLE SENSING PLATFORMS

A.  Ambient Visual Sensors

The deployment of ambient visual sensors, also referred to
as “smart cameras”, is based upon a collaborative network of
partly self-sufficient vision-based sensor nodes. The main idea
behind ambient sensing is to distribute data processing on-
board in order to reduce communications bandwidth and power
consumption. For example, the Matrix Vision mvBlueLYNX
smart camera has been demonstrated in the SmartClassySurv
activity recognition framework [20]. This device embeds an
imaging sensor, a FPGA for pre-processing, a PowerPC
processor, an Ethernet interface for communication with the
rest of the network, and is powered through power over
Ethernet (PoE). In general, visual sensing nodes are composed
of the following:

e Imaging sensor - represents the first phase in the
overall image processing pipeline. The sensor is
typically based on low-power CMOS technology and
varies along the dimensions of captured image
resolution, color depth, energy consumption and frame
rate.

e Main processing board — deals with basic image
processing tasks such as noise reduction and target
segmentation. Processing boards can be implemented
using general-purpose central processing units (CPUs),
digital signal processors (DSPs) and/or field-
programmable gate arrays (FPGAs).



e Communication module — for convenient deployment
in healthcare environments, this module is typically
based on wireless LAN transceivers such as the
802.11g/b Wi-Fi and 802.15.4 (Zigbee) with different
channel capacity and energy consumption.

Fig. 2 shows a view of the ubiquitous sensing node
developed at Imperial College London [8]. The node is
composed of a VCSBC50 DSP camera and main processing
board embedding a Texas Instrument MSP430 processor,
32KB RAM, 60KB Flash and 24GHz wireless
communications (250Kb/s). It is packed in a slick casing for
better environmental integration.

Figure 2. Blob sensor node.

Video data observed by the ambient sensors is processed on
board in real-time and the sensor transmit only the derived
signal metrics such as the silhouette, ie. blob, of a moving
object and its local motion in the form of optical flow. Through
a network of ambient vision sensors, accurate tracking can be
obtained which can improve the overall system robustness in
behaviour profiling. Under this sensing paradigm, the binary
blobs of monitored subject are first extracted from the video
signal using a statistical background model, where every pixel
is represented as a Gaussian mixture distribution maintained
over time [21]. Incoming signals are compared with the
existing background model, obtained by using a single
Gaussian for the background colour model, and segmented into
a binary map of foreground and background. Using two or
more Gaussians in a Gaussian Mixture Model (GMM) requires
the use of floating point operations to fuse them, which is not
supported in most hardware and would be too computationally
expensive.

Further optimisations are necessary to reach real-time
performance. For example, the background model can only be
updated every 20 frames. A fast and low-resolution foreground
segmentation is performed beforehand to determine the region
of interest (ROI). The full resolution segmentation and
morphological filtering (erosion-dilation) are consequently
performed only in the ROI bounding box, providing a
substantial speed gain.
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A couple of basic features can be computed on node from
the binary blob image, such as the object centre, axis-aligned
bounding box (AABB), and the eigenvectors of the object
providing information on its orientation. In many situations,
these features provide sufficient information for activity
detection and classification. In such cases, only the features are
transmitted through the network, thus reducing bandwidth
usage and energy expenditure. It is worth noting that the blobs
extracted by each ambient sensor do not carry any appearance
information and no image data is transmitted to other devices.
This is important for home care environments where privacy is
of high priority. Fig. 3 illustrates example captured scene
images and computed object blobs.

Figure 3. Example scene images (left) and extracted blobs (right).

B.  Ear Worn Activity Recognition (e-AR) Sensor

A number of patient activities and physiological parameters
can be acquired by using wearable sensors. These are small
devices worn by the user and mainly composed of a
miniaturised processing board, communication module and
sensors for measuring body motion as well as other vital signs
such as temperature, pulse and blood oxygen level. For the
proposed framework, we have used the ear-worn Activity
Recognition (e-AR) sensor [5] which is based on the Body
Sensor Network (BSN) platform [22]. A basic BSN node
comprises a Texas Instruments MSP430 16-bit ultra-low-power
RISC processor, a Chipcon CC2420 radio transceiver, MCC
ChipOX SpO, module, a temperature sensor and a 3-axis
accelerometer. The BSN node runs TinyOS [23], which is a
small, open-source and energy-efficient sensor board operating
system. Fig. 4 shows the BSN node on a circuit board and e-4AR
sensor. During its use, the e-4R sensor periodically samples
from the accelerometer and other sensors, and transmits this
data to a nearby gateway station. Motion features such as head-
tilt, mean, median and variance extracted from a limited time
window (usually selected to be 1-2 seconds), are used to
compute patient activity levels, ie. activity indices.
Alternatively, activity indices can be computed on BSN nodes
in order to minimise transmission bandwidth, extend battery
life and facilitate system scalability.



Figure 4. The e-AR sensor (a) with SpO, reader cord that clips to the ear (b)
and Body Sensor Network (BSN) node on a circuit board (c).

IV. DATA ANALYSIS

Data analysis is an important part of pervasive sensing
systems. It involves inferencing and learning for behaviour
monitoring, context aware sensing, designing efficient
databases that encompass different types of sensor data while
optimising retrieval queries, and correcting for errors in data
resulting from noise, interference and missing connections.
Other important analysis applications include sensor fusion
where different types of sensors are used to obtain better
understanding of activity and pattern mining where patient
activity is used to identify trends that occur over long period of
time. The following subsections describe a number of data
analysis techniques and their use in pervasive patient
monitoring. Results obtained using these techniques within the
proposed framework are presented in the next section.

A.  Gaussian Mixture Models and Probablistic Decision
Level Sensor Data Fusion

Through the fusion of ambient and wearable sensor
information, it is possible to achieve increased accuracy in
activity inference, enhanced tolerance to sensor failures
through the inclusion of both complementary and redundant
data types, thus offering improved home monitoring systems
with extended coverage of both local and global characteristics
of activity. For example, most features derived from the
ambient visual sensor depend on the relative position of the
subject and the sensor, but this dependency can be alleviated by
the wearable sensor remaining fixed in the subject’s frame of
reference. One approach for sensor fusion is by using a
Gaussian Mixture Model (GMM) [12] which uses a Gaussian
Bayes Expectation Maximisation (EM) classifier based on
features extracted from wearable and ambient sensors. For the
e-AR, these features include tilt and movement frequency
spectrum whereas for the ambient sensor they include the
aspect ratio and mean velocity of the object. The classification
considers that different activities correspond to different
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classes. It uses an EM iterative method to compute the
maximum likelihood fitting [24] based on the assumption that
the conditional probability density function for each of these
classes is Gaussian. The expectation and maximization steps
are performed iteratively until convergence and part of input
data is used to evaluate the accuracy of the classifier based on
the marginal probability of every activity with the highest
probability chosen for the final classification.

For multi-dwelling housing environments, it is important to
automatically identify related data streams before fusion can
occur. This process is called sensor correlation. Probabilistic
decision level fusion [25] is used for sensor correlation. In this
case, feature sets are extracted such that they exhibit
classification redundancy across sensing modalities.
Consequently, activities can be detected accurately and
independently by per-sensor classifiers at the same time.
Feature set search space is firstly reduced by applying BFFS
[1] to rank sensor-specific features which yield high accuracy
when used singularly and independently. Subsequently, sets
with the highest redundancy across sensors are automatically
selected by using the multi-objective accuracy/redundancy
score [26] to rank feature sets classification. With the
appropriate e-AR and visual feature sets selected, they are
exposed to pre-trained per-sensor activity classifiers. The
results of these classifiers are then used to select those data
streams that most likely result from the same subject. This
technique enables automatic combination of ambient and
wearable sensing data which improves overall activity
classification for home healthcare monitoring.

B.  Behaviour Profiling Using Hidden MarkovModels
(HMMs)

Observing patient activity and movement patterns over an
extended period of time can be cumbersome especially for
large number of subjects. A similarity based HMM technique
[27] for clustering of location sequences, i.e. patient movement,
can be used for representing the behaviour pattern of the patient
and its temporal variation without explicitly defining activities,
hence alleviating privacy concerns. Standard approaches to
clustering with HMM comprise model training with a
sequence, then using pair-wise distance based methods to
perform the clustering. The proposed similarity based
clustering approach uses a feature space that is generated using
HMMs to express the similarity of sequences to each other. For
this purpose, the features describing a sequence are calculated
as similarity measures between that sequence and other
reference sequences that are selected from the whole set as
chosen by experts, or the whole dataset can be used. Behaviour
profiling is achieved by observing the clustering of sequences
in the new feature space. Assuming that certain clusters of
behaviour sequences represent normal patient activity over a
period of time, outlier can indicate deviations from normal
behaviour patterns. If the deviation is large, additional data
analysis can be performed to elucidate the potential causes of
this deviation.

C. Pattern Mining for Routine Behaviour Discovery

Complementary to a model based approach for behaviour
profiling is to discover patterns of activities using pattern
mining algorithms. In [28] an algorithm is proposed for



constructing a compressed data structure specifically for
describing routines by mining activity data patterns. Typically,
when a user is wearing an e-4R sensor, an activity level is
streamed periodically from the sensor. The activity level is the
output of a classifier described in [29], and can take one of four
values where the lowest level indicates almost no activity
(during sleeping or sitting) and the highest level indicates a
high-intensity activity such as running. While some activities
may be described by a single activity level, most activities
result in a sequence of activity levels. These combinations are
discovered by the proposed pattern mining algorithm. The
algorithm in [28] obtains a data structure called the routine tree,
a picture of the user’s routine showing patterns of activity at
progressively finer time resolutions wherever there is more
detail to uncover. Each node in the tree represents a time
interval, for which frequent patterns are stored. A systematic,
top-down tree construction method mines data at smaller
durations, while avoiding mining in further detail where there
is little structure to discover. The tree is then pruned by
merging adjacent time intervals that have the same maximal
frequency pattern to produce a more compact representation.
Generated activity tree provides a representation of the
composition of a user's routine which when combined with
appropriate visualisation techniques, intuitive graphical views
of behaviour patterns can be attained.

V. RESULTS
The sensing, management and analysis techniques
described above were applied in patient monitoring

experiments. For our studies we have designed a home
healthcare laboratory where subjects can be observed
performing a variety of tasks typically enacted within a living
space. This laboratory has been augmented with support for
both wearable and ambient visual sensors. By using the e-AR
and visual sensors together we facilitate the extraction of local
motion characteristics such as head tilt, sway as well as
capturing overall pose and limb motion.

An initial study measuring the impact of fusing wearable
and ambient sensing on the accuracy of activity classification
has been carried out [12]. A set of 9 activities, shown in Table
1, were considered along with their recognition rates as
illustrated in Fig. 5. The activities were carried out in sequence
by 2 actors with each activity performed during approximately
one minute. For all activity classes, a marked classification
improvement can be observed with the exception of sitting
which displays a minor decrease. Performance gains are
particularly noticeable for classes where e-4AR sensor data is
ambiguous due to a lack of global information, as in classes 2,
3, 5 and 6. What’s shown here is an increase in sensitivity of
the aforementioned classes due to more discriminative data.
Analysis of classification using the e-4R sensor alone would
reveal that this increase in sensitivity is due to the correct
classification of data items previously, and incorrectly,
classified as ‘Sitting” — thus whilst sitting has demonstrated a
minor decrease to sensitivity, the specificity of this class has
increased considerably. This validates our theory that
extending sensor coverage to both local and global
characteristics will result in accurate activity classification.
However, because there is no system composed of a video-
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based sensor and a single wearable inertial sensor is available
to the authors’ knowledge, it is not possible to compare these
results.

TABLE L THE SET OF 9 ACTIVITIES USED IN [12]

Activity Class
walking 1

standing

standing (head tilted)

Sitting

Reading

Eating

Sitting (Sofa)

Lounging

Wl |N|a|lwnw|ls]|w]D

Lying Down

Figure 5. Activity recognition rates for 9 activity classes using the e-AR
sensor alone and the e-4R sensor + visual sensor

In order to ensure the home monitoring systems can be
readily adopted, there is a requirement that they should
address multiple occupancy scenarios with minimal user
interaction. Given a choice of objects visually extracted from
the environment along with a set of e-AR signals, a
probabilistic decision level fusion technique [25] can
automatically match the correct e-4R sensor to the visually
object extracted from its wearer. This has important
consequences for environments such as care-homes, where
many subjects may be under observation, requiring the correct
signals to be matched before fusion can occur.

Fig. 6 shows the results obtained when the probabilistic
decision level fusion technique is applied to a scenario with
three people in a room. For this experiment, one real subject,
wearing an e-4AR sensor and monitored by a visual sensor, is
used along with two streams simulating random blob
information for two other occupants. The scenario consists of



one minute of different activities including: sitting, reading,
eating, standing, standing with head tilted, walking, sitting on
sofa, slouching and lying.

The three traces in Fig. 6 correspond to the percentage of
time the e-4AR/blob pairs were matched during the experiment.
It can be seen that the proposed technique achieves a high
degree of correlation accuracy matching e-AR/visual
information for the real subject (blue trace) with low matching
percentages for the randomly simulated blob information
(yellow and purple traces). The activities returned from the
blob and e-AR classifiers for the real subject are also presented
at the top. It should be noted, however, that the technique is
sensitive to the behaviour of the "erroneous" people in the
room, i.e. people doing the same thing.

Figure 6. Traces correspond to percentage match of e-4R and visual sensors
for same subject (blue) and simulated subjects (purple and yellow). The
activities returned from the visual and e-AR classifiers for the real subject are
also presented at the top.

Location sequences from ambient sensors can be used for
modelling different behaviour patterns. It has been
demonstrated [27] that with the use of wearable and vision
based ambient sensors, it is possible to develop a practical
visualization framework allowing the observation of daily
activities in a homecare environment. To this end, an effective
behaviour modelling method based on Hidden Markov Models
is used for highlighting changes in activity patterns.
Representation of sequences in a similarity space allows for
clustering, detection of abnormalities and data-exploration. In
this similarity space, it is possible to observe how close similar
patterns are, and observe patients who change their behaviour.
Fig. 7 illustrates the behaviour patterns of a number of
individuals where each circle represents the location sequence
of a person moving between several rooms. Principal
Component Analysis (PCA) was applied to reduce the location
sequences matrix to 2D space defined by the first and second
PCA vectors. This information can be used to judge similarity
between un-labelled sequences and outlier can indicate
deviation from normal behaviour patterns.
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The pattern mining technique [28] described in previous
section was applied to two datasets. The datasets represent
simulated activity levels for two types of users: office going
and retired. Each set is compiled by using certain known
activities for each type of user and a single activity can
comprise a combination of one or more activity levels. Data
for each activity was collected using an e-4R sensor under lab
settings. This was then concatenated based on a simulated
model for the daily routines of the two types of users. Fig. 8
demonstrates a visualisation of the obtained results when
applying the proposed pattern mining technique to the
simulated data. The structure of each day can be clearly seen
and differences between users’ daily routines in terms of
carried out activities visualised. The ‘Week’ tree is a result of
combining five daily trees, which captures the general picture
of the simulated routine for one week. Long-term routine
trends can also be captured by looking at certain weekdays
over extended periods.

Figure 7. Each sequence of locations is represented as a circle in 2D space
obtained by using Principal Component Analysis (PCA) to reduce the location
sequences matrix to 2 dimensions [27]. The graph can be used to judge
similarity between un-labelled sequences and outlier can indicate deviation
from normal behaviour patterns.

Figure 8. Routine trees showing the behaviour changes in terms of carried

out activities during the week for two types of users with differenct activity

patterns. The bottom graph shows different activities where an activity may
comprise one or more activty levels.



VI. CONCLUSIONS AND FUTURE WORK

The development of pervasive patient monitoring systems
is an intricate job requiring the construction of appropriate
sensing platforms, the integration of multiple hardware and
software components and the utilisation of sophisticated data
analysis algorithms. In this paper, we have presented a
complete framework for pervasive patient monitoring
applications. Practical wearable and privacy-preserving
ambient sensing paradigms were described as well as scalable
software architecture needed for sensor stream management
and processing. Several potential data fusion and analysis
techniques for pervasive monitoring were also presented along
with some of the results obtained by applying these techniques.
The framework comprises full data life cycle from acquisition
to management to analysis in order to enable practical
ubiquitous patient observation. However, it is worth noting that
the framework is not fully automated, something we are
planning to accomplish in the near future. The system can only
identify one activity at a given time, and further hierarchical
classification of multiple simultaneous activities is under
consideration. Other future work areas include the development
of algorithms for extracting and combining visual information
in order to enhance ambient sensing in cluttered scenes and
reduce dependency of acquired visual data on sensors
orientation. Additional work is also required to develop
improved data fusion techniques for more accurate activity
detection and introduce robust autonomic behaviour profiling
methods that minimise caretakers’ workload and enable long
term elderly monitoring. At the end, it is worth noting that the
framework described in the paper has been developed as a part
of the Smart and Aware Pervasive Healthcare Environments
(SAPHE) project'.
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