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Abstract-The advent of more portable and affordable sens­
ing devices has facilitated the study of rehabilitation robotics.
Critical to the further development of therapies and inter­
ventions are low-cost, easy-to-use devices that can be applied
in clinical and home care settings. In this paper, we present
a low-cost motion capture system that relies on the open­
source Player/Stage software development environment, and
can be used in conjunction with a socially assistive robotic
agent (or a computer interface) for various types of motor
task rehabilitation training. We describe the hardware and soft­
ware development for the device, and the activity recognition
algorithm we developed to capture the relevant motion data.
We present the overall framework in which this system can
be adapted to other motor task-based rehabilitation regimens.
Finally, we present initial experimental data in the domain
of gait rehabilitation, in which we use the system to estimate
cadence, walking speed, and stride length.

I. INTRODUCTION

Wearable sensors have proven useful in several fields of
study. Exploration ofthis technology has led to developments
in wearable health monitoring systems [10], human computer
and human robot interactions [8], and in service and assistive
robotics [5]. Systems are typically composed of one or more
sensors, a microcontroller, a wireless module, and a local
PC. In healthcare applications, these components are used to
acquire and store physiological data, either for future analysis
and processing, or to generate real-time feedback.

Unfortunately, implementation of these systems can be
challenging due to the wide range of application areas and
the variety of software and hardware components available.
As a result, many of today's systems suffer from one or
more drawbacks that limit their usefulness to the target
populations. For instance, some systems rely on proprietary
or commercial software specific to a single device, rendering
augmentation or modification of the software difficult, if
not illegal. Other systems are limited by their cost - the
prohibitive expense of many commercial systems makes
them unrealistic for large-scale clinical trials or for in­
home (or in-clinic) use by the target populations. Further
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limitations include the mechanical design of components. For
instance, many stroke patients with limited mobility cannot
outfit themselves with a skin-tight body suit, or subject
themselves to heavy wearable sensing devices or computers.
As wearable sensor networks are becoming more pervasive,
further advancement in this field require systems that are
inexpensive, simple in design, and easily adapted to multiple
applications.

Toward that goal, we present a wearable motion sensing
system designed to be lightweight, minimally invasive, low­
cost, and easy to use and adapt to a variety of applications.
We then examine the specific application of the system for
use in a robot-based gait rehabilitation framework. Novel
aspects of our system include: 1) the design of the motion
capture sensing devices, 2) the software used to provide
sensor data to the robotic assistant, and 3) the activity
recognition algorithm used to process user motion data. Our
goal is to utilize motion data in real-time to allow the socially
assistive robotic (SAR) agent to assess and give feedback to
the user as part of a real-time interaction. SAR systems assist
through coaching, monitoring, and motivating, but without
physical contact [5]. We present initial experimental results
obtained from testing our system in the gait training context
and then describe how our socially assistive rehabilitation
robotics framework can be applied to other user populations.
Though we describe a specific target application for the
system, we discuss generally the hardware and software
components, so as to demonstrate the dynamic nature and
the ease with which our system can be adapted to a variety
of applications.

II. BACKGROUND: CLINICAL GAIT ANALYSIS

Clinical gait analysis (CGA) is defined, according to
Davis [3], as the systematic measurement, description, and
assessment of quantities used to characterize human locomo­
tion. CGA is the process by which abnormalities are assessed
and the resulting assessment is then used to determine
therapies or interventions to help the individual to relearn
or improve the ability to walk. This is necessary for many
populations, including those who have suffered from stroke
and those living with Parkinson's Disease. In both cases, a
degenerative neurological condition causes a variety ofmotor
and non-motor deficits. The resulting symptoms can include



problems such as tremor, slow movement, and rigidity. In
the current treatment model for these individuals, regular
visits are scheduled with a physical therapist or occupational
therapist. Visits can occur as little as once a month - in
the interim, the individual follows a rehabilitation regimen
in the home setting. Thus, the health professional receives
limited information regarding patient progress and the patient
receives little steady, sustained coaching.

Using a SAR agent, we can increase the frequency of
evaluation sessions and thus provide ongoing, sustained
coaching. The robot or computer system can report richer
data regarding the user's progress, allowing the health pro­
fessional to update the exercise regimen as necessary. The
wearable motion sensors also provides a tool through which
the health professional can obtain a glimpse of the user's ac­
tivities and capabilities during normal daily life. Monitoring
this activity is essential to providing objective evaluations of
the effectiveness of therapies. In the long term, we hope that
our system can develop into a framework for home-based
assessment and evaluation; at this stage we are validating
the approach.

The design of technology-assisted therapies depends on
accurate evaluation of the user's capabilities. CGA can be
used to create metrics for the evaluation of gait-specific
parameters; chief among these are cadence, walking speed,
and stride length. It was shown by [13] that inertial mea­
surement units (lMUs) consisting of accelerometers and
rate gyros can be used to accurately estimate values for
these characteristics. Marker-based vision systems are often
used in gait experiments to obtain spatial data (e.g., pose,
leg position) with pressure plates or shoe pads used to
obtain temporal data (e.g., heel strike, toe-off, swing vs.
stance). However, with IMUs, these data can be obtained
simultaneously from a single device (see Section V). Our
IMU design, and the design of the other components of our
rehabilitation framework, are described in Section III.

III. COMPONENTS OF THE SAR
REHABILITATION FRAMEWORK

The goal of SAR systems is to utilize robots to assist
certain populations (in particular, those with special needs)
with daily life. These systems are attractive because they
require no physical interaction with the user; rather, through
gestures, speech, and other "social" means, they provide
encouragement, coaching, and training. In this section, we
describe the hardware and software development for our
rehabilitative robotic framework. The hardware components
include the motion "suit", which consists of the inertial
measurement units (lMUs) and the central computer, and
the SAR agent. A schematic representation of the system is
presented in Figure 1. Sensors inside the IMUs obtain user
motion data; these data are then tranmitted through the I2C

data bus to the central computer. The use of a standard I2C

bus allows for the use of a large variety of devices. The
central computer then wirelessly transmits the data from the
IMUs to a computer on the SAR agent. The design of these
components is discussed in greater detail next.
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Fig. l. Rehabilitative robotic system framework consisting of a wearable
motion capture suit and a SAR agent. The user wears the IMUs and the
central controller, which communicates motion data wirelessly to the SAR
agent.

A. Inert ial measurement units

Recently, integrated IMUs such as the Analog
Devices@ ADIS16365, have become available off-the­
shelf, but they can be expensive, heavy, and bulky. Because
we are developing wearable devices, we aimed for smaller,
more user-friendly designs. Given the low cost of discrete
components, we determined that we could design a smaller,
more lightweight, and inexpensive IMU ourselves. Thus, we
would determine the design for the printed circuit boards
(PCBs), the sensor shell, and the fixturing mechanism
simultaneously. By doing so, we were able to design the
housing, and continually optimize the design for small size
and weight, ease of calibration of the sensors, low-cost, and
easy fixturing.

The IMUs rely on inertia-based MEMS sensors to ob­
tain motion information from the user. Each IMU con­
tains a 3-axis accelerometer, three single-axis rate gyros,
and one single- and one dual-axis magnetometer. This de­
sign is a modified version of that presented in our previ­
ous work [8]. The accelerometer (Memsic@ MXR9150)
is used to obtain accleration (and subsequently, position
(x , y , z)), the rate gyros (Analog Devices@ ADXRS300)
are used to obtain angular rate-of-change (and subse­
quently, orientation (Bx , By, Bz )), and the magnetometers
(Honeywell@ HMCI051 and HMCI052) are used to obtain
magnetic North. The magnetometer data can then be used
to determine the direction acceleration due to the Earth's
gravitational field; this is subsequently subtracted from the
accelerometer signal during data processing.

The IMU sensor outputs are low-pass filtered (using ana­
log filters) and sampled by a lu-bit ADC. An Atmel@ AT­
mega324 microcontroller running in slave-transmitter mode
reads the digitized sampled data, arranges them into in­
dividual packets, and transmits each packet (along with
a timestamp) to the central computer using the I2C bus
interface.

Each IMU is composed of a plastic enclosure and four
printed circuit boards (PCBs) we designed (see Figure 2).
The lightweight enclosure has a concave shape in order
to contour to the human body. The shell requires a single



Fig. 2. Printed circuit boards contained in each IMU. The circuits handle
all sensing, analog-to-digital conversion, and 12 C transmission.

fastener to be securely closed. It also contains "slots" into
which the PCBs fit (See Figure 3). The slots are arranged
so that the PCBs (and the axes of the various sensors) are
properly aligned. This design allows for simple construction
and also ensures easy access to the boards for any required
maintenance.

After an iterative design process, and multiple proto­
types, we arrived at the final version of the IMU pictured
in Figure 4. It has total weight of 45.3g, and measures
27mm x 35mmx 45mm.

Fig. 3. Exploded view of the IMU. This solid-model rendering shows the
PCBs and the sensor shell. The slots in the shell for the PCBs are also
visible.

B. Central control unit

The central control unit of the motion suit contains a com­
puter, a battery pack, a power converter, and other discrete
components (see Figure 5). To ensure scalability for future
applications, we opted to use a powerful computer instead of
a microcontroller. We chose the Gumstix@Wifi-Stix pack,
a small Linux computer (80mmx20mm) with a 400MHz
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Fig. 4. Inertial measurement unit, including sensor shell and PCBs, shown
on a wrist along with a watch for size comparison.

processor with 64MB of RAM. Wireless communication is
facilitated by a Netwifi-MicroSD wireless transmitter. The
transmitter, which includes an antenna, is FCC-certified and
can use the 802.11(b) and 802.11(g) transmission protocols.
The small size and form factor allows for easy packaging
of the computer for wearable applications. The Gumstix has
a large developer community, and software for a number
of interface devices (including the I2C and SPI data trans­
mission protocols) is readily available. An advantage of the
Gumstix platform is that it lends itself to development for
various robotics software suites, such as the Player/Stage
development environment, which is further discussed in
Section D.

Fig. 5. The central controller (Gumstix, battery, DC-to-DC converter, and
housing).

The current central control unit is powered by a 7.2V RC
battery, and a DC/DC converter to provide the appropriate
power level to the Gumstix pack. For ease of use, we
included a power switch and a power indicator LED on the
shell. The shell measures 50mmx75mm x 150mm. There is
a plastic clip on the back of the shell that allows it to be
hung from a belt or waistband.

C. Socially assistive robotic agent

The SAR agent is actually two robots working in concert
(see Figure 6). One is a Pioneer 2DX mobile robot base



used for locomotion. Mounted on the base is a SICK LMS
laser range finder for obstacle avoidance and speakers for
verbal interaction with the user. The mobile base runs
autonomously, reacting to proxemic and motion data from
the user.

Fig. 6. SAR agent system consisting of a Pioneer mobile base and the
Bandit III humanoid torso. The Bandit torso is capable of performing a
variety of gestures, using its arms and its face.

The other robot is the humanoid torso Bandit III, custom
designed and developed for our group's SAR experiments.
The humanoid robot torso weighs 6.8kg, is 400mm high,
355mm wide (across the chest) and 127mm thick, with
355mm long arms. Each arm has 7 degrees-of-freedom
(DOF), including the 1 DOF gripper. There are 16 DOF in
the torso, including the 2 DOF in the neck/head. The head
of the robot has I DOF expressive eyebrows, and 3 DOF
expressive mouth. The humanoid has a fully actuated neck,
an actuated mouth, actuated eyebrows, and Firewire cameras
mounted in the eyes. It can communicate expressively using
speech, arm movements and gestures, head movements, and
facial expressions.

Both the mobile base and humanoid torso are controlled
by an onboard quad-core Linux computer. The mobile base
is a standard test-bed in mobile robotics, and has been
extensively tested and evaluated by various users [4]. While
the original version of the IMU was tested by stroke patients
as described in [4], the version presented in this paper
is revised, lighweight and lower cost. Our past work has
validated the previous framework, consisting of a single
IMU used with a mobile base (no humanoid) robot. In
the newer work, we are using multiple IMUs to facilitate
richer and more precise understanding of the user's motion
and provide customized and detail feedback. Furthermore,
we are using the humanoid robot to take advantage of
the expressive interaction modalities (for demonstration of
movements, praise, and motivation) that were not possible
with the previous robot embodiment.

D. Software drivers - development for the Player/Stage
environment

Because our system consists of a collection of sensing
devices, robotic agents, and computers devices, it is conve­
nient to use a shared network for communication. We use
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the Player/Stage software environment [6]. Player is a free
software package - it provides a server/client architecture
that can be used in a variety of robot and sensor system
applications. In a typical implementation, the Player server
runs on a host machine. Individual clients can then facilitate
tasks such as sensor reading, or generating commands for
actuators. Details of the Player architecture and how it can
be applied to robotic applications and mobile sensing are
available from numerous sources (e.g., Beetz [II]). Drivers
are readily available for many platforms, including the Pi­
oneer mobile robot. In our lab, we developed drivers for
the humanoid robot and have also our own Gumstix driver
(that we have made available through the Gumstix message
boards). This driver can be used to issue command from
the Gumstix terminal (e.g., polling devices connected to the
12C bus) and to access Gumstix functions (e.g., transmitting
arrays to the robot using the wireless connection). It follows
the typical driver structure detailed in Beetz [II]. This driver
must be compiled along with Player on a local machine; sub­
sequently, the binary can be sent to the Gumstix hardware.

The driver issues commands from the Gumstix, acting as
a master-receiver, polling the microcontrollers in each lMU
for its ADC data. It then transmits this information to the
host machine using the Player server (over TCP-IP). Finally,
a client on the host machine reads the sensor data, and
publishes it for processing and storage. This is convenient,
as all data (e.g., laser range finder data from the scanner
mounted on the mobile base, lMU data, robot position)
can be read simultaneously by the SAR agent's onboard
computer, allowing us to use sensor fusion techniques to
determine an appropriate response to the user's actions.

IV. DATA PROCESSING AND ACTIVITY
RECOGNITION ALGORITHM

Performing CGA with a SAR agent requires an accurate
and efficient activity recognition algorithm. Activity recog­
nition, in general, consists of the acquisition of motion data,
and a subsequent matching of the perceived motion to some
model of motion trajectories. Typically, raw motion or pose
data are obtained using motion sensors, the data are then
segmented temporally based on a specific feature, (e.g., zero
crossings), a database of motions and poses is generated
a priori using motion models, these motion models are
grouped using techniques such as k-nearest neighbors, and
finally the segmented sequences are matched using similarity
(and often, dynamic time warping) to the known motions
stored in the database. In our algorithm, the final data
processing step is to classify the gesture using a Hidden
Markov Model (HMM) [1].

The above activity recognition procedure can, unfortu­
nately, be extremely inefficient and computationally inten­
sive, rendering real-time recognition difficult. To address this
problem, researchers have begun to utilize geometric features
in order to more efficiently process and recognize motion
data [2][7][9]. Of particular interest is the work by Muller
[9] who applied geometric techniques to perform query­
based database searches for specific poses and gestures with



application to animation and computer graphics. By con­
sidering qualitative, geometric relationships between various
body parts, an additional pre-processing step can be added to
the traditional recognition algorithm described above. Before
segmenting temporally, we can use geometric relationships
to identify logically corresponding events in a data sequence.
This can be used to determine specific segments of the data
that are of particular interest; subsequently, more computa­
tionally intensive content-retrieval techniques can be used
only on these smaller segments. In this way, geometric fea­
tures can be used to increase the speed and reliability of the
content-based search, allowing for real-time user feedback
from the SAR agent. Once relevant geometric features are
determined, they are defined using geometric feature planes.
For instance, a geometric feature such as "the left hand is in
front of the body" can make use of a geometric plane defined
by the two shoulders and the navel. We apply the techniques
to activity recognition for specific motions. In doing so, we
maintain all of the advantages of traditional content-based
retrieval with the increased efficiency of a more generalized
classification system. This geometric segmentation technique
fits into our overall data processing framework as shown in
the schematic in Figure 7.

Raw sensor data

Gesture

Fig. 7. Data processing algorithm used in our SAR rehabilitation
framework. First, the raw sensor data are low-pass filtered. Next, Kalman
filters are used to estimate bias, position, and orientation. The position and
orientation information is geometrically segmented and used to determine
when temporal segmentation is enacted. Finally, the geometrically and
temporally segmented data are used to determine a gesture, using Hidden
Markov Models.

In a typical CGA experiment, the user is expected to do
a task (e.g., walk in a straight line for a specific amount of
time). In most applications of the rehabilitation framework,
the user will be guided by the SAR agent. Thus, in spite of
variations in actual performance, we have a rough expecta­
tion for the observed motion. This expectation informs our
choice of the relevant geometric relationships for a given
task, and can be described mathematically by the geometric
feature planes.

The implementation is best described using a simple
example. Using the terminology of Miiller, we can define
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a data stream as a sequence of poses P:

PEIR3xIJI,p= [~~ ~~ ] (1)
Zl Zj

where J is the number of joints in the kinematic model.
We then define a Boolean function, F : P ---+ {O, I}. This
Boolean function is based on a specific geometric feature. In
the instance of walking, we can think of a geometric feature
describing the position of the feet with respect to the torso
- in this case, a plane coincident with the coronal plane. We
have F ---+ {O, I}, with:

F, = {I When foot, is in front of plane (2)
t 0 When foot, is behind plane

According to this structure, a data sequence in which the
user is walking produces:

_ ( Fl eft ) _ ( 0 ) ( 0 ) ( 1 ) ( 1 )F walka lk = Fright - 1 1 0 O · . .
(3)

Thus, if we observe a sequence in which F walkalk
alternates between zero and one (and considering that we
are only interested in gait characteristics), we can perform
traditional retrieval techniques during a particular sequence
of interest. For CGA, IMUs placed on the ankles can easily
detect heel-strike. We can use this to determine right foot
initial contact, or the beginning of right stance phase. We
can then wait until the transition of Fwalkalk from (0; 1) to
(1;0) - this will indicate when the left toe is passing the right
foot, and can be used to analyze toe clearance in a subject.
This is a simple example - the power of this technique lies
in the use of multiple geometric features simultaneously to
distinguish more complex motions.

In practice, the selection of the feature planes is an iterative
process. In the gait example, we looked at a number of
different geometric plane placements including the coronal
and sagittal planes. In the end, we determined that the planar
definition used in the example was most informative. In the
future, we plan to apply learning techniques to properly
determine the most informative geometric feature planes.

V. RESULTS - PILOT EXPERIMENT

To demonstrate the efficacy of our system, we present ini­
tial pilot data from a gait analysis experiment. As mentioned,
much of CGA depends on accurate predictions of cadence,
stride length, and walking speed. Our hypothesis was that,
using only the motion data from two IMUs (one per ankle),
we can apply our activity recognition algorithm to estimate
these three parameters.

A. Experimental setup

To validate our hypothesis, we performed the following
experiment. We placed markers on the ground for position
measurements. We then set up a camera perpendicular to the
markers, as depicted in Figure 8, to capture marker locations
and the experimental subject. Finally, we outfitted the subject
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Fig. 10. Typical resuls from an ankle IMU. In this case, the IMU is placed
on the right ankle.

Fig. I I. z-direcnon rate gyro output for the right ankle. The three ' toe­
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results are for acceleration, not position). Thus, we obtain:
F walk = (0; 1)t=9.87 :11.45s, F walk = (0; 1)t=11.89 :13.12s,

and F walk = (0; 1)t=13.38:14 .87s. In the time before t ~ 9.88,
the time between the aforementioned intervals, and the time
after t ~ 16.28, F walk = (1; 0) until sampling ends. Thus,
we know that walking is occuring between 9.8 and 16.28.

Cadence can be ascertained from looking at the very
distinct spikes corresponding to heel-off (e.g. at 9.87s for the
right foot). Stride length can then be estimated by looking
at the change in the x-axis position, obtained by subtracting
the gravity component and twice integrating the data. Finally,
walking speed can be ascertained by dividing the change in
x-axis position by the time between subsequent instances of
heel-off. Comparing the values shown here to indicators from
hand-annotated video data, we obtain an 15% error in our
cadence estimate, 8.6% error in our stride length estimate,
and 9.3% error in our walking speed estimate (See Table I).

with two IMUs (one per ankle, as seen in Figure 9). The test
subject then walked the length of the marked path.

Typical output results can be seen in Figure 10. Here, the
X-, y- and a-direction rate gyro and accelerometer outputs
are shown (in (A) and (B)), with respect to time, for the
IMU placed on the right ankle. In this reference frame, the
x-axis is normal to the sagittal plane, the y-axis is normal
to the transverse plane, and the z-axis is normal to the
coronal plane. (Note the presence ofgravity in the y-direction
acceleration in Figure 10.) When comparing these results to
those obtained from other inertial sensors used for gait, we
get similarly accurate results, but with the advantage of being
able to place our IMU on the ankle, out of the way of any
footwear [12]. In Figure II, we place a focus on the z­
direction angular rate-of-change from Figure 10; these data
can be used to pinpoint heel-off and toe-strike (note that the
vertical axis has been converted to 0/8 ) . 'Toe-off' is indicated
by the dips at 2.9s, 4.3s, and 5.6s, and 'heel-strike' by the
peaks at 3.6s, 4.9s, and 5.9s.

B. Results

In Figure 12, we show data obtained from an IMU
placed on the ankle. In this case, we use the geometric
rule from our example in Section IV. Transitions occur at
times t = 11.458,13.128 and 14.878 (note that the plot

Fig. 9. IMU fixed to the ankle for gait analysis experiments.
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Fig. 12. Accelerometer data from IMUs placed on the ankles. For
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I Avg. Characteristics I True Value I Estimate I Error I
Cadence [Hz] 1.3 1.1 15%

Step length [m] .35 .32 8.6%
Walking speed [mls] .54 .49 9.3%

While these results are somewhat limited, they are en­
couraging in that we are able to find characteristics relevant
to CGA. We have only validated the results with a single,
healthy subject. However, this pilot is useful in showing
that our devices can in fact be used to obtain useful gait
information. Going forward, these results will inform the
design and testing of the devices with populations suffering
from known gait deficits.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the design of a low-cost, easy-to­
use wearable inertial measurement unit (IMU)-based motion
sensor system. The devices used for the fabrication of the
IMU and the central computing unit are inexpensive, and
use an open, easily modified software architecture that can
be applied to a number of different applications. They are
economical, yet capable of acquiring the relevant data for
motion recognition. We validated the sensor design on a
single subject, with the specific goal of acquiring gait infor­
mation. We then validated our activity recognition algorithm
using the trial data.

Future work will include more rigorous validation of our
activity recognition algorithm with application to CGA and
othor motor task recovery interventions.
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In addition to more complete clinical trials in the domain
of CGA, we expect the motion capture devices and the
activity recognition algorithm to be useful for a number of
populations and applications, including upper body gesture
recognition for stroke rehabilitation and therapies and other
uses of SAR systems.
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