
Low Power Real-Time Seizure Detection for
Ambulatory EEG

Kunjan Patel", Chern-Pin Chua", Stephen Fault and C. J. Bleakley*
*Complex and Adaptive Systems Laboratory,
School of Computer Science and Informatics,

University College Dublin, Dublin, Ireland
tUniversity College Cork, Cork, Ireland

Email: kunjan.patel@ucd.ie.eric.chua@ucd.ie.stephenf@rennes.ucc.ie.chris.bleakley@ucd.ie

Abstract-Ambulatory Electroencephalograph (AEEG) tech­
nology is becoming popular because it facilitates the continuous
monitoring of epilepsy patients without interrupting their routine
life. As long term monitoring requires low power processing on
the device, a low power real time seizure detection algorithm
suitable for AEEG devices is proposed herein. The performance
of various classifiers was tested and the most effective was found
to be the Linear Discriminant Analysis classifier (LDA). The
algorithm presented in this paper provides 87.7 (100-70.2)%
accuracy with 94.2 (100-78)% sensitivity and 77.9 (100-52.1)%
specificity in patient dependent experiments. It provides 76.5
(79.0-73.3)% accuracy with 90.9 (96.2-85.8)% sensitivity and
59.5 (70.9-52.6)% specificity in patient independent experiments.
We also suggest how power can be saved at the lost of a
small amount of accuracy by applying different techniques. The
algorithm was simulated on a DSP processor and on an ASIC
and the power estimation results for both implementations are
presented. Seizure detection using the presented algorithm is
approximately 100% more power efficient than other AEEG
processing methods. The implementation using an ASIC can
reduce power consumption by 25% relative to the implementation
on a DSP processor with reduction of only 1% of accuracy.

Index Terms-AEEG, ASIC, discriminant analysis, real time,
low power, seizure

I. INTRODUCTION

Epilepsy is a neurological condition characterised by a
recurring tendency of the brain to produce sudden bursts of
abnormal electrical activity that disrupt other brain functions
[1]. Such episodes are called seizures, they occur randomly
and may occur several times daily. Clinical manifestations
include loss of awareness or consciousness, and disturbances
of movement and sensation [2]. Epilepsy is highly prevalent,
at least 8.2 per 1,000 of the general population suffer from the
condition according to World Health Organisation estimates,
and can have profound social, physical and psychological
consequences [2].

Electroencephalogram (EEG) has been used for clinical
diagnosis of epilepsy for many decades [3]. Compared to
other methods such as Electrocorticogram (ECoG), EEG is
a safe and clean method for detecting the activity of the brain.
Clinical analysis of EEG traces for identification of seizures is
well established. However, the performance of automated EEG
based methods is dependant on the types of features analyzed
and how they are used to classify the signal [4].
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Reliable long-term, ambulatory EEG monitoring is of signif­
icant clinical value in epilepsy. It enables long-term monitoring
at significantly lower cost than in-patient monitoring [1]. The
ability to automatically detect seizures in real-time would
further enhance its clinical value. For example, automated
analysis would significantly reduce the workload of clinicians,
and would help to increase the capacity of epilepsy units. In
addition, a quarter of those who suffer from epilepsy unfortu­
nately do not respond to standard therapy [5]. Automated, real
time seizure detection would enable long term management
of chronic epilepsy by allowing warnings to be sent and
appropriate responses to be made by the subject for remote
clinicians. More importantly, new 'closed loop' therapeutic
interventions seek to predict and stop seizures. The ability to
reliably detect seizures in real time is a pre-requisite for such
interventions [5].

One key practical consideration in realizing long-term real­
time AEEG based seizure detection is extending battery life
such that the monitoring device can be used for several
days between battery charges. Current AEEG systems focus
on EEG data acquisition [6] and either wireless EEG data
transmission or storage for offline processing and analysis [7].
However, power can be saved by increasing the amount of
signal processing in the system. Increased signal processing in
AEEG devices allows for reduced storage requirements, less
transmission of data and enables real-time seizure detection.
Several seizure detection algorithms have been proposed pre­
viously, but the more accurate ones tend to be computationally
complex, which leads to high power consumption. There is,
therefore, a clear need for high accuracy low-power seizure
detection algorithms.

In this paper a low-power algorithm for real time seizure
detection is presented. The algorithm was tested using data
from 13 subjects, and achieved high sensitivity and reasonable
specificity.We quantify the algorithm's power consumption by
simulating its operation on a DSP processor and on an ASIC.
Optimizations for low power, including downsampling and
reduced bitwidth, are assessed both in terms of power saving
and in terms of their impact on the accuracy of the algorithm.
The paper compares the power consumption of processing with
that of storage and transmission. To the authors' knowledge
this is the first paper which has presented a low power seizure
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Fig. I . A Brief Overview of the Algorithm

B. Algorithm

We propose a simple and computationally inexpensive ap­
proach based on the algorithm presented in [15]. A schematic
of the approach is shown in Figure 1. There are three main
stages of the algorithm:

1) Preprocessing
2) Feature Extraction
3) Classification

These are described in more detail below.
1) Preprocessing: Generally, preprocessing is required to

remove artifacts from the EEG data. Artifacts are one of the
major problems in EEG processing. EEG signals are prone to
impairment by other signals such as electromyograph (EMG)
and electrocardiograph (ECG) [16]. To reduce complexity, we
bandpass filtered the EEG data according to the standards
published in [17] and [18]. EEG data were bandpass filtered
using an FIR Kaiser window filter of order 25 in the range
0.3-80 Hz.

mated seizure detection device. The computational complexity
and power consumption of the algorithm play important roles
in system design and should be considered carefully. Explo­
ration and comparison of different design options have not
been considered in previous work. Implementation of these
options allows the designer to trade power for accuracy.

III. METHOD

A. EEG Data

The EEG data used were obtained from the Freiburg EEG
database [14] (Table III-A). 13 epilepsy patients aged 10 to 50
provided around 1 hour each of continuous 6-channel EEG.
The data were originally acquired using a Neurofile NT digital
video EEG system with 128 channels and sampled at 256 Hz
using a 16 bit analog-to-digital converter.

The data were separated into sets of seizure and nonseizure
data based on information provided in [14]. Both seizure
and nonseizure data were further divided into continuous 32­
second epochs with no overlap. We maintained the proportion
of seizure and nonseizure EEG data in the training set for
each patient to avoid patient specific training of the classifier.
To check the robustness of the algorithm we used the Matlab
random function to divide the EEG data into training sets and
testing sets. Each training and testing set might have data
in different proportions from different patients but this is a
common case in real life. We used a 10-fold cross validation
to check classifier performance to avoid bias.

detection algorithm and a OSP processor and an ASIC power
optimized implementation.

The paper is structured as follows. After illustrating the
related work in Section 2, a detailed description of the method
with algorithm implementation using a OSP processor and
an ASIC is presented in Section 3. Various power reduction
techniques are also presented in section 3. In Section 4 the
experimental results are presented. Different design options
and a detailed discussion on results is presented in Section
5. The last two sections describe conclusion and future work
respectively.

II. RELATED WORK

Seizure detection using EEG has received much interest in
recent years because of the availability of powerful processors.
Most algorithms for detecting seizure can be categorized
into one of three classes: time domain, frequency domain or
wavelets, based on the type of features extracted.

One of the earliest attempts at automated seizure detection
was in [8]. In this work, classification was into definite or prob­
able events based on EEG analysis. The approach was simple
and low complexity but considering the definite detections,
then, overall, 58% of events were detected as definite events.
Higher accuracy algorithms, which extract frequency domain
features, were proposed in [9] and recently in [10]. Ref. [9]
used an Artificial Neural Network (ANN) for classification
and a genetic algorithm to select the best training data set.
The number of iterations in the genetic algorithm was limited
to 2000 and so the selected data set may not be the best. The
method including pre and post processing was computationally
complex. For patient specific data 91.29% sensitivity and
99.19% specificity was reported, but with patient independent
data sensitivity dropped to 3% because the ANN classifier
used was patient dependent and needed to be trained separately
for different patients. The algorithm proposed in [10] required
wavelet and Fast Fourier Transform (FFT) calculations. The
authors reported 80 to 98% sensitivity but the method was
patient-specific. It used Support Vector Machine (SVM) for
classification. Ref. [II] proposed a slightly different two-stage
approach for seizure detection. Features were extracted using
wavelet decomposition. Ref. [12] proposed a simple method
to detect seizures using the line length of the EEG signal.
The method tunes the line length threshold for each patient
and a very low false rate of less than I false signal per
hour was reported. However, the results may vary significantly
with variations in the threshold. Ref. [13] studied linear and
non-linear methods for automatic seizure detection in scalp
EEG recordings. They used both time and frequency domain
features. The proposed method, multi dimensional probability
evolution (MOPE), showed 100% accuracy in seizure detec­
tion but the experiments were performed on a very small
database. The authors used 8 seizures each of at least 40
seconds.

The general trend in automated seizure detection has fo­
cused on high accuracy without considering its implementa­
tion, which is a crucial part of designing an EEG-based auto-
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TABLE I
EEG DATA DETAILS calculating line length (R) over N samples:

SP = simple partial, CP = complex partial, GTC = generalized tonic-clonic

2) Feature Extraction: It is important to select the fea­
tures carefully otherwise it may reduce the performance of
the classifier [19]. The results reported in [15] showed that
some frequency domain features are useful for distinguishing
between seizure and nonseizure data. However, obtaining
frequency domain features requires conversion of the signal to
the frequency domain which consumes significant power and
requires considerable processing time in embedded systems.
So, to keep the complexity of the algorithm at the possible
lowest level we selected five time domain features based on our
observations and the results presented in [15]. All the features
were extracted for each 32 seconds of epoch. The five selected
features are:

• RMS (Root Mean Square): RMS is a good signal
strength estimator [20]. The RMS ('r) for an epoch of
N samples was calculated using:

Patient Gender Age Seizure Origin Nonseizure Seizure
no type data data

analysed analysed
(minutes) (minutes)

1 M 14 SP,CP Frontal 35.2 44.8
2 F 26 SP,CP, Temporal 32 41.6

GTC
3 F 16 SP,CP, Frontal 12.8 22.4

GTC
4 M 44 CP,GTC Temporo/ 48 54.4

Occipital
5 M 47 SP,CP, Temporal 25.6 35.2

GTC
6 F 10 SP,CP, Parietal 57.6 57.6

GTC
7 F 42 SP,CP, Temporal 12.8 12.8

GTC
8 F 41 CP,GTC Fronto/ 80 80

Temporal
9 M 31 SP,CP, Temporal 48 57.6

GTC
10 F 50 SP,CP, Temporal 51.2 57.6

GTC
11 M 28 SP,CP, Temporal 22.4 22.4

GTC
12 M 33 SP,CP, Tempo/ 35.2 41.6

GTC Parietal
13 M 13 SP,CP Temporal 35.2 38.4
Total (for all 6 channels) 496 566.4

• Nonlinear Energy: Nonlinear energy emphasizes the
artifacts [21] and has been used both as a feature and
for artifact removal [15] [22]. Nonlinear energy ('ry), for
an epoch of N samples, was calculated using

N

'fJ = (L[x2(i) - x(i + l)x(i - l)])/N (3)
i=l

(2)
N

R= Labs[x(i -1) - x(i)]
i=l

3) Classification: We compared Linear Discriminant Anal­
ysis (LDA), Quadratic Discriminant Analysis (QDA), Ma­
halanobis Discriminant Analysis (MDA) and Support Vector
Machine (SVM) classifiers. The performance of different clas­
sifiers for the same features in terms of sensitivity, specificity
and accuracy were compared. For this work, all epochs were
successfully classified, i.e. a 100% classification rate was
obtained. The following definitions were used:

• Sensitivity: Correctly Classified Positive Epochs
• Specificity: Correctly Classified Negative Epochs
• Accuracy: Correctly Classified Epochs
• Error rate: Incorrectly Classified Epochs

LDA is popular because its linearity makes its estimated
posterior probability of group membership and the implicit
regions of allocation very easy to determine [23]. LDA can
be used to classify multiple classes, in this case as we
have only two, its classification frontier is a straight line or
hyperplane. We define the group prior probabilities relative
to the group frequencies in training LDA. The classifier was
trained independently of the number and types of channel.
When the data were divided into training and testing data sets,
the data from all the channels were blended and the number
and types of channel were not mentioned to obtain channel
independent results. As a random function was used to divide
the data into training and testing data sets, training data sets
might or might not contain the data from the patient for which
the performance evaluation of the classifier was going to be
carried out.

To allow comparison with the performance of the algorithms
presented in [9] and [10], patient dependent results using LDA
for all 13 patients are also presented. The patient dependent
results were obtained by using the data for testing and training
from the same patient. The same validation method is used
here as described in the next section.

(1)
N

'r = (L[x(i)]2)/N
i=l

• Number of Maxima and Minima: The number of
maxima and minima are useful to test the rate of change
of the signal. The maxima/minima can be global or
local. We calculated the number of local minima and
maxima for each EEG epoch.

• Line Length: Line length was proposed in [12] as a
promising feature for differentiating between seizure and
nonseizure data [12]. We used the following equation for

C. Validation

k-fold cross validation was applied to test the algorithm in
all cases. In this method, the extracted features were divided
into k sets randomly. The classifier model was trained using
k-1 sets and tested using the remaining data set. This process
was repeated k times. Here 10-fold cross validation was
used. However, in SVM classification 5-fold cross validation
was used because it was highly computationally complex
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X' = l(Xj(2W
- 1)) x ((2W

' ) - 1)J (4)

N N

r/ = (L Ix(i)l)jN - (L Ix(i + 1) - x(i - 1)1) (6)
i=l i=l

2) Nonlinear Energy: Equation (3) can be replaced by (6).
In addition, the value of (5) can be reused in (6) which
can save further operations at the expense of memory.

3) Hardware Approximation: It is also possible to reduce
the power required by an operation by simplifying (1) and
(3). One of the most common techniques for reducing the
power consumption at the processing level is to replace the
multiplication operations by add and shift operations [26]. The
following simplified equations were used to reduce the number
of multiplications in the algorithm.

1) RMS: Equation (1) can be replaced by

LDA QDA MDA SVM
Sensitivity (%) 91.8 97.8 33.7 89.3
Specificity (%) 59.0 41.2 81.0 59.3
Accuracy (%) 76.5 71.6 60.2 75.3

~ = min(llog2((2M
- l - 1)jmax(lbi l))J,A - L - flog2al)

(7)
N-l

where a = L Ibi I, M is the maximum filter coefficient
i=O

word length and bi is the filter coefficients.
Power Composer is a software tool which plugs into CCS.

It measures cycle-by-cycle power consumption by analyzing
assembly instructions. It has an accuracy of 97% and mea­
surements were taken at 1.6 V, 24 MHz [27].

F. ASIC Implementation

As the microprocessor's fixed bitwidth and architecture do
not allow certain power reduction techniques to be reflected,
the algorithm was implemented in Verilog Hardware Descrip­
tion Language (HDL). The code was simulated using the
Modelsim Verilog simulator for a single channel and then
scaled for 6 channels. The code was synthesized using the
Synopsys Design Compiler (DC) for TSMC 0.I3JLm CMOS
technology. The area, power and timing results were also
analyzed using the Synopsys DC and PrimeTime tool suite.
The operating voltage was 1.2 V.

IV. RESULTS

A. Performance Comparison of Various Classifiers

Table II shows a comparison of the performance of various
patient independent classifiers.

TABLE II
CLASSIFIER PERFORMANCE COMPARISON (PATIENT INDEPENDENT)

C. Effect of Change in Epoch Size

The epoch size was varied and the results are shown in Table
IV. It is apparent from the results that the larger the epoch size,
the greater the accuracy because more information is available
to analyze the seizure activity.

D. Effect of Downsampling

As most of the information of EEG data in the range
0.5-70 Hz, a dramatic reduction in the correct rate after a
downsampling factor of 4 (from 256 Hz) can be seen (Table
V).

Based on these results, LDA was chosen because of it
has the least computational complexity and any increase in
accuracy by using more complex classifiers such as Support
Vector Machine (SVM) was not found to be significant.

B. Patient Dependent LDA Results

Table III shows patient dependent LDA performance for 13
patients. When the classifier was trained and used for the same
patient an increase in accuracy of more than 10% increase was
achieved.

(5)
N

~/ = (L Ix(i)l)jN
i=l

E. DSP Processor Implementation

TI's C55IO DSP processor, TI Code Composer Studio
(CCS) 5.9 and Power Composer 1.0 [27] were used to measure
the power consumption of a processor based implementation.
The TI C55IO is a fixed point low power and low cost DSP
processor [28]. All the floating point variables were converted
to fixed point variables [29]. By taking into consideration the
accumulator wordlength (A), data wordlength (L) and filter
coefficient quantization error, the floating point numbers were
scaled using (7) and normalized after processing.

and required considerable time for convergence. The Mat­
lab R2007, the statistics toolbox was used for discriminant
analysis and the bioinformatics toolbox was used for SVM
analysis. In SVM classification, a linear kernel (dot product)
was used. To compare the performance of different classifiers,
a Matlab classifier performance object (CP) was used which
accumulated the results of classifier and classperf interface to
keep track of performance during validation of the classifiers
[24].

D. Power Reduction Techniques

A number of power reduction techniques were applied to
the algorithm. They are described below.

1) Downsampling: One of the most popular and simple
power saving techniques is downsampling. In the EEG signal
most of the information is concentrated in the 0.5-70 Hz range
[19] [25]. Therefore downsampling from 256 Hz to a minimum
of 32 Hz was evaluated. For each frequency the bandpass
filtering range was adjusted to meet the Nyquist criteria.

2) Reduction in bitwidth: It is possible to save energy by
reducing bitwidth if the algorithm is implemented on an ASIC.
We used (4) to reduce the original bitwidth w of the input data
X to bitwidth w'.
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TABLE VII
EFFECT OF HARDWARE APPROXIMATION USING LDA CLASSIFIER

F. Effect of Hardware Approximations

Table VII shows the effect of hardware approximation on
our algorithm.

G. Power Consumption in DSP processor

We measured the power consumption of processing on TI's
C5510 DSP processor. The average current consumption was
12.83 rnA with an average cycles count of 777 for processing
of a single sample and total processing time of 218 ms.
So, the processor can be operated at around 200 kHz which
is far less than the minimum operating frequency of most
DSP processors. Because of the low operating frequency the
algorithm can be run on a modem micro-controller with a
MAC unit as most of them have a clock frequency of at least
5 MHz [30] [31]. The power consumption was calculated using
the information in [32], giving 80.8 J.1W per channel. In this
work, we assume 6 channels, giving total power consumption
of 484.8 J.1W.

76.5
72.0

Accuracy (%)
59

61.6

Specificity (%)

81.0
91.8

Sensitivity (%)

Epoch size Sensitivity Specificity Accuracy
(sec) (%) (%) (%)

32 91.8 59.0 76.5
28 88.2 59.6 74.2
24 89.1 57.6 74.0
20 88.1 56.2 72.6
16 87.1 58.1 72.8
12 88.3 57.1 72.7
8 86.1 57.8 71.9
4 84.9 57.6 71.1

TABLE IV
EFFECT OF CHANGE IN EPOCH SIZE USING LDA CLASSIFIER

TABLE III
PATIENT DEPENDENT LDA RESULTS

Patient No Sensitivity (%) Specificity (%) Accuracy (%)
1 100 77.2 90
2 100 75 89.1
3 100 79.2 92.4
4 100 100 100
5 83.3 52.1 70.2
6 100 86.1 93.1
7 91.7 70.8 81.2
8 78 82 80
9 98.1 78.9 89.4
10 97.2 77.1 87.7
11 100 100 100
12 96.1 71.2 84.7
13 84.7 80.3 82.6

Average 94.2 77.9 87.7

TABLE V
EFFECT OF DOWNSAMPLING USING LDA CLASSIFIER

Downsampling Sampling Sensitivity Specificity Accuracy
factor Frequency (%) (%) (%)

(Hz)
1 256 91.8 59 76.5
2 128 92.4 57.4 76.1
4 64 90.4 55.4 74.1
8 32 77.2 53 65.9

H. Power Consumption in ASIC

The power consumption of the ASIC for different design
options is shown in Table VIII. Hardware approximation
reduced power consumption by more than 15% while bitwidth
reduction by 6 bits reduced power consumption by more than
60% because of reduced switching activity and cell leakage
power. When different design options are discussed in this and
following sections, bitwidth of input data was reduced by 6
bits, the EEG data were downsampled by factor of 4 and all
the hardware approximations were applied.

E. Effect of Change in Bitwidth of Input Data

Table VI shows the effect on the performance of the
algorithm when bitwidth was reduced.

TABLE VI
EFFECT OF CHANGE IN BITWIDTH OF INPUT DATA USING LDA CLASSIFIER

Change Sensitivity Specificity Accuracy
in (%) (%) (%)

Bitwidth
0 91.8 59 76.5
2 87.9 60.3 75.0
4 87.5 60.8 75.1
6 84.1 61.4 73.5
8 79.1 61.2 70.8

After a reduction in bitwidth of more than 6 bits, the number
of maxima and minima became zero and so they were removed
from the list of features and after a reduction in bitwidth of
more than 16 bits, it was not possible to train QDA and MDA
classifiers because most of the terms became 0 or negative.

TABLE VIII
POWER CONSUMPTION OF DIFFERENT ASIC DESIGNS FOR SINGLE

CHANNEL EEG DATA PROCESSING

Implementation Option Power Consumption
(jlW)

Without any Power Reduction Technique 29.8
With Downsampling (by factor 4) 7.4
With Hardware Approximations 25
With Reduction in Bitwidth (by 6 bits) 12.5
With Hardware Approximations 10.8
& Reduced Bitwidth

V. DISCUSSION

Based on the results in the previous section, different EEG
data processing options were selected and compared in terms
of sensitivity, specificity, accuracy and power consumption and
the findings are summarized in Table IX. The power con­
sumption results are for a single channel EEG data processing.
The sensitivity, specificity and accuracy results are for patient
independent scenario. The first two options, A and B, are for
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the implementation using a DSP processor while rest of the
design options are for implementation using an ASIC. It can be
observed in Table IX that the power consumption of presented
seizure detection algorithm consumes up to 6 times less power
in implementation using an ASIC than the implementation
using a DSP processor.

Using the results from the previous section a rough es­
timation of the life span of a battery operated seizure de­
tection device was obtained as shown in Table X. A single
LCC class battery having 250 mAh capacity was used for
lifetime calculation of different design options [25]. Here,
power consumption of 6-channel 16 bits Analog to Digital
Converter (ADC), 6-channel EEG signal acquisition system,
Phase-Locked Loop (PLL) and 32-kHz crystal oscillator was
taken into account as 84 J.LW [33], 225 J.LW [34], 40 J.LW
[28] and 7 J.LW [35] respectively. The power consumption of
Toshiba 16MB NAND flash, 52 J.LW [36], was used for storing
EEG data from 6 channels at 256 Hz sampling rate. In EEG
data transmission, the power consumption of transceiver was
considered as 500 J.LW [37]. In EEG data compression 150
J.LW of power consumption was taken into account for 0.25
compression ratio [25]. The considered EEG data processing
option from Table IX is also mentioned in Table X.

TABLE X
POWER CONSUMPTION AND LIFETIME OF DIFFERENT DESIGNS

System Total Power Lifetime
(/-tW) (weeks)

Store EEG data in flash 407 5.2
Transmit all EEG data 856 2.5
Transmit compressed EEG data 756 2.6
Store compressed EEG data 456 4.2
Detect seizure in real-time, store EEG 539 4
data and transmit alarm signals (Option
B)
Detect seizure in real-time, store EEG 436 5
data and transmit alarm signals (Option
G)

The storage of EEG data in flash is the least power consum­
ing but does not allow real-time seizure detection. However,
flash is useful for storing EEG data for clinical inspection. It
is clear from the results that a system with real-time seizure
detection can increase the life time of a system by 37% using
a microprocessor implementation and 100% using an ASIC
implementation, with 2% and 3% of reduction in accuracy
respectively, when compared with a wireless EEG device
transmitting all of the EEG data. It can be also observed from
Table IX that the power consumption of the presented seizure
detection algorithm using ASIC implementation is 6 times less
than the implementation using a DSP processor. When power
consumption of all the components of a typical AEEG device
was considered [25] the implementation of the system using
an ASIC can increase lifetime by 25% when compared to the
implementation using a DSP processor. As the complexity of
algorithm increases, the ASIC design requirement becomes
more essential to increase the battery lifetime. However, the
high design cost of ASIC development necessitates a domain
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specific approach, targeting a wide range of biomedical ap­
plications. As the proposed algorithm does not have high
accuracy, it could also be used as a screening algorithm in
a two stage seizure detection method, as proposed in [11].
A device can use the proposed algorithm most of the time
and switch to a higher accuracy, higher complexity, algorithm
when suspicious events are detected. This would reduce power
consumption overall while increasing the accuracy.

VI. CONCLUSION

In this paper, a low power real time seizure detection algo­
rithm for AEEG was proposed. The performance of various
classifiers was compared and LDA was found to be the best
choice for implementation. The proposed algorithm achieved
94.2% sensitivity and 77.9% specificity with an overall accu­
racy of 87.7% in patient dependent experiments and 91.8%
sensitivity and 59.0% specificity with an overall accuracy
of 76.5% in patient independent experiments. Simulation of
the algorithm was performed for a DSP processor and for
an ASIC. The lifetime of the whole system with different
optimization options was calculated. The algorithm was tested
with different power saving techniques. The techniques pro­
vided up to 5 times saving in power with only 3% reduction
in accuracy (Option G) relative to design without any power
reduction technique (Option C). The ASIC implementation
of the algorithm was 25% less power consuming than the
implementation using a DSP processor.

VII. FUTURE WORK

More accurate features are required for seizure detection.
The latency in seizure detection can be an issue and hence
an algorithm should be able to detect the seizure as soon as
possible. Most epilepsy patients have seizures during 2-5% of
their lifetime [3]. So, it is necessary to deploy an algorithm
with a lower false alarm rate. Although different classifiers
are compared in this paper, the performance of the algorithm
could perhaps be improved by using another classifier or other
features. The significant saving in power consumption using
an ASIC implementation suggests the need for careful and
thorough research on a biomedical domain specific ASIC.
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