
Privacy Enforcement for
Distributed Healthcare Queries

Michael Siegenthaler
Dept. of Computer Science

Cornell University
msiegen@cs.comell.edu

Abstract-In the healthcare industry and others, sen
sitive private information must be stored and shared
between various organizations in the course of running
their business. We have developed an architecture in which
distributed data can be queried as if it resided in a single
centralized database, while revealing minimal information
beyond the answer to the query. In this paper we review
the architecture and show how queries can be filtered to
enforce user-specified privacy policies. We present a system
for tracking information flow that is flexible enough to
permit revealing sensitive data to those who have a need
to know, while limiting the amount of useful information
that can be obtained by a less-than-honest participant.

I. INTRODUCTION

It has become commonplace to store patient health
records in electronic databases, and great benefits in
productivity and quality of care have been observed
within organizations that make effective use of pervasive
computing. The next logical step is to support sharing
data across distinct organizations, yet this must be done
carefully due to the sensitive nature of patient data.
Some approaches have pushed data into a trusted, cen
tralized repository[1][2], while ours retains the data at
the individual organizations that produced it but allows
queries to treat the distributed system as if it were
centralized. Our approach requires a security architecture
that allows certain queries and disallows others according
to a specified policy, and in this paper we present how
such an architecture might be designed.

A typical query in this environment would be some
thing like a drug interaction check performed by a
pharmacist. Suppose that the pharmacist has a list of
drugs or health conditions which, if they appear in
the patient's history, might raise a specific alert with
regard to the medication currently being dispensed. The

This work was supported, in part, by the Institute for Information
Infrastructure Protection (I3P) and the National Science Foundation.

Digital Object Identifier: 10.410B/ICST.PERVAS/VEHEALTH2009.6016

http://dx.doi.org/10.410B/ICST.PERVAS/VEHEALTH2009.6016

Ken Birman
Dept. of Computer Science

Cornell University
ken@cs.comell.edu

patient's health record is distributed across various data
owners, which might include the primary care provider,
several specialists, and a data repository from a home
health monitoring device. A query against this distributed
health record should check for a potential conflict, and
return a yes/no answer, but should not reveal any of the
source data unless the patient subsequently authorizes the
pharmacist to investigate the nature of the conflict. More
concretely, our system supports the following properties:

(a) Data privacy: The query asker learns only the
answer to the query, and not any data used to
compute it.

(b) Query privacy: The data owner does not learn the
query, only that a query was performed against a
particular user's information.

(c) Anonymous communication: Query askers and data
owners do not know who the opposite party is.

Naturally, data privacy is desirable so that the pharmacist
does not learn more than he needs to know about the
patient's history. Query privacy is important because in
some cases the query itself might reveal a piece of
sensitive information to one of the data owners; for
example a query for an HIV test result might indicate
that the patient had a reason for wanting to be tested.
Along the same lines, anonymous communication is
needed because private information might be inferred
from the knowledge that a record for the patient exists
at a particular organization, for instance an AIDS clinic.

We have developed a system in which an SQL-like
query, written as if it were for a logically centralized
database, gets broken into pieces to be executed at
the various data owners. The intermediate results are
collected at a third party in order to compute the final
result and return it to the query asker. This third party
is assumed to be honest but curious; it can be trusted
to execute the query protocol correctly but may misuse



any private data it learns. For this reason the identities
of the patient and of the query asker and data owners are
kept secret from the third party; it only sees the relevant
medical data but cannot do anything useful with it due
to the lack of context. The third party is thus called a
blind comparer. As an additional level of protection, the
system might periodically execute fake queries, so that
the blind comparer does not even know whether the data
it is seeing at any given time is real.

Data privacy only holds to the extent that the answer
to a query does not reveal the data used to compute
it. Clearly, there must be a mechanism in place to
decide which queries should be allowed based on a
user-specified policy. Our system quantifies the privacy
leakage that would result from a particular query, and
uses a currency-like system to make the query asker
pay for the right to know the answer. A more revealing
query has a higher cost. The cost is not one of real-world
money, but of symbolic tokens which are supplied by the
system to organizations that are authorized to perform
queries. Tokens are issued according to a budget that
takes into account each organization's business needs and
gives it enough to execute the required queries to fulfill
those needs, but does not leave a significant excess to be
used on extraneous queries.

It would be unthinkable to impose security constraints
so strict that an emergency room doctor does not have
access to vital information for a patient who has been
injured during distant travel from his home hospital and
primary care provider. At the same time, there are less
critical situations in which limited information should be
revealed because the data user, while authorized, may
not be trusted to guard the information as stringently
as the data owner [3]. Our contribution is a technology
that enables such heterogeneous use-scenarios by soft
enforcement of policy that is configurable according to
business needs.

In section II we review prior work in the area of
database privacy. Section III then provides some details
about our architecture, which is covered more fully in
[4]. In section IV we present our security architecture,
including the mechanics of how a policy is enforced.

II. RELATED WORK

A standard approach to enforcing privacy in databases
is fine grained access control (FGAC), for example the
implementation by Agrawal et al. [5], which has the
ability to enforce a P3P [6] privacy policy. There are
two basic approaches to FGAC; either the query may
be augmented with an additional WHERE clause to

Digital Object Identifier: 10.410BIICST.PERVASIVEHEALTH2009.6016

http://dx.doi.org/10.410B/ICST.PERVASIVEHEALTH2009. 6016

ensure that only allowable data is selected [7], or a new
view may be created which only contains allowable data.
Zhu et al. [8] point out that the former method can be
tricked into leaking information when the full set of SQL
operations are permitted, whereas the latter is safe but
comes with a higher performance penalty if many clients
are each subject to a different policy.

Simply preventing access to private fields, however, is
not enough; many queries, including our drug interaction
check example, require the value of some private field to
be used in computing an answer which is not considered
private. The answer inevitably reveals something about
the private fields used to compute it. Hsu et al. [9]
shows how to quantify this inherent privacy leakage.
Konduri et al. [10] additionally addresses the scenario
where multiple sequential queries might leak information
that a single query could not. Both of these works are
relevant to our architecture because the cost of a query
should be chosen reflect the information leakage.

If a query is disallowed do to a tight dependence on
some private data, it may be desirable to provide the
closest allowable answer which omits the private data
in question. Ding et al. [11] show how to transform
the underlying data into a form that does not cause
information leakage, even in the case where simply
omitting a piece of data is not sufficient because it may
be inferred from a combination of other data. Their
approach specifically deals with the publishing of several
related XML documents, but would apply for a certain
class of relational database schema as well.

Work also exists on how to partition private data across
multiple semi-trusted database providers such that any
one of them does not have access to the private data
[12]. Although this is not essential in our current usage
model where data owners are themselves responsible
for ensuring the persistence and availability of their
share of a patient's medical record, it opens the door
to outsourcing part of the data owner's role in a secure
manner, and could potentially also be used to boost
availability by mirroring data to semi-trusted hosts.

In this paper, we leverage the prior work, but found
that prior solutions aren't enough to solve our distributed
problem. Accordingly, we explore the additional mech
anisms required to protect privacy in our distributed
database architecture.

III. QUERY EXECUTION

The process of answering a query is divided into two
phases, a global search followed by the actual query
execution. A patient is identified by some globally unique



Providers organize into a hierarchy of groups
•

Fig. 1.

Level 3 (root) D Level 2 D Level 1

CROSS JOIN nonces
INNER JOIN remote(drug_history)
ON nonces.nonce = drug_history.nonce
WHERE conflicts.drug = drug_history.drug

) ;

The conflicts table referred to in the query is a simple
list of the conflicting drugs. The nonces table contains
the set of data handles for the patient, discovered via an
earlier global search operation.

identifier (UID), which might be a social security number
or a combination of name and date of birth. Since a
third party is involved in query execution to hide the
identities of the query asker and data owner from each
other, it is undesirable to use the UID in connection
with sensitive data. Further, the query asker does not
(and should not) know which other organizations in the
system have records for a particular UID. The global
search converts a UID into a set of data handles, each
of which is a reference to a record stored at some
data owner and provides a way to anonymously send a
message to that data owner, but does not by itself reveal
who the data owner is nor permit any observer other than
the owner to recover the associated UID.

Global search works by organizing providers into a
hierarchy of groups, as shown in figure 1, and build
ing an index using Bloom filters [13] of the patients
whose records appear within a provider group. A Bloom
filter is a space-efficient mechanism for tracking set
membership, and has the desirable privacy property that
a list of members cannot be recovered from the set
representation. Only two operations are supported: add
a member, or test whether a specified member belongs
to the set. The test operation sometimes gives false
positives, which helps to ensure privacy because each
patient will appear to have records in many different
locations, only a subset of which actually exist. A search
query starts at the root and traverses the tree of groups,
returning a data handle at any point where a true match is
found. The data handles returned by the search are onion
skin routes [14], which can be used to route a message
over a multi-hop path that conceals the destination from
the origin and vice versa. For the full details on this
technique, see our prior publication [4].

Once a set of data handles for the patient in question
is known, query execution can proceed. Consider again
the example of the drug interaction query. This may be
written as follows:

SELECT EXISTS (
SELECT * FROM conflicts

Digital Object Identifier: 10.41081/CST.PERVAS/VEHEALTH2009 .6016

http://dx.doi.org/10.410B/ICST.PERVAS/VEHEALTH2009 .6016

TABLE I
CONFLICTS

~
rug

A
B-

TABLE II
NONCES

nonce
0 (34)
0 (56)

The parse tree, shown in figure 2, may be executed
starting at the leaves for the local tables and proceeding
up the tree.

select

inner join

cross join

Fig. 2. Original query

When a join depending on remote data is reached, a
filter query is sent anonymously to the data owner for
each data handle, asking it to send the relevant data to
a randomly selected blind comparer.

SEND (



SELECT nonce, drug FROM drug_history
WHERE drug_history.nonce = 0(34)

) ;

send

select

drug_history

Fig. 3. Filter query, to be executed by the data owner

The parse tree for this is shown in figure 3.
The intermediate table at the query asker

(query_table) and the remaining portion of the
query to be executed is sent to the blind comparer as
well.

SELECT EXISTS (
SELECT * FROM query_table
INNER JOIN drug_history
ON query_table.nonce drug_history. nonce
WHERE conflicts.drug = drug_history.drug

) ;

This parse tree is shown in figure 4.

select

inner join

Fig. 4. Remainder of the original query that must be executed at
the blind comparer

At this point, the blind comparer knows the answer to
the query and returns it to the asker.

IV. SECURITY ARCHITECTURE

The framework presented thus far supports arbitrary
queries. While no information is revealed beyond the

Digital Object Identifier: 10.410BIICST.PERVAS/VEHEALTH2009.6016
http://dx.doi.orgl10.41OBIICST. PERVASIVEHEALTH2009.6016

TABLE III
QUERY_TABLE

drug nonce
A- 34
A- 56
B- 34
B- 56

result of the query, this begs the question: what if the
result itself leaks information? To give the user policy
control, it is necessary to label data items with an access
control policy. We propose using labels similar to those
from programming language information flow tracking
[15]. As tables are manipulated by relational algebra
operations, the label from each cell taints the label of
any result which depends on that cell. Information may
safely be revealed if it has been computed based on data
that is also safe to reveal.

Aggregate operations generally require declassifying
in order to reveal the answer to a party which is not
permitted to see the underlying data. For example, the
boolean answer to the drug interaction check would be
labeled with the most restrictive set of labels protecting
the patient's health history, and must have its label down
graded to be of any use. Our concept of declassification
varies subtly from that in operating systems literature
[16][17], since we are not asserting that the result is
no longer sensitive, merely that the business reasons for
needing to reveal it are sufficient to outweigh the small
loss of privacy.

A. Access Control

Each cell in a table has a label consisting of an owner
and set of permitted readers.

L = {o: r1,r2, ... rn }

A reader is authorized to access the plaintext contents
of the cell; an owner may do the same and additionally
may change the label on the cell or specify aggregation
operations whose results may carry forth labels making
lesser security guarantees. In general a label may be a
conjunction L 1 U L 2 or disjunction L 1 n L 2 of labels.

The semantics of relational algebra operators such as
selects, projects, and joins must be defined with regard
to their effect on labels. Projections are trivial: columns
may be projected away without changing any labels.
Joins, in the every-element-against-every-element sense
also do not change the labels. Selections, however, and
joins that filter the results based on a selection criteria,
must propagate any labels from the fields referenced in



the selection condition to all other fields in the same
row, tainting that whole row. This happens because the
presence or absence of a particular row in the output may
reveal certain facts about the fields that were selected
upon, even if those fields are later projected away.

B. Declassification

The basic building block for queries is a join operation
on two tables with a selection condition for equality of
two fields. This can be used both to match an incoming
query with the proper patient's record, and for asking
a question against that data such as whether the drug
history contains a certain entry. An arbitrary select can
be represented as a join by the use of a temporary table,
included with the query, to indicate one of the values
of the selection condition. An important variation on the
basic join is to wrap it with an EXISTS clause to return
a boolean based on whether or not the join produced
any rows at all. This capability was used in the drug
interaction example.

The exact privacy implications of a particular join
depend on the sizes of the two tables and on the
security labels of the fields. If there exists only one
drug that might conceivably conflict with the medica
tion currently being dispensed, then the boolean answer
reveals whether or not it has been taken. If a larger
list of possible conflicts is specified, however, only a
probabilistic information leak occurs. The probability
can be estimated by considering how easily a data
user can locate individuals who match the description
revealed by the leaked information, as shown by Hsu [9].
Past queries should also be considered in determining
the set of conclusions that can be inferred; Konduri [10]
developed techniques to support this.

c. Declassification Tokens

What is necessary then, is to associate a symbolic
cost with each operation, and thus with each query,
which represents a price that the query asker must pay
in order to receive access to the answer. A higher cost is
associated with a more egregious privacy leakage. Some
number of declassification tokens must be given to the
asker for it to spend on queries, and the budget of these
tokens should be set so that anyone organization cannot
afford to commit privacy violations in a sustainable
manner.

Tokens are issued by a token bank entrusted by the
data owner to issue tokens on its behalf. Since the
token bank does not actually see any private data, it is
permissible for it to know who the data owner is and

Digital Object Identifier: 10.410BIICST.PERVASIVEHEALTH2009.6016

http://dx.doi.org/10.410B/ICST.PERVASIVEHEALTH2009. 6016

to whom the tokens are being issued. In fact, it may be
desirable for the token bank to keep logs of its activity
which can be audited or turned over to courts in the
event of a legal dispute between data owners and query
askers.

Since the sensitive portion of a query's execution is
performed at the blind comparer, that host is also respon
sible for enforcing the privacy constraints by making sure
that it collects enough tokens to pay for the operation and
devalidates them with the bank. The blind comparer does
not have any incentive to cheat here; a token itself is of
no use to someone who doesn't know which data owner
it is associated with.

v. CONCLUSION

We have developed a system for running queries
against private health records that are stored in a dis
tributed manner at the organizations that produced their
respective portions of the record. Queries written as
if they were intended for a centralized database get
split up into pieces to execute at various providers,
and anonymous communication, data privacy, and query
privacy is supported. Information flow is tracked and the
security level of results may be downgraded after certain
aggregation operations, but the use of this essential
feature is carefully limited by a token system to prevent
abuse.

REFERENCES

[1] Google Health, ..http://www.google.com/health...
[2] Microsoft HealthVault, ..http://www.healthvault.com/...
[3] T. C. Rindfleisch, "Privacy, information technology, and health

care," Commun. ACM, vol. 40, no. 8, pp. 92-100, 1997.
[4] M. Siegenthaler and K. Birman, "Sharing private information

across distributed databases," in submitted for publication, 2009.
[5] R. Agrawal, A. Evfimievski, and R. Srikant, "Information

sharing across private databases," in Proceedings of the 2003
ACM SIGMOD International Conference on Management of
Data. ACM Press, 2003, pp. 86-97.

[6] L. Cranor, M. Langheinrich, M. Marchiori, and J. Reagle, "The
platform for privacy preferences 1.0 (p3p1.0) specification,"
W3C Recommendation, Apr. 2002. [Online]. Available:
http://www.w3.org/TR/P3P/

[7] Oracle Corporation, "The virtual private database in oracle9ir2:
An oracle technical white paper," 2002.

[8] H. Zhu, J. Shi, Y. Wang, and Y. Feng, "Controlling information
leakage of fine-grained access model in dbmss," Web-Age
Information Management, International Conference on, vol. 0,
pp. 583-590, 2008.

[9] T. sheng Hsu, C.-J. Liau, D.-W. Wang, and J. K.-P. Chen,
"Quantifying privacy leakage through answering database
queries," in ISC '02: Proceedings of the 5th International
Conference on Information Security. London, UK: Springer
Verlag, 2002, pp. 162-176.



[10] S. Konduri, B. Panda, and W.-N. u, "Monitoring information
leakage during query aggregation." in ICDCIT, ser. Lecture
Notes in Computer Science, T. Janowski and H. Mohanty, Eds.,
vol. 4882. Springer, 2007, pp. 89-96.

[11] D. Yixiang, P. Tao, and J. Minghua, "Secure multiple xml
documents publishing without information leakage," in ICCIT
'07: Proceedings of the 2007 International Conference on
Convergence Information Technology. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 2114-2119.

[12] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-molina, K. Ken
thapadi, R. Motwani, U. Srivastava, D. Thomas, and Y. Xu,
"Two can keep a secret: A distributed architecture for secure
database services," in Proc. CIDR, 2005.

[13] B. H. Bloom, "Space/time trade-offs in hash coding with
allowable errors," Commun. ACM, vol. 13, no. 7, pp. 422-426,
1970.

[14] D. L. Chaum, "Untraceable electronic mail, return addresses,
and digital pseudonyms," Commun. ACM, vol. 24, no. 2, pp.
84-90, 1981.

[15] A. C. Myers, "Jflow: practical mostly-static information flow
control," in POPL '99: Proceedings ofthe 26th ACM SIGPLAN
SIGACT symposium on Principles of programming languages.
New York, NY, USA: ACM Press, 1999, pp. 228-241.
[Online]. Available: http://dx.doLorg/l0.1145/292540.292561

[16] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn,
C. Frey, D. Ziegler, F. Kaashoek, R. Morris, and D. Mazires,
"Labels and event processes in the asbestos operating system."

[17] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres, "Securing
distributed systems with information flow control," in NSDI'08:
Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation. Berkeley, CA, USA:
USENIX Association, 2008, pp. 293-308.

Digital Object Identifier: 10.410BIICST.PERVAS/VEHEALTH2009.6016

http://dx.doi.org/10.410B/ICST.PERVAS/VEHEALTH2009.6016


