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Abstract—In the present work, we introduce Fallarm, a pervasive
fall prevention solution suitable for hospitals and care facilities,
as well as for home settings. We applied a multifaceted
intervention strategy based on closed-loop information exchange
between proactive and reactive methods: comprehensive
assessment protocols determine the individuals’ risk of falling; an
innovative device continuously monitors subjects’ activities, and
it provides patients with constant feedback about their actual
risk. Thus, it increases their awareness; simultaneously, it
realizes measures to prevent adverse events, and it reports any
incident and aims to reduce the level of injury. As a result, our
solution offers a comprehensive strategy for the remote
management of a person’s risk of falling 24 hours a day, enabling
many vulnerable people to remain living independently. In this
paper, we detail the architecture of our system, and we discuss
the results of an experimental study we conducted to demonstrate
the applicability of Fallarm in both clinical and home settings.

Keywords-activity monitoring, multimodal feedback, patient
safety, telemedicine.

L INTRODUCTION

Patient falling is the most reported adverse event within the
majority of organizations that provide inpatient services.
Although 96% of trips and slips result in minor injuries or no
harm [1], falls have both human and financial consequences:
individuals suffer from distress and loss of independence, and
patients can experience a significant decrease of confidence in
the level of care provided [2]. Furthermore, older people who
have fallen once and have suffered from fall-related injuries are
at a higher risk of falling again [3], and they experience a fear
of falling that progressively isolates them. Severe harm occurs
in a minority of events [5], but falls can cause serious damage
(occasionally, they can also lead to death) and generally they
increase the length of stay [1]. Additional consequences
involve patients’ relatives and hospital staff, who can feel
anxiety and guilt. The monetary cost of falls has also a
noteworthy impact on the finance of hospitals and geriatric care
institutions [4]. This might involve short-term costs (i.e.
additional investigations and healthcare) as well as long-term
expenses (i.e. prolonged treatments, rehabilitation, and legal
actions, such as claims of negligence). Huge amount of
research studies reports about residential communities and,
more substantially, hospitals. According to [1], the overall cost
of falls in hospitals in the UK is estimated as £15 million per
year. Over £3 million are spent for compensations after
litigations. Moreover, the worldwide cost of falls is expected to
reach £22 billion in 2020 [4].

Digital Object Identifier: 10.4108/ICST.PERVASIVEHEALTH2009.5980
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5980

Recently, subjects falling at home gained the interest of
health professionals. In the last decade, methodological
strategies and technological interventions were defined to
prevent adverse events. Unfortunately, these measures were
generally found to be too restrictive (from a patient’s mobility
point of view), and limited in terms of efficacy [6]. All the
current systems realize targeted interventions, either on the
service provider side (i.e. assessment tools, incident reporting)
or on the client side (i.e. technological aids for individuals).

Conversely, we adopted a multidisciplinary approach, and
our aim is to offer a scalable solution for hospitals and for
geriatric care facilities, as well as for home settings. Our
system takes into consideration that risk of falling increases
proportionally with the exposure to a multitude of different
factors (over 400 were identified). Although many different
classifications exist, we focused on the causes of falls that are
categorized as intrinsic and extrinsic [19]. The former is related
to the biological situation of the patient (i.e. age, decline of
physical faculties) and to behavioral factors (i.e. unbalanced
diet, sedentary attitude). The latter comprises environmental
conditions (i.e. slippery surfaces, narrow stairs) and
socioeconomic factors (i.e. unprivileged economic status). To
this end, our system supports the risk assessment tools (i.e.
Stratify, Tinetti balance scale) that are currently employed to
proactively evaluate patients who are at risk [20]. Moreover,
there are circumstances (i.e. taking a shower, going to the
toilet) in which the probability of falling arises.
Thus, Fallarm realizes activity monitoring using a wearable
device attached to patients’ wrist. Our system interacts with the
users, who are provided with multimodal feedback about the
current risk of falling, in order to increase their awareness.
Furthermore, Fallarm realizes a closed-loop integration of
proactive and reactive techniques: upon detection of an adverse
event, our system instantaneously reports the incident to the
care provider, and it solicits immediate intervention;
nevertheless, data about adverse events are organized into fall
investigation documents that can be used to plan additional,
long-term countermeasures.

The rest of this document is structured as follows. In the
next section we describe the main achievements of the state of
the art. Then, we bring in the architecture of our system, and
we detail the Care Service and the Monitoring Device in
section 3, 4 and 5, respectively. In section 6, we discuss the
preliminary results of an experimental study involving both
hospitalized patients and home-resident subjects. We conclude
with section 7, in which we also introduce our future work.



II. RELATED WORK

During the recent years, hospitals and care facilities mainly
focused on the assessment phase. Nonetheless, the most
supported intervention strategies aim at increasing the
awareness. With respect to the staff, visual cues (i.e. colored
wristbands or bedside symbols) distinguish classes of patients
at risk of falling (i.e. high, medium, or low). However, there is
no evidence that such methods reduce the number of falls [7],
because they are not clearly noticeable to the staff. On the other
hand, the main concern with visible symbols involves loss of
privacy [1]. Furthermore, visual cues are not suitable for
Ambient Assistive Living (AAL). Other policies consist in
moving the patients who are most likely to fall into an area in
which they can be constantly controlled by nurses or volunteer
caregivers. This reduces patients’ privacy and introduces
additional stress. Moreover, apart from being expensive, these
policies have no significant impact on the reduction of the fall
rates [8].

Nowadays, a wide range of commercial devices [9] (i.e. bed
pressure pads) are available, especially for the elderly. Most of
them belong to the category of the so called inactivity
monitoring systems, because they ensure that patients are not at
risk of falling until their mobility is restricted. These devices
mainly rely on proximity sensors: they remind subjects to wait
for assistants’ help whenever they attempt to move from their
position. Unfortunately, there is no evidence that inactivity
monitoring systems are effective in preventing falls [1]; also,
they introduce frustration, and they are not suitable for patients
whose mobility should be encouraged, even though they are at
high risk of falling (i.e. subjects in rehabilitation).

Different research groups focused on fall detection. Tamura
et al. [10] developed a device to be attached to the left lumbar
region of the subject. It relies on a photo-interrupter to record
the time at which falls occur in an ambulatory. The authors of
[11] present a Body Area Network of smart sensors that
continuously monitor physiological signals (such as blood
pressure and ECG) of patients. In [12] accelerometers are
integrated with wireless technology so that sensors mounted in
cellular phones can exchange data with a network of services
for AAL. Specifically, after a suspected fall is detected, the
phone is used to request a vocal response (or a key press) from
the user; nonetheless in the case that a user is not responding,
the phone will automatically call an operator who will analyze
the situation, using video streamed by the camera included in
the phone. BigNurse [15] monitors patient at home or at the
hospital, but it does not take into consideration the problem of
falls. Nowadays, wearable fall detectors to be attached to the
hip are commercially available [13]. Indeed, they are
distressing, especially during sleep. Instead, [14] details a
comfortable fall detector embedded into a wrist watch.
However, the algorithm is unable to cope with the six degrees
of freedom of the arm, because the device does not have a
reference position.

Unfortunately, all the above solutions suffer from poor
efficacy, and there is a high number of false alarm and missed
detections. Hybrid fall detection systems (implementing user-
centric inertial sensors and wall-mounted vision-based devices)
may be more reliable, as they achieve better performances, but
at the cost of a more complex infrastructure. Simbad [16] and
UbiSence [17] use respectively pyroelectric sensor arrays and
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cameras to track patients during their movements.
In [18], when a suspected fall is detected by the accelerometers
mounted on a unit attached to the subject, fixed image sensors
transmit information about their field of view to the monitoring
center: an operator analyzes the posture of the subject and
determines if an accident occurred. Nevertheless, vision based
systems are effective only if the whole environment is
equipped with cameras. Also, image sensors may fail in
hospitals and where more there is more than one subject in
their field of view.

III. FALLARM

Our idea exploits the integration of proactive and reactive
methods (already used by health care services) with activity
monitoring (realized real-time by a wearable equipment) to
improve the performance of our fall detection system. This
consists of an interactive device that is attached to patients’
wrist. This acquires information about the mobility parameters
of the subjects by means of inertial sensors. Clinical know-how
is exploited to assess the individuals’ risk of falling and to
associate a mobility profile to a given class of risk. The system
is designed to learn from the user and to adapt its response to
the actual inertial patterns of each patient, so that it is able to
more precisely identify patients’ activities. Upon detection of
parameters that can be correlated to an adverse event, the
system raises an alert. Nonetheless, the threshold for the
recognition of a suspected fall is calibrated from time to time in
accordance with the specific mobility patterns acquired from
the subject, and the instability introduced by unpredictable
movements of the wrist is compensated by information stored
in the knowledge-base. As a result, the activity monitoring
sensors should achieve better accuracy and the fall detector
gains in reliability.

Also, the purpose of our interactive device is to increase the
individuals’ awareness of their risk of falling, so that they learn
to prevent situations that typically lead to adverse events. To
this end, each subject is constantly informed about his risk
level (which is computed using information derived from the
assessment protocol and the results of real-time analysis of
individual’s activity). Non-invasive multimodal feedback is
conveyed to the users with a traffic-light system involving
three levels of alert. The general strategy is coherent with
visual cues described in [1]. Consequently, we decided to
attach the device to the wrist, because alerts can be easily
noticed. Besides individual’s awareness, feedback is
transmitted remotely to the staff or to subject’s assistants (by
means of wireless links), so that they are able to immediately
realize specific intervention measures, and to identify and plan
additional precautions.

Fig. 1 depicts the modular architecture of Fallarm, and it
describes the interactions between its components. In our
design, we used the client-server metaphor. The Service (S),
which is realized by hospitals, care facilities or telemedicine
providers, is organized into four layers: the Risk Assessment
Protocol (S1-RAP), the Patients’ Activity Knowledge Base
(S2-PAKB), the Intervention Measures Repository (S3-IMR),
and the Adverse Events Database (S4-AED). The Device (D)
acts as a client, and it consists of four components: the Risk
Awareness Provider (D1-RAP), the Activity Monitoring
Sensors (D2-AMS), the Fall Detection Manager (D3-FDM),
and the Communication and Localization Module (D4-CLM).






PAKB associates activities to individual’s mobility patterns;
inertial parameters acquired real-time by the D-AMS allow the
system to evaluate the current risk. All the above are the
working memory of the S-IMR. This component consists of
three levels of alert AL (low, medium, and high) for each class
of risk erc. Alert levels are activated by a rule-based system:
upon verification of one or more conditions, the alert level
changes. Simultaneously, Fallarm activates the intervention
measures associated to the crentu AL. As a default intervention
measure, the D-RAP provides the subject with multimodal
feedback about the changes in the level of alert (i.e. visually,
with green, yellow or red lights, using the traffic light
metaphor). On the Service side, a multidisciplinary team
defines the set of conditions (alert thresholds) that have to be
verified for each alert level. These can be associated to
quantitative parameters (i.e. inertial patterns) and to qualitative
attributes (i.e. class of risk) of intrinsic factors and extrinsic
dimensions. The software component for the S-IMR allows the
users to build trees of nested rules, using logic operators. Each
of the nine sets can be drilled down, to specify conditions that
trigger only one event, instead of increasing the alert.
Furthermore, once rules are defined for a class of risk erc,
they can be customized for each patient, in order to meet his
specific requirements in terms of assistance and to fit his actual
situation.

D. Adverse Events Database

Whenever a suspected adverse event is confirmed as a fall
by the detector, the system immediately generates a Fall
Investigative Report. This document, which is stored in the S-
AED, contains a set of parameters that can be analyzed to
understand the circumstances of the incident (i.e. date, time,
inertial patterns, and performed activities). Moreover, from
time to time, the historical data about falls stored in the S-AED
is automatically processed by a classifier. This scans the entire
dataset to identify any correlation between the parameters, in
order to produce additional information that can be analyzed by
the service staff to introduce new knowledge in the system.

V. MONITORING DEVICE

This component consists of a non-intrusive wearable device
mounted on a wristband. The system is powered by a battery. It
embeds an accelerometer that acquires inertial parameters from
the movements of the subject. The on-board processor analyzes
the motion patterns and classifies them either as activities or as
suspected adverse events. Significant traces are stored into the
included memory. The main purpose of the device is to
continuously monitor patient’s activity, and to provide him
with feedback about his current risk of falling (i.e. high,
medium or low). Moreover, upon detection of a fall, it raises an
alarm, and it alerts the staff or patients’ relatives by means
wireless connectivity.

A. Risk Awareness Provider

This component communicates the actual level of alert,
conveying multimodal feedback to the user according to the
(almost static) risk class evaluated in the assessment protocol,
and to the dynamic risk factor related to current activities
performed by the subject. In addition to visual icons (colors),
tactile alarms can inform the user about any change that affects
his risk status. Also, short pre-recorded audio messages can ask
the user to execute specific actions. Consequently, different
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options can be customized to ensure that feedback is perceived
properly by subjects, and that it is conveyed according to their
individual needs and preferences.

a) Component for visual feedback. Risk of falling is
delivered with a multicolor Light Emitting Diode (LED)
producing bright light in different patterns of the Red-Green-
Blue (RGB) scale. Despite its size (5 x 8 x 3.5 mm) and its
low-power requirements (from 2.4 to 3.8 V), this component
has great intensity (from 6000 to 8000 mcd) and a wide
viewing angle (25 degrees). Thus, it is suitable for either
indoor or outdoor lighting. We adopted this solution due to its
energy efficiency (current absorption of 20 mA), high
reliability (duration over 100000 hrs), and low cost. In our
implementation, risk is represented by three different colors:
red, amber and green to indicate high, medium and low risk of
falling, respectively.

b) Component for tactile feedback. Different tactile
alarms will alert users about any change in their risk status.
They are realized using one pager motor akin to those
embedded into mobile phones to generate vibrations. This
transducer, which is manufactured by Precision Microdrives
Ltd, operates at low voltage (from 2.5 to 3.8 V), and it has
limited current absorption (85 mA). We used miniaturized (10
x 10 x 3 mm) and light-weight (1 g each) button-style
(without shaft) motors, having response time of 2 ms and
maximum speed of 12000 rpm. Vibrations introduced by
pager motors do not affect the performance of activity
monitoring sensors, because either they are negligible, or they
have clearly distinguishable inertial patterns. Vibrations can be
modulated in frequency, length and amplitude to discriminate
between different events. In our current implementation, the
motor is fired with an ascending pattern (higher frequency and
rising amplitude, but shorter vibrations) when the risk level
increases; conversely, a descending pattern signals the
transition to a lower level of risk. In addition to these, which
have short duration (from 3 to 5 seconds depending on
subject’s sensibility), continuous vibration (high frequency,
strong amplitude and short pulses) will occur as long as rhe
subject persists in a dangerous situation (i.e. he is moving
when he was required to wait for an assistant).

¢) Component for auditory feedback. We embedded
miniaturized (10 x 10 x 4.2 mm) dynamic speakers with metal
frame and Mylar diaphragm, as they provide extended
frequency range (from 600 Hz to 20 KHz), good sensitivity
(110 £3 dB), high power (input level from 10 to 50 mW), and
great efficiency. Moreover, they have negligible weight (1
gram), and they can operate in extremely humid (up to 90-
95% at 40°C) environments (i.e. bathroom). In our prototype,
we did not activate auditory feedback.

B. Activity Monitoring Sensor

Activity monitoring is performed using micro-
electromechanical systems (MEMS)-based acceleration
sensors. The monitoring device embeds the MMA7456L low-g
(1.5 g) tri-axial accelerometer manufactured by Freescale
Semiconductors. This digital component already implements
amplification, signal conditioning, low-pass filter and
temperature compensation. Its sensitivity is +800 mV/g, and
therefore it allows accurate detection of fall, as well as motion.



It has small size (3 x 5 x 1 mm) and low-power requirements
(1.8 - 2.8 V). To reduce current consumption, we defined a
long sleep/wake-up duty cycle. In each period, the
accelerometer is kept in standby mode for 90 msec, so that the
average current absorption is approximately 75 mA.

In order to classify subject’s movements, as the initial axial
position of the equipment is not known, the activity monitoring
component needs to auto-calibrate the orientation of the device
with respect to the ground. To this end, the subject is required
to keep his arms steady down for five seconds when he first
wears the system, so that the D-AMS acquires the inertial
reference value R{ a;, ar, as} for the acceleration along the
longitudinal, the frontal and the sagittal axes. During operation,
in order to have a rough approximation of the orientation of the
device, the D-AMS samples the inertial acceleration A as
triples {Aa;/Ra; ,Aap/Rar,Aas/Ras}, so that the static
acceleration due to gravity (9.81ms~%) can be compensated.
Values are recorded at a frequency of 10 Hz, and they are
stored in a buffer that can accommodate up to 15 seconds of
observations.

The D-AMS realizes three different tasks: orientation
recognition, activity classification, and fall detection. The
former is approximated from the analysis of inertial velocity
during periods in which the device is almost static. To this end,
we compute the norm of the acceleration vector over the three
axes as

v—J(anLdt +( Aaidt)2+(f:%zdt)2—f9.81dt )

and we update the last known orientation lko of the device
when v is smaller than the norm of the static velocity due to
gravity [ 9.81dt + ec (error compensation). This is calculated
every 500 milliseconds. Also, a counter is increased at each
unsuccessful update, as a measure of the reliability of the last
calculated orientation. The counter is reset when it reaches the
value of 10, and the device is assumed to be positioned at the
default orientation for the current activity ( MP, ). For
movement classification, the D-AMS analyzes the inertial
patterns in the buffer, and it compares the values with the MP,
stored in the local PAKB of the device. This is done at intervals
of 5 seconds by a pattern recognition algorithm based on
supervised learning. In addition to inertial coordinates, the
PAKB maintains other parameters of each entry in MP,, such
as average acceleration and maximum velocity. Upon
successful classification (confidence > 90%), it will append a
new record in the activity log and the buffer will be cleared.
Otherwise, the classifier will run on VMP,: if there is a match,
the pattern will be added to MP,. Otherwise, the time window
will be increased by five seconds. If the activity is not
recognized within three trials, an unsuccessful match will be
added to the log, and the observations (150 samples) will be
moved from the buffer to the storage unit.

As many activities, also falls have identifiable patterns: first,
speed usually increases proportionally with the inertial
parameters of the subject, and it diverges from the maximum
inertial velocity of a conventional movement; secondly,
acceleration has a predominant negative component along the
axis perpendicular to the ground; moreover, there is an impact,
followed by a change of orientation, resulting in a period of
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subject’s inactivity, whose length is related to the magnitude of
the damage. The D-AMS exploits this sequence and it
evaluates the presence of the components described above to
classify patterns as suspected falls.

C. Fall Detection Manager

Given the unpredictable response of the six degrees of
freedom of the arm, mere pattern recognition would be
inaccurate for fall identification. Moreover, as this is a critical
task, it has several constraints (e.g. time, reliability), and
requires fast execution. Nonetheless, even though it is not
possible to precisely evaluate the position of the device during
a fall, the initial and the final orientation can be derived from
the lko values acquired by the D-AMS. The D-FDM uses a
magnitude detection algorithm based on the norm of the
acceleration vector calculated as

fo=J(Ffeear)’ + (5 e ar) +(f 22 ar

The algorithm associates subject’s acceleration to a fall
when fv is greater than max(v,) + A, where A can be
proportional to the class of risk erc of the subject (or defined
as the standard deviation of either v, in MP,). We take
advantage of the last known orientation to obtain a rough
approximation of the real values of the acceleration towards the
ground. In the above formula Aa refers to the negative
components only. The last known position is introduced to
improve the compensation of acceleration due to gravity. The
magnitude detection algorithm is processed real-time with
sampling. Upon recognition of fv> max(v,) + A, the D-
FDM activates the silent alert state (the alarm is internal to the
system, but invisible to its users): it sends a request to the
Service (using the D-CLM). Inertial parameters and contextual
information are analyzed using both information in the S-
PAKB, and Fall Investigative Reports in the S-AED. At the
same time, the D-AMS examines the subject’s mobility
patterns in order to identify the three components of a fall
(acceleration, impact, rest). The silent alert state lasts up to 10
seconds: within this interval, either the D-AMS (whose cycle
unit is 5 seconds) is able to classify the activity patterns, or the
Service replies with the result of its evaluation. Upon
confirmation of an adverse event (either by the D-AMS or by
the Service), a real alarm is generated and the intervention
measure defined in the S-IMR is initiated. Otherwise, the
subject has a certain amount of time (30 seconds) to manually
turn the alert off.

at) - 24 3)

D. Communication and Localization Module

Bidirectional wireless communication between the device
and the components of the service is realized through the 2.4
GHz band of industrial, scientific and medical (ISM)
frequencies, using IEEE 802.15.4 compliant MAC for hospitals
and care facilities. Also IEEE 802.15.1 can be used for home
settings to achieve a trade-off between scalability and cost of
infrastructure. Regarding the antenna, we preferred a loop
design mainly because of the size required and its low cost of
implementation. Communication with the base-station occurs
either when inertial parameters diverge from the current
profile, or upon detection of an adverse event. As Quality of
Service (QoS) is one of the main issues, the network topology
requires only one hop for messages to reach the destination.



When the server receives an alarm from the client, it eventually
alerts the staff or user’s relatives. This may involve additional
transmission of data over heterogeneous networks (i.e.
Ethernet, GPRS).

Moreover, by adding localization features to the system, the
risk related to the environment can be introduced into Fallarm
as an extrinsic dimension. During the assessment, the
multidisciplinary team can associate certain parts of the
structure with a specific risk level (i.e. stairs or bathrooms). By
doing so, the Risk Awareness Provider of the device will
inform the subjects whenever they approach areas in which the
risk of falling increases, so that they can wait for help.
Simultaneously, the system will alert the staff and ask for their
intervention. Localization features can be realized with short-
range communication technology, such as Radio Frequency
Identification (RFId). We did not include this feature in the
current implementation.

VI. EXPERIMENTAL STUDY

As a first step in demonstrating the applicability of our
system, we developed eight prototypes of the device and we
carried out a preliminary evaluation of Fallarm in two
deployment contexts: hospital and home settings. Indeed, for
the purpose of this work, we focused on the Risk Awareness
Provider, only. Regarding the clinical scenario, we analyzed
data about incidents that have occurred in our Institute from
March 2003 to June 2008, and we applied our system in the
Medical Oncology ward, because it is the division in which
falls were found to be most frequently reported.

A. Materials and methods

The study was designed applying the Goal Question Metric
(GQM) methodology [21]. Our primary aim was to analyze
quantitatively the applicability (goal 1) of Fallarm to the two
scenarios described above. Therefore, we acquired individuals’
inertial data and we compared the performance of the wrist-
mounted device with respect to the fall detector worn on the
waist. Moreover, the purpose of our study was to evaluate the
usability (goal 2) of our solution from the subjects’ point of
view. In order to do so, we submitted a questionnaire to
participants to receive feedback about their experience with the
devices. All the acquired data allowed us to make a comparison
between the wrist and waist, and to establish which of the two
positions is the most suitable for this application. The server-
side distributed system was developed with Microsoft Visual
C#.NET.

B. Participants

A total of 20 subjects were recruited to perform the test, 10
for each scenario (clinical facility — C, and home setting — H). 6
are males and 14 are females, aged from 25 to 88 (average 50.2
+16.44). The body mass of the participants ranged from 51.8 to
104.3 kg (66.4 +12.6 kg), and their height was between 154
and 181 cm (167 =7 cm). All of them had normal sight, hearing
and tactile sensitivity, and they were all physically able to
walk; however, all the hospitalized patients but three (C3, C5
and C9) used clinical equipment (personal drip instrumentation
for drugs that do not have any psychotropic effect) that limited
their movements. Four non-clinical patients (H3, H4, H7 and
H8) suffer from fear of falling, two of them (H3 and H4)
because of previous accidents. Moreover, all the subjects were
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not assessed as at risk of falling. They are all right-handed, so
we tested the left wrist and the right waist only. In order to
avoid being intrusive in such delicate condition, all subjects
who spontaneously applied for the participation were accepted,
and they were not rewarded.

C. Experimental setup and task

Subjects were equipped with two devices: one to be
attached to the right hip, and the other on the left wrist. They
were required to autonomously put the equipment on, and they
were supposed to wear it for 10 hours, while carrying out the
typical set of activities they would realize in an ordinary day.
As there was very little probability for a fall to occur during
such short period, the prototypes were programmed to raise an
alarm at random intervals, simulating an increase of the level of
risk. At the beginning of the experiment, subjects received a
checklist: they were asked to report the times they received an
alarm and to annotate the activities they had performed from
the previous alert. The users were also supplied with a quick
reference to the use of the device and to the experiment. Both
the devices monitored the inertial parameters of the subjects for
the duration of the whole test and they recorded the data on
micro-SD cards. At the end of the experiment, subjects were
asked to fill an evaluation questionnaire to indicate their
opinion about the device, and to express their preference
between the wrist and the waist. Furthermore, they were
interviewed individually to discuss about their experience.

D. Results

All the participants recognized the importance of a measure
for fall prevention: our solution was accepted by the majority
of subjects (95%). They stated that they would recommend our
system as a non-invasive customary intervention for subjects at
high risk of falling. Regarding the location, they would
straightforwardly use it on the wrist; otherwise, they would not
utilize it (or they would accept it, but discontentedly, only if
they are ought to). C5 showed a preference for the waist, even
though it is not significant (p = 0.14) to the Student’s t-test.
C10 would not avail himself of a fall detection system at all.

All subjects were able to easily put on themselves both the
devices: with respect to this, we found no significant difference
(p = 0.37) between the wrist and the waist. All the participants
but one (H10) carried both the devices almost continuatively
for the whole duration of the experiment (10 hours). However,
subjects felt 8 times the urgency to put off the device mounted
on the waist, and they in fact detached it 5 times because it was
distressing. In contrast, just one subject (C5) felt only once the
necessity to put off the device attached to the wrist;
nonetheless, C3 and C8 reported that they had to detach it twice
because of clinical examinations (functional Magnetic
Resonance Imaging - fMRI) that are incompatible with
electronic equipments. All the subjects were able to perform all
the activities they ordinarily carry out. Fig. 2 shows that the
device mounted at the waist was found restraining for all the
actions but eating. However, in this case the difference is not
significant (p = 0.44). Conversely, for all the activities in which
the wrist was found to be more comfortable, there is a greater
disproportion (p = 0.04 for walking). Also, the positioning at
the waist was found to be embarrassing and harmful in terms of
privacy, while the device on the wrist was perceived as less
intrusive and even pleasant. In terms of psychological impact,






parameters acquired real-time during activity monitoring. Also,
it takes into account that elderly residents in the community
have different mobility patterns. Therefore, our solution is also
suitable for geriatric facilities, even though this is long-term
situation, in which risk is degenerative. Furthermore, our study
demonstrated that Fallarm can be also employed in home
settings, in which subjects are usually less prone to receive
invasive treatments.

Results confirmed the applicability of the device mounted
on the wrist. Although the literature suggests that the wrist
would not be stable enough to accurately monitor patients’
activity, as the integration of knowledge from the Health Care
Service improves the reliability of our system, with proper
selection of training sets, this location was found to achieve the
best trade-off between accuracy and scalability in recognizing
subjects’ activities. Also, this is the most comfortable position
for the subjects. Moreover, during the interviews, subjects
stated that the introduction of an interactive device encouraged
their mobility because the Risk Awareness Provider helped
them to feel safer. In this work we bring in a solution based on
the integration between proactive and reactive methods. This
closed-loop of information was found to improve the
classification of subjects’ activities acquired during the
experiments. During the experiment, none of the subjects
reported a fall, so we could not evaluate the performance of our
detector in recognizing an adverse event in vivo. However, the
system did not raise any false alarms.

Currently, our work is focused on the performance of the
detector: we are acquiring inertial parameters of falls.
Preliminary tests performed in our laboratory under supervised
conditions showed that the classifier is able to associate inertial
data of simulated falls to incidents. Moreover, Fallarm is able
to immediately report them. As a result, our solution supports
the documentation of adverse events (which is still a
methodological pitfall in hospitals), also when they happen in
association with a loss of consciousness. It is our intention to
investigate the correlation between activities and falls, in order
to identify the inertial parameters that achieve better accuracy.
In the future, we will test the fall detector and we will evaluate
the whole infrastructure in the deployment scenario. Hence, the
application of Fallarm will be a systematic treatment for the
inpatients who are most likely to fall. To this end, we are
carefully refining the Risk Awareness Provider, so that
feedback and alarms will not to distract the patient from his
task, because a strong warning could worry him and increase
the risk of falling, rather than preventing it. Furthermore, the
device was designed considering the average interval between
two assessments in a hospital (about 15 days). To this end, we
are working to limit its current absorption and to extend its life
to up to two weeks without charge. Also, we are developing a
waterproof enclosure, so it can be continuously worn (also
under the shower).
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