Realising Management and Composition of
Self-Managed Cells in Pervasive Healthcare

Alberto Schaeffer-Filho, Emil Lupu, Morris Sloman
Department of Computing, Imperial College London
180 Queen’s Gate, SW7 2AZ, London, England
Email: {aschaeff, e.c.lupu, m.sloman}@doc.ic.ac.uk

Abstract—Research in pervasive and autonomic computing
focuses on supporting services for pervasive applications, but
often ignores how such applications can be realised through the
federation of autonomous entities. In this paper we propose a
methodology for designing collaborations between autonomous
components, using the Self-Managed Cell (SMC) framework.
We focus on the structural, task-allocation and communication
aspects of management interactions between SMCs. We pro-
pose a catalogue of architectural styles for SMC interactions,
and a model for combining architectural styles in patterns of
interactions that can be enforced by different SMCs in large
collaborations. This allows us to specify the management of
large-scale systems by composing management functions using
architectural styles as building block abstractions. A scenario
for a health monitoring application involving a number of SMCs
is used throughout the paper to illustrate how complex structures
can be thus built.

I. INTRODUCTION

Management in pervasive systems cannot rely on human
intervention or centralised decision-making functions. Systems
such as body-area networks of sensors and actuators for
monitoring a patient’s health must be autonomous and contin-
uously adapt to changes in their environment or in their usage
requirements. They must therefore be self-managing with local
decision making and feedback control to enable seamless
adaptation. We have previously introduced the concept of a
Self-Managed Cell (SMC) as an infrastructure for building
ubiquitous computing applications [1]. A SMC consists of
a set of hardware and software components which form
an autonomous administrative domain. SMCs implement a
policy-driven feedback control-loop that determines which
management and reconfiguration actions should be performed
in response to events of interest such as device failures, context
changes or changes of state in the SMC’s resources.

To realise larger applications, autonomous entities such as
SMCs must be able to interact with each other in complex
ways, federate or compose into larger structures. For example,
a body-area network monitoring a patient’s health may com-
prise “smart” sensors and complex diagnosis devices that are
SMCs in their own right. In the same way, a SMC controlling
a room will be aggregated under the control of a house SMC.
Body-area network SMCs may also interact with a number
of other peer SMCs such as the SMC running on the PDA
of a nurse or a doctor, or the SMC controlling the room in
which the wearer is present. In all such examples, there is a
need to structure interactions, for example, as compositions,

Digital Object Identifier: 10.4108/ICST.PERVASIVEHEALTH2009.5979
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5979

aggregations or peer-to-peer collaborations. There is also a
need to define how SMCs interact with each other in such
aggregated groups to distribute management responsibility,
application tasks or to implement communication patterns.
Current work on pervasive and autonomous systems focuses
on middleware services that provide supporting functionality
for applications [2]. However, these studies often ignore how
such applications can be realised through the federation and
collaboration of autonomous components.

We advocate the use of architectural styles for systemati-
cally specifying reusable collaborations among Self-Managed
Cells. Architectural styles can be used to describe management
relationships between SMCs and are similar in intent to
software design patterns [3], in the sense that they provide
a set of standard solutions for recurring problems. However,
unlike design patterns, architectural styles are associated with
a parameterised implementation that enforces the semantics
of the relationship. We distinguish between three main cat-
egories of architectural styles: structural styles specify how
SMCs are organised and structured and address issues such
as interface mediation, filtering, encapsulation and SMC vis-
ibility; task-allocation styles specify control flow and task
allocation between the elements in a structural relationship;
and communication styles specify information flow and event-
forwarding behaviour between SMCs. These categories can be
seen as complementary perspectives for defining management
relationships between autonomous SMCs. The use of architec-
tural styles provides a better understanding of the relationships
between SMCs and promotes reuse of common abstractions.
We aim to design larger interactions built systematically from
simpler ones by combining architectural styles as design
elements of a complex collaboration. In this paper we attempt
to identify a catalogue of architectural styles to represent
abstractions for management relationships between SMCs, and
the means of combining these abstractions to build complex
SMC collaborations. We focus on interactions for the design
of a health monitoring application in the medical domain.
However, the same principles have also been applied in a
related project to the management of ad-hoc communities
of unmanned autonomous vehicles (UAVs) for surveillance
missions in hostile environments [4].

The remainder of this paper is organised as follows:
Section II discusses some related work. Section IIT briefly
describes the background work on the Self-Managed Cell

architecture. Section IV outlines our healthcare monitoring
scenario. Section V introduces the use of architectural styles
for structuring management interactions between SMCs. Sec-
tion VI presents our interaction model. Section VII revisits
the health monitoring scenario and shows how it can be re-
alised using the architectural abstractions. Section VIII briefly
describes our implementation and Section IX presents our
concluding remarks.

II. RELATED WORK

The software engineering community has long investigated
software architecture-based approaches, which typically sepa-
rate computation (components) from interactions (connectors).
The benefits brought by the distinction between components
and connectors have been widely recognised in the software
community as means of structuring software development [5],
[6]. However, components and connectors are low level im-
plementation abstractions that do not cater for the adaptive
behaviour of SMCs as expressed in policies for example.

Collaborations between SMCs will typically involve the
composition of a number of abstractions for realising more
complex applications. The specification of these interactions
uses ideas inspired from architectural description languages
(ADLs), module interconnection languages (MILs) and co-
ordination schemas in general, such as Wright [7], UniCon
[8], Conic [9], Darwin [10], Rapide [11] and Mobile UNITY
[12]. However, although traditional architectural description
languages and coordination schemas for mobile agents bind
software components or distributed agents through connec-
tions, the semantics of these connections (such as “sends data
to”, “controls” or “is part of”) is usually unclear, failing to
represent higher-level relationships between components [13].
We advocate the use of a variety of architectural styles that
have individual semantics for higher-level SMC interactions.
In contrast to architectural description languages we are not in-
terested in general-purpose component interactions, but instead
aim for a model that addresses the management of collabora-
tions using the SMC infrastructure, based on abstractions for
the exchange of interfaces, tasks and events.

Work on multi-agent systems has investigated the use of
organisational structures for designing multi-agent societies.
Holonic models [14] for example often support hierarchical
structures, but not more sophisticated abstractions. Few studies
however have attempted to identify a catalogue of generic and
reusable patterns for interactions between agents [15]. Aridor
and Lange [16], for example, propose specific patterns for
mobile agent applications (e.g. patterns for specification of an
agent’s itinerary or for meeting other agents when arriving at a
specific location). Kolp and colleagues [17] propose a macro-
level catalogue for interactions between agents by using real
world business organisations as an analogy (e.g. structure-in-
5, joint venture, etc). Also, Deugo and colleagues [18] present
a set of patterns for mobile and intelligent agents. However,
most of the work in multi-agent systems focuses on distributed
problem solving [19] where goals are achieved by a decen-
tralised collection of agents that possess different knowledge

Digital Object Identifier: 10.4108//ICST.PERVASIVEHEALTH2009.5979
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5979

sources, and delegate tasks to each other according to their
capabilities. In our case we are focusing on architectural styles
for the specification of management relationships rather than
general agent interactions. Although our work targets the SMC
framework, which has well defined architectural principles
and means of implementing adaptation, the architectural styles
defined in this paper may have broader applicability and
prove useful towards building pervasive autonomous systems
in general formed of autonomous components.

III. BACKGROUND: SELF-MANAGED CELLS

To provide autonomous management in pervasive envi-
ronments, we have previously introduced the Self-Managed
Cell (SMC) as the basic autonomous building block for our
pervasive systems [1]. A SMC forms an autonomous adminis-
trative domain that consists of hardware components such as
physiological sensors, mobile phones, PDAs and computers,
as well as software services and components within those
devices.

Fig. 1. Self-Managed Cell architecture.

A SMC comprises a dynamic set of management services
integrated through a common publish/subscribe event bus
(Fig. 1). This de-couples services, as event publishers do not
require prior knowledge of the recipients when sending a
message, and permits adding new services to the SMC without
disrupting the behaviour of existing ones. The SMC relies
on a policy service, which caters for two types of policies:
obligation policies that define the adaptive actions that must
be performed in response to events, and authorisation policies
that specify which actions are permitted on which resources
and services. Policies can be added, removed, enabled and dis-
abled to change the behaviour of a SMC without interrupting
its functioning. Our implementation of the policy service is
based on the Ponder2! system. Finally, a discovery service is
used to detect new devices in the vicinity of the SMC, such
as sensors and other SMCs, and is responsible for managing
the SMC’s membership, to distinguish transient failures from
permanent departures from the SMC (e.g., device out of range
or switched off). A more detailed description of the SMC
architecture can be found in [1].

Lhttp://www.ponder2.net

IV. SCENARIO DESCRIPTION: HEALTH-MONITORING

Consider some of the requirements for a typical healthcare
monitoring application. A personal SMC representing a pa-
tient’s body-area network for health monitoring typically com-
prises a PDA or Gumstix? device hosting SMC management
services that control several sensors such as heart-rate, tem-
perature, acceleration, blood pressure and oxygen saturation
hosted on BSNs® (Body Sensor Nodes). Actuators such as a
pacemaker or an insulin pump SMC may be employed and
activated according to conditions monitored by the sensors.
PDAs or other Gumstix devices may also be used to host
application services, e.g. for diagnostic. Communication with
BSN nodes typically occurs through IEEE 802.15.4 radio links
while communication between Gumstix devices or with PDAs
occurs through Bluetooth or Wi-Fi.

A doctor or nurse SMC would typically interact with
patients, loading monitoring tasks and collecting monitored
results. Monitoring tasks running on the patient body-area
network allow the patient to be self-monitored in his own
home environment, thus promoting reduced usage of hospital
resources and better medical evidence data for the clinical
condition and its treatment. Tasks loaded by the healthcare
worker continually run on the patient’s SMC, relying on
information provided by his body sensors. There are two
situations of interest regarding the collected sensor data: (a)
under normal circumstances data may be stored on a home
server SMC, for synthesis and for subsequent delivery to the
GP surgery (e.g. a scheduling task that sends a subset of this
data every seventy-two hours); and () in an emergency data is
used to request immediate assistance (e.g. in situations where
the monitoring system detects that a heart attack is imminent).

Fig. 2. Healthcare monitoring scenario: each triangle containing a question
mark represents an interaction that requires a different combination of
management abstractions.

Fig. 2 outlines the SMCs involved in this scenario. Note that
the informal description does not specify how the relationships
in this collaboration are realised. Although the Self-Managed
Cell concept provides a suitable abstraction for representing
autonomous components, we still need adequate abstractions
for expressing their interactions. For example, if multiple

Zhttp://www.gumstix.com
3http://vip.doc.ic.ac.uk/bsn/

Digital Object Identifier: 10.4108/ICST.PERVASIVEHEALTH2009.5979
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5979

SMCs are used on a patient to monitor related conditions
they would typically be composed in a single autonomous
SMC. In contrast interactions between the patient’s body
area network and healthcare personnel would typically be
interactions between peers. Also, collected data is forwarded
differently in a body-area network or in a home monitoring
environment. Finally, tasks for physiological monitoring or
data synthesis are loaded in specific situations and subject to
different conditions. The purpose of this paper is to introduce
a systematic way of designing interactions and clearly repre-
senting their management aspects.

V. ARCHITECTURAL STYLES FOR SPECIFYING
MANAGEMENT INTERACTIONS

Autonomous SMCs can be dynamically assembled into
larger and more complex structures that are also SMCs. In
this way larger autonomous pervasive applications can scale
up and be built from simpler yet autonomous components.
This also allows even comparatively smaller components to
work autonomously.

In such collaborations, SMC interactions rely on three
elementary exchange mechanisms: interfaces, policies and
events. By exchanging interfaces, a SMC allows remote SMCs
to invoke operations on it, whilst still mediating access to
its internal resources. Remote SMCs may be dynamically
discovered and assigned to placeholders (termed roles) in the
SMC. The role a SMC is playing in another determines which
tasks (in the form of missions) prescribing its behaviour in
the interaction it will receive. A mission is a set of policies
that is dynamically loaded from a remote SMC to change
the behaviour of another SMC within the context of the
interaction. Finally, through the exchange of events a SMC
may notify remote SMCs of changes of context, possibly
triggering management actions in response to these changes.
The underlying principles for realising SMC interactions in
terms of interface access, role assignment and exchanges of
events and policies were introduced in [20].

Based on different means of exchanging interfaces, poli-
cies and events, we propose in this paper three interrelated
categories of management abstractions for realising SMC
interactions. Each abstraction provides a particular manner
of achieving one of these exchanges and the three categories
represent respectively the structural, task-allocation and com-
munication aspects of an interaction. These will be discussed
in the next sections.

A. Structural Aspects

Structural aspects reflect how SMCs are organised with
respect to interface access, visibility and encapsulation. For
example, peer-to-peer interactions typically require only sim-
ple interface exchanges whereas compositions also need to
implement encapsulation and mediate access to internal re-
sources. Composed interactions allow one SMC to define the
visibility of its inner resources to the outside world, creating
a composed structure. Additional abstractions such as filtering
of operations provide more flexibility to the interactions with

TABLE I
CATEGORIZATION OF THE ARCHITECTURAL STYLES FOR INTERACTIONS BETWEEN SMCs.

Category Architectural Style | Description

Structural Peer-to-Peer Ordinary, symmetrical mode of interaction between SMCs that exchange services

Styles Composition One SMC encapsulates another’s interface and determines its visibility through mediation
Aggregation Inner SMC becomes resource of outer but without imposing the encapsulation (allows sharing)
Fusion Combines the interfaces, policies, and managed objects of two constituent SMCs into a new SMC

Task-Allocation | Hierarchical Control

One top-level SMC controls the execution of a set of leaf SMCs

Styles Cooperative Control | One leaf SMC is controlled by a set of cooperating manager top-level SMCs
Bidding Cooperative task execution employing a negotiation approach (issuers and bidders)
Collaborative Fully decentralised interaction where SMCs can both load and receive tasks from their partners
Communication | Shared-Bus Provides a blackboard for decoupled event-based communication among SMCs
Styles Correlation Individual events may be combined generating higher level events
Diffusion Provides a way of directly forwarding events to interacting SMCs

Store-and-Forward

Useful in ad-hoc settings where SMCs may not have a permanent connection to their interacting partners

respect to interface exchanges, allowing one SMC some degree
of control on the access of another SMC’s interface (e.g.
modification of invocation parameters or filtering of results).
A particular combination of structural abstractions provides
very specific properties for the interface exchange aspects of
a collaboration.

B. Task-Allocation Aspects

Task-allocation aspects specify control-flow and task as-
signment between the elements in a structural relationship.
We mentioned earlier that task allocation is achieved through
the exchange of missions [20] among collaborating SMCs.
However, these exchanges may rely on very specific abstrac-
tions. Some collaborations for example may rely on a single
manager and multiple managed SMCs, while others may allow
multiple managers to load tasks into a single SMC (which
may require checking for and resolving conflicts between the
loaded policies). Task loading may be uni-directional or bi-
directional (in the latter, each SMC is both a manager and a
managed node). Alternatively, tasks could be loaded according
to a bidding strategy where SMCs express their willingness
to receive tasks from an issuer. Finally, task loading may
be conditional to a set of criteria, for example based on the
capabilities provided by a SMC, its profile or the credentials
that the SMC possesses.

C. Communication Aspects

Communication aspects deal with event-forwarding be-
haviour between SMCs. Abstractions vary from a simple
diffusion of events from a source to a target SMC to a more
elaborate shared bus between a set of SMCs that works as a
sort of blackboard for shared events. Additional abstractions
such as correlation of events provide flexibility in defining
event patterns for triggering higher-level events. Abstractions
for store-and-forwarding may be useful in ad-hoc settings
where SMCs do not have a permanent connection to their
interacting partners, and where events must be locally stored
for subsequent delivery.

D. A Catalogue of Abstractions for Management Interactions

Based on these management perspectives, we have defined a
catalogue of reusable abstractions (termed architectural styles)
for management relationships among SMCs. Table I presents

Digital Object Identifier: 10.4108/ICST.PERVASIVEHEALTH2009.5979
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5979

a brief overview of these styles. As in all such catalogues we
cannot aim to be exhaustive but focus solely on the frequently
occurring styles that facilitate the design and composition of
complex SMCs by structuring the devolution of management
responsibilities and corresponding interactions. Each architec-
tural style relies on different abstractions for interface, policy
or event exchange between the interacting SMCs. Due to space
constraints, we cannot describe them individually here. Instead
we aim to present how they are realised, how they work and
how they are used. The next section will present our proposed
interaction model for SMCs, which is used for combining
architectural styles in complex SMC interactions.

VI. INTERACTION MODEL

Larger applications typically depend on the functionality
provided by multiple collaborating SMCs, which must au-
tonomously establish interactions with little or no user inter-
vention. To facilitate these interactions, we use the concept
of roles as placeholders for remote SMCs discovered at run-
time [20]. Roles are kept in a domain structure that implements
a hierarchical namespace similar to a file system in each SMC.
A remote SMC is assigned to a role in another SMC if the
former fulfills the requirements for that role (e.g. credentials,
profile, capabilities). Policies previously associated with a role
will then apply to SMCs assigned to it. This allows us to
specify the interactions a SMC is expected to participate before
it is discovered. The implementation of SMC discovery and
role assignment were previously described in [20].

In this paper we propose an interaction model where in-
stead of individual policies we associate entire architectural
abstractions with a set of roles in the local domain of a
SMC. Architectural styles encode template interactions that are
individually instantiated among SMCs. Each template enforces
a specific abstraction related to interface, event or policy
exchange. The use of well-defined templates of interactions
provides a better understanding of the relationships across
SMCs and promotes reuse of common abstractions.

Each template defines its own set of roles, which refer
specifically to the abstraction enforced. For example, a com-
position style defines the roles outer and inner, whereas a
hierarchical control defines the roles manager and managed
and a diffusion style defines the roles source and target.
Additionally, template interactions are parameterised at instan-

tiation, although the level of customisation allowed for each
architectural style depends on the abstractions associated with
it. This customisation may involve the parameterisation of (a)
the methods to be filtered, mapped, etc (for a structural style),
(b) the tasks and policies to be loaded and in what conditions
(for a task-allocation style) or (c) the events to be forwarded
or subscribed to (for a communication style). More formally
we can define an architectural style as:

style = (Roles, Parameters)

where style is an architectural style, Roles is the set of roles
defined by this style and Parameters is the set of parameters
that customise this style.

The configuration (or set-up) of the interactions that a SMC
is expected to enforce is defined by the combination of roles,
architectural styles and bindings defined in the local domain
of this SMC:

domain = (Roles, Styles, Bindings)

where domain corresponds to the domain structure of a SMC,
Roles is the set of roles defined in this domain, Style is the
set of architectural styles bound to these roles through the set
of bindings Bindings.

A binding of a style with respect to a domain associates
each role in the style with a role in the domain. Hence:

binding(style, domain) <—

V x € Rolesgyie, 3 y € RoleSgomain: Y=y © =
where the operator @ applied to two roles combines the
behaviour associated with each role. A role in the local domain
is typically bound to roles across the three layers of architec-
tural styles. The roles defined in the local domain of a SMC
will therefore combine the behaviour of the composite/overall
interaction, based on the abstractions bound to them.

Fig. 3. Interaction model: (1) architectural styles are bound to roles in the
local domain; (2) when remote SMCs are assigned to these roles, the semantics
associated with each architectural style is enforced in the remote SMCs in
the form of interface, event and policy exchanges.

Fig. 3 presents an outline of the interaction model for SMCs.
Whenever a remote SMC is assigned to a role in the local

Digital Object Identifier: 10.4108/ICST.PERVASIVEHEALTH2009.5979
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5979

domain, all architectural styles bound to this role will be
deployed in the corresponding SMC. Hence:

assignment(SMC, rolegomain) <
V st € Stylesgomain : V x € Rolesg : x & rolegomain —
deployment(SMC, st, x)

where the operator &~ returns true if two roles are bound.
The deployment of a style in a SMC is defined by the imple-
mentation of the architectural style, in terms of exchanges of
interfaces, policies and events and of the operations required
to enforce the style semantics. The deployment operation takes
as arguments a SMC, the architectural style to be deployed and
the specific role in the style that this SMC will be playing.

This interaction model allows us to independently define
layers of management where the structural, communication
and task-allocation aspects of an interaction between a set
of SMCs can be individually specified by reusing common
abstractions expressed as architectural styles.

A. Patterns of Interaction

We aim to specify architectural descriptions where individ-
ual abstractions can be used as building blocks and arranged
in particular settings. We call these patterns of interactions,
although they are in essence complex architectural styles
realised in terms of more primitive ones. Patterns exhibit
very specific management properties with respect to interface
access, task-loading and event-forwarding. For example, a
body-area network is typically a composition encapsulating
the sensors and mediating (and filtering) access to its internal
components. It typically relies on a diffusion event-forwarding
approach, where the sensors forward events to the PDA or mo-
bile phone representing the patient SMC which will possibly
run other tasks that make use of the information monitored.
Similarly, a monitoring pattern between doctor and patient
SMCs typically relies on a peer-to-peer structural approach
as the notion of encapsulation (or ownership) does not apply
to this interaction. Monitoring tasks are often loaded from the
doctor into patient SMCs, and event diffusion may take place
from patients to doctors.

We are therefore using patterns to represent very specific
arrangements of management abstractions that are likely to
occur often. Fig. 4 illustrates a succinct pseudo syntax for
our architectural descriptions, where patterns can be specified
and the management bindings between roles are defined (in
our implementation patterns are written in Ponder2 which is
more verbose). Each pattern defines a set of roles (amongst
which some may be mandatory and others optional), and how
they should be bound. Note that some bindings may be event
triggered. When a pattern is instantiated, actual SMCs may be
passed as parameters, or alternatively an assignment policy [4]
may specify under which conditions a subsequently discovered
SMC should be assigned to the respective role. A pattern is
typically instantiated at a SMC, which will be responsible
for enforcing the architectural styles defined in the pattern.
Finally, note that large collaborations may be realised by

//Collaboration specification
type pattern (PatternName_ 0)(...) {

import /factory/structural/composition;
import /factory/taskallocation/hierarchical;
import /factory/communication/diffusion;

type pattern (PatternName_ 1)(role RI, [mandatory] role R2, role R3) {

bind style composition(outer R1,inner R2,inner R3);
[on (event)] bind style hierarchical (manager R1,managed R2,managed R3);
[on (event)] bind style diffusion(target RI1,source R2, source R3);

}
inst pattern p_1 =

type pattern (PatternName_n)(...) {

}

(PatternName_1) (SMC_a, SMC_b, [assignment_policy]) at SMC_1;

inst pattern p_n = (PatternName_n)(...) at SMC_n;

}
//Collaboration instantiation
inst pattern p_0 =

(PatternName_0)(...) at SMC_O0;

Fig. 4. Pseudo syntax for the textual representation of an architectural description (notice that each architectural style must also be parameterised with the
methods to be mapped or filtered, events to be forwarded or subscribed to, missions to be loaded, etc, however these details are not shown in the figure).

combining multiple patterns, and possibly patterns that contain
other nested patterns.

VII. REVISITING THE HEALTH-MONITORING SCENARIO

Using this interaction model we can systematically elab-
orate our health monitoring example outlined in Fig. 2, by
combining the management abstractions required to realise
the collaboration. Fig. 5 shows a graphical representation
of the scenario where specific abstractions were chosen for
interface, event and policy exchanges. Each one of the five
columns in Fig. 5 corresponds to one of the triangles in Fig. 2.
The graphical notation only shows the overall view of the
collaboration and the selected abstractions, but does not detail
the parameterisation of each style (e.g. methods to be mapped
or filtered in a structural style, events to be forwarded or
subscribed to in a communication style, or tasks to be loaded
and in which conditions in a task-allocation style).

The graphical representation shows that the patient and the
two sensor SMCs (heart-rate and accelerometer) are bound
through a composition structural relationship as this interaction
requires encapsulation of the sensor SMCs (since we do not
wish that the devices owned by a body-area network interact
with body-area networks of patients nearby). Although the re-
sources are encapsulated in the body-area network, operations
for reading sensor measurements are typically mapped to the
patient’s interface. Also, sensors forward their events (e.g., the
heart rate goes above a certain threshold) to the patient SMC
through a simple diffusion event forwarding where each sensor
plays the source role while the patient SMC plays the target.

The interaction between patient and doctor has different
requirements. First of all, an encapsulation between patients
and doctors would not apply, as a patient may interact with

Digital Object Identifier: 10.4108//ICST.PERVASIVEHEALTH2009.5979
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5979

multiple doctors, as well as a doctor may interact with multiple
patients. A peer abstraction is more suitable in this case, which
leads to a simple exchange of interfaces but with no additional
mapping, filtering or encapsulation. In terms of task-allocation,
a doctor will typically specify policy loading strategies into the
patient through a hierarchical control style. The tasks loaded
are specified in the form of missions [20], which are used in
the style parameterisation (e.g. an ECG monitoring mission).
Similarly, the conditions when such tasks must be loaded are
also part of the style parameterisation.

The example can be further elaborated with the specification
of the interactions between the home, server and patient
SMCs (in order to form the home environment monitoring
interaction), the interactions between the server and surgery
SMCs (in order to specify the data synthesis and report
forwarding interaction) and interactions between patient and
surgery (in order to specify the interaction which takes place
in case of an emergency, e.g. the monitored data is assessed
and a decision that a heart attack is imminent is taken).

VIII. IMPLEMENTATION

Architectural styles and patterns have been implemented
using the Ponder2 framework. We have defined a library of
styles divided into structural, task-allocation and communi-
cation categories. Styles are created from factory objects,
which function as templates for creating any of the objects
required by a Ponder2 application. Fig. 6 shows how a
composition interaction is created from a factory object in
Ponder2 syntax, how style-specific roles (“outer” and “in-
ner”) are bound to roles defined in the local domain (“Pa-
tient”, “SensorHR” and “SensorTemp”), and how the style
is parameterised with style-specific properties: in this case,

Fig. 5.

the operations “SensorHR.read” and “SensorTemp.read” are
mapped to the operations “readHR” and “readTemp” exported
by the interface of the SMC assigned to the “Patient” role
(the encapsulation enforced by the composition style will hide
the sensors from external SMCs, keeping them as managed
resources of the SMC assigned to the “Patient” role, but the
selected operations will be mapped to the latter’s interface).

comp := /factory/structural/composition create.
comp outer: "Patient”.

comp inner: "SensorHR".

comp inner: "SensorTemp".

comp map: "SensorHR.read" to: "readHR".
comp map: "SensorTemp.read"” to: "readTemp".

Fig. 6. Code for the instantiation of a composition style between a patient
and two sensors, written in Ponder2 syntax.

Architectural abstractions, either simple architectural styles
or more complex patterns, are bound to roles in the domain
structure of a SMC and instantiated when remote SMCs are
discovered and assigned to these roles. The implementation
of architectural styles relies on the functionality provided
by the SMC’s management interface, which is application-
independent and common to all SMCs. The management in-
terface provides operations for interface exchange and binding,
and interface mapping and filtering. It also provides operations
for exchange and subscription of events, as well as operations
for exchange of missions. The implementation of each style
thus defines a specific script of operations to be executed
on the participant SMCs using the common functionality
provided by their management interfaces (Fig. 7). This ensures
that the semantics specified by a style is enforced in the
involved SMCs. Note that there are dependencies among the

Digital Object Identifier: 10.4108/ICST.PERVASIVEHEALTH2009.5979
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5979

Architectural representation of the health monitoring scenario: the illustration shows the overall configuration of the collaboration with the selected
abstractions, but it does not detail how each architectural style is parameterised.

architectural styles: structural styles must be deployed first,
as they enable the exchange of application interfaces (e.g.
doctor interface, patient interface) [20]; communication styles
are then deployed to define patterns in terms of the events
provided by these interfaces; task-allocation styles must be the
last, as the policies loaded may depend both on the operations
provided by the application interface, as well as on the events
forwarded by a communication style.

Fig. 7. The implementation of each architectural style defines the operations
and relies on the functionality provided by the management interface of
the participant SMCs. These operations are executed when actual SMCs are
assigned to roles.

IX. DISCUSSION AND CONCLUDING REMARKS

Architectural styles provide a better understanding of the
relationships across SMCs and allow us to specify the manage-
ment of large-scale composable systems by reusing building

block abstractions. Whilst we have identified a catalogue
of architectural styles that addresses individual abstractions
for exchange of interfaces, tasks and events, more complex
collaborations are built systematically from simpler ones by
combining styles as design elements of an interaction. We
have defined an interaction model for combining architectural
styles in patterns of interactions that are enforced by different
SMC:s in a large collaboration. In addition, collaborations of
SMCs may interact with other collaborations, and reapply the
styles recursively. We demonstrated our interaction model in a
scenario for pervasive healthcare but we are applying the same
principles to the management of communities of unmanned
autonomous vehicles (UAVs) [4].

The different categories of architectural styles can be seen
as alternative perspectives for modelling the management of
SMC interactions, which cater for their structural aspects,
task-allocation and communication flow/sharing. We do not
claim the catalogue presented in this paper corresponds to a
complete list of interaction possibilities, but focus solely on the
frequently occurring styles that facilitate the design and com-
position of complex SMCs. We expect that the investigation of
further scenarios will lead us to the identification of additional
abstractions for SMC interactions as many styles and patterns
of interaction are specific to the application domain. Although
we have focused on the SMC framework, the proposal of
a catalogue of architectural styles for modelling interactions
between autonomous entities aims to benefit the engineering
process of pervasive and autonomous systems in general,
making such systems more flexible, robust and reusable.

The scenarios and applications that we consider are intrin-
sically dynamic, and rearrangements of architectural styles
during run-time may be necessary due to changing conditions.
This will require collaborating SMCs to achieve a secure state
before their interaction configuration can be modified. Much
work has been done on dynamic architectures [21], but we still
have to further investigate run-time structural reconfiguration
in our model. In the near future we plan to formalise the
operational semantics of the interaction model presented in
this paper. This will allow the verification of the overall
consistency of the specification and the checking of properties
achieved by a specific arrangement of architectural styles.

ACKNOWLEDGMENTS

Research was sponsored by the U.S. Army Research Laboratory and the
UK. Ministry of Defence and was accomplished under Agreement Number
WO11NF-06-3-0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation here on. We also acknowledge financial support from the EC IST
EMANICS Network of Excellence (#26854).

REFERENCES

[1] E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes,
K. Twidle, S.-L. Keoh, and A. Schaeffer-Filho, “AMUSE: autonomic
management of ubiquitous systems for e-health,” J. Concurrency and
Computation: Practice and Experience, John Wiley, May 2007.

Digital Object Identifier: 10.4108/ICST.PERVASIVEHEALTH2009.5979
http://dx.doi.org/10.4108/ICST.PERVASIVEHEALTH2009.5979

(2]

3]

(4]

[5]

[6]

(7

(8]

9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

M. Romén, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
and K. Nahrstedt, “A middleware infrastructure for active spaces,” IEEE
Pervasive Computing, vol. 1, no. 4, pp. 74-83, 2002.

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed., ser. Professional
Computing Series. Addison-Wesley, 1995, 416 pages.

A. Schaeffer-Filho, E. Lupu, M. Sloman, S.-L. Keoh, J. Lobo, and
S. Calo, “A role-based infrastructure for the management of dynamic
communities,” in Proceedings of the 2nd International Conference
on Autonomous Infrastructure, Management and Security (AIMS), ser.
LNCS. Bremen, Germany: Springer, July 2008, pp. 1-14.

D. Garlan and M. Shaw, “An introduction to software architecture,” in
Advances in Software Engineering and Knowledge Engineering, V. Am-
briola and G. Tortora, Eds. Singapore: World Scientific Publishing
Company, 1993, pp. 1-39.

N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards a taxonomy
of software connectors,” in Proceedings of the 22nd ACM International
Conference on Software engineering (ICSE), New York, NY, USA, 2000,
pp. 178-187.

R. Allen and D. Garlan, “Beyond definition/use: architectural intercon-
nection,” in Proceedings of the ACM Workshop on Interface Definition
Languages, New York, NY, USA, 1994, pp. 35-45.

M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnik, “Abstractions for software architecture and tools to support
them,” IEEE Transactions on Software Engineering, vol. 21, no. 4, pp.
314-335, 1995.

J. Kramer, “Configuration programming - a framework for the devel-
opment of distributable systems,” in Proceedings of the IEEE Inter-
national Conference on Computer Systems and Software Engineering
(CompEuro), May 1990, pp. 374 — 384.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying distributed
software architectures,” in Proceedings of the 5th European Software
Engineering Conference. London, UK: Springer-Verlag, 1995, pp. 137-
153.

D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan,
and W. Mann, “Specification and analysis of system architecture using
rapide,” IEEE Transactions on Software Engineering, vol. 21, no. 4, pp.
336-355, 1995.

G.-C. Roman and J. Payton, “Mobile unity schemas for agent coordi-
nation,” in Proceedings of the 10th International Workshop on Abstract
State Machines, ser. LNCS, vol. 2589. Springer, March 2003, pp. 126~
150.

P. C. Clements, “A survey of architecture description languages,” in
Proceedings of the 8th IEEE International Workshop on Software
Specification and Design (IWSSD), Washington, DC, USA, 1996, p. 16.
V. Hilaire, A. Koukam, and S. Rodriguez, “An adaptative agent architec-
ture for holonic multi-agent systems,” ACM Trans. Auton. Adapt. Syst.,
vol. 3, no. 1, pp. 1-24, 2008.

F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing multi-
agent systems: The gaia methodology,” ACM Transactions on Software
Engineering Methodologies, vol. 12, no. 3, pp. 317-370, 2003.

Y. Aridor and D. B. Lange, “Agent design patterns: elements of agent
application design,” in Proceedings of the 2nd ACM International
Conference on Autonomous Agents, New York, NY, USA, 1998, pp.
108-115.

M. Kolp, P. Giorgini, and J. Mylopoulos, “A goal-based organizational
perspective on multi-agent architectures,” in Revised Papers from the 8th
International Workshop on Intelligent Agents. London, UK: Springer-
Verlag, 2002, pp. 128-140.

D. Deugo, F. Oppacher, J. Kuester, and I. V. Otte, “Patterns as a means
for intelligent software engineering,” in Proceedings of the International
Conference on Artificial Intelligence (IC-Al), vol. 2, 1999, pp. 605-611.
R. G. Smith, “The contract net protocol: high-level communication
and control in a distributed problem solver,” Distributed Artificial
Intelligence, pp. 357-366, 1988.

A. Schaeffer-Filho, E. Lupu, N. Dulay, S. L. Keoh, K. Twidle, M. Slo-
man, S. Heeps, S. Strowes, and J. Sventek, “Towards supporting inter-
actions between self-managed cells,” in Proceedings of the st IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO), Boston, USA, July 2007, pp. 224-233.

J. Kramer and J. Magee, “The evolving philosophers problem: Dynamic
change management,” IEEE Transactions on Software Engineering,
vol. 16, no. 11, pp. 1293-1306, 1990.

