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Abstract—This work concerns the use of human movement
classification as a tool for monitoring and supporting older
peoples’ lives. The “motion language” methodology is a move-
ment classification technique which aims at generalizing move-
ments and providing easy interpretation of motion signals by
decomposing activities into elementary building blocks referred
to as “motion primitives”. The use of motion primitives to
classify motion from visual data has been studied. This work
shows that the motion language methodology can be applied to
acceleration signals, contributing to the development of wearable
monitoring systems. This paper explains the development of the
motion language and its use in a gait analysis study. Preliminary
results show that the motion language methodology can be used
to quantitatively measure gait parameters. In addition, motion
primitives are shown to express static and dynamic characteristics
of different gait patterns and were used to calculate a new

symmetry index.
I. INTRODUCTION

The world’s population is expected to age considerably in
the next 50 years [1]. Projections show that by 2050 the older
population (aged 65 or over) will grow from 16% to 28%
of the total population of Europe (Table I). This change in
demographics is mostly due to the increase in life-expectancy
and the aging of the Post-World-War-II baby boomers. Today’s
health care system will struggle to cope with the increased
demand of age related care in the coming years.

Table 1
PROJECTIONS OF THE PERCENTAGE OF THE POPULATION AGED 65 OR
OVER IN DIFFERENT REGIONS.

Year 2005 2030 2050
World 73% | 11.7% | 16.2%
Europe | 159% | 22.6% | 27.6%
Sweden | 17.2% | 22.8% | 24.1%
UK 16.1% | 21.6% | 24.1%
Us 123% | 19.4% | 21.0%
Japan 19.7% 2% 24.1%

Some ways of relieving the health care system from the
extra load are: to focus on preventive care, to support aging at
home by ensuring safety and assistance in activities of daily
living, and to aim at early diagnosis of common conditions.
The health and safety of a senior at home may be monitored
by intelligent systems which share relevant information with
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medical personnel and informal care-takers, such as family
members and friends. Movement analysis is a powerful and
intuitive way of determining a subject’s health and functional
status [2]. Gait analysis, in particular, provides relevant infor-
mation about physical and cognitive decline [3].

Many studies have focused on movement recognition for
evaluating balance, e.g. [4], and classifying gait, e.g. [S]. Such
studies, however, are based on template matching techniques
and they have been useful for detecting only a few prede-
termined activities or events. Another approach to movement
classification is to decompose activities into small building
blocks referred to as “motion primitives”. These units may
be organized as a motion language, which is able to express
different activities as a combination of primitives.

This work investigates the application of the motion lan-
guage methodology to acceleration data in order to extract
gait parameters and describe dynamically different walking
patterns through a measure of symmetry. A new symmetry
index (SIgymp) is proposed and compared to a traditional
measure of symmetry (SI). The symmetry index proposed
here is shown to be more informative, and its interpretation
more intuitive, than the traditional symmetry index.

This paper is organized as follows: related work is discussed
in Section II; the motion language methodology is explained in
Section III; the experimental setup is presented in Section IV;
the design of the motion language is explained in Section V;
the extraction of gait characteristics based on motion prim-
itives is presented in Section VI; results are analyzed in
Section VII; future work is discussed in VIII; and Section IX
concludes this paper.

II. RELATED WORK
A. Gait Analysis

Gait analysis is an important tool for the diagnosis and
evaluation of many conditions. Previous studies have shown
that changes in gait can be related to physical and cognitive
decline [6] due to aging or illness [7]. Common causes of gait
abnormalities in senior citizens include neurological diseases,
arthritis and acquired foot deformities [8]. Stroke survivors
also frequently display gait abnormalities [9].

Gait analysis has been evaluated for predicting the risk of
developing dementia and, in particular, the risk of developing



Alzheimer’s disease [8]. Another study [10] has quantified
that a 1-second increase in time to walk 30ft, when compared
to control subjects, can be indicative of an increased risk of
developing permanent cognitive impairment. The correlation
between slowing of gait and mild cognitive impairment is also
supported in [11]. In addition, gait analysis may help identify
and quantify the risk of an elder falling [12], and it is an
essential tool in the treatment and evaluation of cerebral palsy
patients [13], [14]. Gait analysis is also important when fitting
prosthetic or orthotic devices, and when evaluating the success
of an orthopedic surgery, e.g. a hip-replacement [15], [16].

Gait analysis is already widely used for clinical assessment,
but it is often subjective or constrained to a laboratory environ-
ment. Motion capture (mocap) systems, in combination with
force-plates, provide very accurate descriptions and models
of gait. However, these expensive systems must be installed
in appropriate rooms and can only be operated by specially
trained personnel. Mocap systems can only record movements
performed in a small area of the room. Logging long walks
is therefore only possible if the patient is walking on a
treadmill, which may change the patient’s normal gait. Other
measuring systems used in the lab setting, more mobile but less
informative, are pressure sensitive mats [17]. Pressure mats
provide static spacio-temporal data, analogous to footprints
over time. They do not, however, provide dynamic information
about how the patient’s foot is moving in space.

When measuring systems are unavailable, gait and balance
are commonly assessed using “time up and go” tests (TUG)
and/or grading scales [18], [19]. However, studies have shown
that these tests can be subjective and sometimes inconsistent,
especially when the tester is inexperienced [20]. Another
drawback of current approaches to clinical gait assessment is
that tasks performed in the lab or clinic do not always simulate
normal daily activities. Consequently, such measurements may
fail to reflect the subject’s normal walking pattern. There is,
therefore, a clear need for an inexpensive, unobtrusive and
easy-to-use system, which allows quantitative analysis of gait
patterns outside the lab. In this scenario, wearable sensor
systems composed of inertial sensors such as accelerometers
and gyros [21] are particularly useful. Wearable sensor systems
certainly overcome the mobility issue, and they are preferable
to visual data, since people may feel uncomfortable being
recorded by camera-like devices.

B. Wearable Sensor Systems

A large number of sensors is inconvenient for most long-
term monitoring applications. In addition, when designing
wearable systems, a clear trade off is observed between
mobility and ease of use in terms of: power consumption,
autonomy, placement, patient compliance, and data analysis,
to name a few. Therefore, one approach to developing new
portable sensor nodes is to start with only one type of sensing
device and investigate how much information it can gather.

Accelerometers are suitable sensors for wearable systems
since current enhancements in micro-electro-mechanical sys-
tems (MEMS) technology have made possible the manufacture
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of miniaturized, low power, low cost accelerometers [21],
which are useful for logging human motion data for long
periods of time in uncontrolled environments. Accelerometers
have been employed for many different purposes: estimating
metabolic energy expenditure [22]; monitoring activity [20];
assessing standing balance [4]; detecting falls, postural orien-
tation and classifying activities [2].

Gait analysis studies from accelerometer sensor systems

may be divided into three main categories:

1) The reconstruction of movements in space, e.g. [23],
[24]. These studies make use of two or more sensors on
the same limb in order to reconstruct its trajectory in
space and, as such, are not comparable to our work.

2) The detection of gait phases and evaluation of tempo-
ral parameters, e.g. [25]-[27]. These studies focus on
detecting events such as heel-strike or stance and use
this information to calculate stride times, variability,
temporal symmetry, etc. They do not, however, provide
any information about the way in which the person is
walking, i.e if the person’s feet are moving according to
different trajectories in space.

3) The classification of walking patterns, e.g. [5], [28].
These studies aim at determining if the subject is walk-
ing up or down stairs, running etc. They do not, on the
other hand, look into single steps and the phases of gait.

Complementing previous studies, the motion language

methodology proposed in this work aims at both tasks: iden-
tifying the phases of gait, and describing the dynamics of the
walking pattern.

ITII. MOTION LANGUAGE

A fundamental problem in detecting and recognizing human
movements is that of representation. Movement classification
has traditionally been achieved through some form of template
matching or pattern recognition, after manual segmentation
and/or statistical feature modeling. These methods require
manual labeling of the data, which is labor-intensive and error-
prone [29].

The motion language methodology aims at identifying an
“alphabet” of elementary motions, which are similar to build-
ing blocks for human movements [30]. This motion alphabet
enables the creation of a “motion language”, where analogies
are made between movements and words. The relationship be-
tween action and language is supported by the Mirror Neuron
Theory [31] which states that the same brain mechanisms are
activated regardless of whether actions are being performed or
observed [32].

A motion language is able to generalize movement by
describing innumerable concepts using different combinations
of a limited number of primitives. The organization of elemen-
tary actions for classifying human movement by describing a
hierarchical model has already been studied [33]. The concept
of motion primitives was also explored in a method which
automatically derived vocabularies of movement modules from
visual data by taking advantage of the underlying spatial-
temporal structure of human movements [29]. Video image



sequences have been converted into strings containing se-
quences of symbols, each representing a manually determined
primitive, to classify five one-arm movements [34]. Also from
video images (mocap database), the inference of sequential
and parallel grammar rules to describe human movements has
been studied [35]. The motion-primitive concept has also been
used for motor modular control of robots, frequently combined
with learning through observation [36], [37].

Based on previous approaches, the development of a motion
language may be divided into four general tasks: Segmenta-
tion, Feature Extraction, Symbolization and Grammar Infer-
ence. Together, these four tasks constitute the motion language
methodology.

A. Segmentation

One of the challenges in the process is determining how
to segment the signal into suitable building blocks. Most
motion language approaches, specially those based on full-
body mocap data, manually segment motion into primitives,
e.g. movements decomposed into individual joints’ angular
displacement. When the data available is of reduced di-
mensionality, and not so intuitive as visual data, the signal
should be automatically segmented, i.e. without human input,
according to its inherent characteristics in order to maximize
the amount of information the symbols retain from the original
signal.

B. Feature Extraction

After segmentation, various features extracted from each
segment of the signal are used to classify them into different
symbols. The most common feature extraction approach, when
detecting daily activities from accelerometer data, is to extract
information from equally sized sliding windows. This does
not take primitives into consideration but rather statistical
information about the whole movement.

C. Symbol Assignment

The features extracted from the segments are used to
differentiate them from one another. Segments with similar
characteristics may be assigned one symbol. Finding appropri-
ate features is important to the creation of relevant symbols.

D. Grammar Inference

Grammar rules express how symbols may be put together
to form words and sentences which represent different move-
ments. They may be inferred from a large collection of data
or designed based on known characteristics of the system, e.g.
the human locomotive system. Although segmentation, feature
extraction, and symbol assignment may not relate directly
to movements, the physical limitations of the body should
be reflected by grammar rules on syntactic and semantic
levels. Syntactic analysis is concerned with deriving rules
about which movements are possible, such as “arms only bend
one way”. Semantic analysis considers rules about how differ-
ent movements are associated. Humans cannot, for example,
“chew gum and whistle at the same time”. The elaboration of
grammar rules from mocap data has been explored in [35].
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IV. EXPERIMENTAL SETUP

Two SHIMMER sensor nodes (shimmer-research.com),
composed of tri-axial accelerometers, were attached to both
shins of the subjects, close to the ankles. The placement of
the sensor was chosen so that the user would be able to strap
the sensors on without much precision. The movements were
sampled at 50Hz and the data was continuously streamed
via Bluetooth to a nearby computer. The subjects walked a
straight line on a six-meter-long Gold Gait Rite pressure mat
[17], which samples data at 60Hz. The data obtained from
the pressure mat was used as a reference for heel-strike and
toe-off.

Seven subjects participated in the experiments. They were
asked to walk: (1) at a comfortable self-paced speed, referred
to throughout this paper as normal walk; (2) at a very slow
speed taking shorter steps, slow walk; and (3) at a comfortable
self-paced speed while having their right knee immobilized
with a brace in order to simulate limping, limp walk. Three
runs of each type of walk were performed on the 6-meter-
long pressure mat. The number of steps recorded varied from
around 10, for normal and limp walking, to around 30, for slow
walking. Only steps with good reference data were considered.
The data was analyzed and the results obtained from one
subject’s data are presented in Section VIIL.

V. MOTION LANGUAGE DESIGN

The goal of this study was to apply the proposed motion
language methodology to acceleration data in order to extract
gait parameters and symmetry measures for the three differ-
ent types of walk describe in Section IV. A new measure
of symmetry was derived from the motion primitives and
compared with a traditional symmetry index. Throughout this
paper, Stance is defined as the period when the foot is on the
ground; swing is when the foot is off the ground; toe-off is the
moment when the foot leaves the ground and heel-strike is the
moment when the foot meets the ground. Stride is the complete
sequence: heel-strike, stance, toe-off, swing and heel-strike.

The acceleration signals used in this study were not cali-
brated to m/s? hence the acceleration units will be omitted.
In longer data collection sessions, sensors might exhibit drift,
in which case some form of adaptive calibration would be
required.

The motion language methodology was implemented as
follows:

A. Segmentation

The accelerometer data was filtered with a mean filter three
samples wide. The Segmentation task was performed on the
resultant acceleration signal:

Ares = 1/ A2 + A2 + A2,

where A, is the resultant acceleration, and A;, A,, A, are
accelerations in the accelerometer’s local coordinate system.
When the subject is standing still, with both feet together,
z corresponds to the vertical axis, y corresponds to the



horizontal axis perpendicular to the direction of walking, and
z corresponds to the horizontal axis along the direction of
walking.

The chosen segmentation method was a bottom-up linear
segmentation algorithm described in [38]. The algorithm starts
by fitting a small line segment over every consecutive three
samples and iteratively fits longer line segments over neigh-
boring samples until the mean square error (MSE) between
the original resultant acceleration and the linearly segmented
signal reaches a predetermined error threshold. The data points
between start and end of each fitted line are regarded as a
segment.

The output of the Segmentation task is illustrated in Fig-
ure 1. The diamond-shaped markers indicate the beginning
and the end of each segment. The dotted line represents the
resultant acceleration before segmentation and the solid line
represents the segmented signal.

Figure 1. Segmented signal compared to original resultant acceleration signal,
for “normal walk”.

B. Feature Extraction

The features extracted from each segment were: variance of
the resultant acceleration, var; mean acceleration on all three
axes, Ay, Ay, A,; and the number of samples in the segment,
length. These features were chosen since they represent well
the data in each segment (mean and variance) and its duration
(length). The ith segment is then represented by the five-
dimensional vector:

Steat(t) = [Az (1) Ay(i) A, (i) var(i) length(i)]

C. Symbol Assignment

The segment features extracted from the acceleration signal
for both the right, Steqtr, and the left foot, Sgeqsr, Were
normalized to the interval [0 1]. Considering N segments from
the right foot and M segments from the left foot, the data is
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organized in a (N + M) X 4 matrix:

SfeatR(l)
SfeatR(2)

SfeatR (N)
SfeatL (1)
SfeatL (2)

sfeatL(M)

The rows of the matrix above (segments) are divided into dif-
ferent groups using k-means clustering. The optimum number
of clusters was chosen based on the minimum Davies-Bouldin
index [39]. A different symbol was assigned to the segments
within each cluster. For simplicity, the symbols are integers
contained in the interval between 1 and the maximum number
of clusters.

At this stage, it is not known how or if the symbols
are semantically significant. However, it is expected that the
acceleration peaks observed at heel-strike and toe-off [40] are
characterized by at least one symbol. It is the goal of the
“grammar inference” phase to determine how these symbols
are associated with the different gait phases. Considering that
K-means clustering is sensitive to initial conditions, it could
happen that the symbols are not semantically significant and
the grammar inference phase fails to identify appropriate rules.
In that case, the clustering phase is repeated with different
initial conditions.

D. Grammar Inference

The rules describing the symbol sequences were manually
derived based on the repetitiveness of the signal and the
characteristics of the system, e.g. the symbols considered
interesting appear once every cycle, toe-off can only come
between stance and swing, etc. The rules were used to identify
four gait parameters: heel-strike, toe-off, swing and stance.
Although only two parameters are needed to determine the
other two, i.e. either toe-off and heel-strike or stance and
swing, all four parameters were estimated individually so
recurrent rules could be designed to maximize the accuracy
of the classification. The rules were chosen to be subject
and gait type specific due to large interpersonal variability.
In the case of normal walking, for one subject, for example,
the correspondence between symbols and gait parameters was
designed as shown in Table II.

Table IT
EXAMPLE OF GRAMMAR RULES

[ symbolic occurrence

gait parameter

symbol 5 swing
symbol 3 stance
transition from symbol 4 to symbol 1 between swing | heel-strike
and stance

transition from symbol 2 to symbol 4 between stance | toe-off
and swing




An algorithm may be designed to find these rules automati-
cally by analyzing every symbol and transition, and matching
those to known characteristics of the system, e.g. a complete
stride is a sequence of heel-strike, swing, toe-off and stance;
swing is approximately 40% of the total stride time; one foot
can only swing while the other is standing, etc.

VI. EXTRACTING GAIT CHARACTERISTICS

As mentioned at the beginning of Section V, the goal of this
study is to make use of motion primitives in order to detect
the four main phases of gait, and identify different walking
patterns.

Heel-strikes identified with the previously mentioned gram-
mar rules, and heel-strikes obtained from the reference signal,
were used to calculate stride times. Stride times were, in
turn, used to calculate gait symmetry,SI, according to (1)
[41]. This gait measurement is important when assessing, e.g.
rehabilitation after stroke.

T — T
L(Tr+TyL)

where Tg is the average stride time for the right foot and 77,
is the average stride time for the left foot.

The closer the absolute value of SI is to zero, the more
symmetric the walk. A negative value indicates that the left
foot is, on average, slower than the right foot and a positive
value indicates the opposite. A slower stride time, however,
does not indicate a more abnormal movement and the “af-
fected” side cannot be determined. The value for this index
is unbounded and, in practice, a correspondence between this
index and quality of gait is unclear. This measure of symmetry
only takes into account the average stride time for each foot,
and as such, it does not provide any information about the
different movements performed by both feet. If the subject
limps but manages to walk with similar stride times, the ST
index will not consider this to be an asymmetric walk.

The derived symbols can be used to compute a more infor-
mative measure of symmetry which takes all the acceleration
data into account, as follows. After substituting the accelera-
tion signal for the respective symbol sequence, histograms of
the time elapsed between two consecutive symbol transitions
of the same kind are calculated for all possible transitions, i.e.
{lto1,1t02,1t03, .., NtoN}, where N is the number
of symbols (see Figure 2). The symmetry index based on the
transition histograms,S Iy, is computed by:

Z:i‘rtlj=1 % EkK=1 |hRij(k) - hLz’j(k)l
SN e T i (k) + b (R)|

where N is the number of symbols; K is the number of bins
in the histograms; n;; is the number of non-empty histogram
bins for transition 47, i.e. from symbol ¢ to symbol j; hg;;(k)
is the normalized value for bin £ in the transition histogram
ij for the right foot; and hp;;(k) is the normalized value for
bin k£ in the transition histogram ¢j for the left foot.

This index ranges from O to 1, where 0 means total
symmetry and 1 means complete asymmetry. Slsymp takes

SI = 100 n

SIsymb =
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Figure 2. Time elapsed between two consecutive transitions of the same kind
(5-to-3). Values found for all such transitions are used to construct transition
histograms.

Figure 3. Symbol distribution over time compared to the original resultant
acceleration data, for “normal walk”.

into account not only the stride times but also the dynamics
of the movement. The Sl index demonstrates one way
in which the symbol abstraction used in the motion language
methodology can be used to extract meaningful information
from sensor data.

VII. ANALYSIS OF RESULTS

Figure 3 illustrates the symbols found for the normal walk
data (right foot) along with the resultant acceleration, and
Figure 4 shows the same symbols along with the reference
data from the pressure mat. The symbols found for the limp
walk data are shown in Figure 5.

The symbols found for “normal walk” and “slow walk” data
were very similar and the rules describing gait events were the
same for both feet. On the other hand, the symbols found for
“limp walk” were very different from one foot to the other. The
different symbols, in this case, reflect the asymmetric nature



Figure 4. Symbol distribution over time compared to the reference signal
from pressure sensitive mat, for “normal walk”. Symbolic representation and
reference data are similar between both feet.

Figure 5. Symbol distribution over time compared to the reference from
the pressure sensitive mat, for “limp walk”. Reference data looks similar
between both feet, but the symbolic representation expresses differences in
the movements of each foot.

Table III
NUMBER OF CLUSTERS FOUND IN SYMBOL ASSIGNMENT FOR EACH TYPE

OF WALK.

Type of N R

ormal | Slow | Limpin,
walk ping
no. of 5 3 9
clusters

of the walk. In addition, the difference in movement between
feet increased the complexity of the data and more symbols
were needed to describe the walk. The number of clusters
found during the Symbol Assignment task, for this particular
subject, are shown in Table III.

Figure 6 illustrates the parameters identified using the
proposed motion language methodology, shown alongside the
reference signal. The detection of heel-strike and toe-off for
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Figure 6. Gait parameters determined from grammar rules after segmentation,
feature extraction, and symbolization, for “normal walk”.

Figure 7. Heel-strike and toe-off detection compared to the reference signal
from the pressure sensitive mat, for “normal walk”.

the right foot from the normal walk data set are displayed in
Figure 7.

The average heel-strike and toe-off detection errors are very
small for true positives (see Tables IV and V). The false
positives and false negatives happened, in general, at the start
or end of the data set, where there were no symbols before
or after to be inferred from (conditional rules). Future work
might avoid this by using longer data sets. Pressure sensitive
insoles may be more appropriate than the pressure mat for
data collection, since they may provide continuous reference
for heel-strike and toe-off for longer periods of time.

The SI and SIgym, symmetry indices for all the three
types of walk are shown in Table VI. The same one-second
difference in average stride time between feet, for slow walk
and limp walk, resulted in different absolute values of SI. The
S1 index is biased by the stride time. The ST symmetry index
found for the limp walk, both from the reference data and from
the symbols, is close to zero. This value does not express the
asymmetry of the limping pattern. Though the subject was



Table IV
OVERVIEW OF THE RESULTS FOR HEEL-STRIKE DETECTION.

Type of Walk Norma! Slow . lepmg
Left Right| Left Right| Left Right
Foot Foot | Foot Foot | Foot Foot
no. of Steps 9 11 30 29 12 9
no. of !“alse 0 0 1 5 1 1
Negatives
no.of False | o |, [ o
Positives
Average Error of | 03 (04 [ 007 004 | 002 003
True Positives (s) : . . . . :
Table V

OVERVIEW OF THE RESULTS FOR TOE-OFF DETECTION.

Type of Walk Norma! Slow ~ Lm]pmg
Left Right| Left Right| Left Right
Foot Foot | Foot Foot | Foot Foot
no. of Steps 9 11 30 29 12 9
no. of !“alse 0 0 1 0 0 0
Negatives
nooffale 1o o |1 2 |o o0
ositives
Average Error of
True Positives (s) 0.03 0.04 | 007 006 | 0.03 0.02
Table VI
OVERVIEW OF THE RESULTS FOR SYMMETRY INDICES, SI AND STgymp.
N 1 1 Limpi
Type of Walk orma. Slow : |mpm$
Left Right| Left Right| Left Right
Foot Foot | Foot Foot | Foot Foot
Average stride
time (s) 098 098 [ 129 128 | 1.17 1.18
(symbols)
Average stride
time (s) 098 098 [ 1.29 128 | 1.17 1.17
(reference)
SI (symbols) 0 -0.78 0.85
S1 (reference) 0 -0.78 0
STsymb 0.12 0.04 0.95

moving each leg differently, the average stride time for both
feet was still similar. The SI,ym, symmetry index, however,
picks up on the asymmetry of the limping gait. According to
the SIsymp index, limping is less symmetric than normal or
slow walking, and its value is not biased by the stride time.

VIII. FUTURE WORK

This study has laid the ground work for a number of further
investigations. A more extensive analysis of the data is still
to come, which will compare symbols across subjects and
attempt to find correspondences between the symbols found
for each type of walk. The goal of this next study will be
to find symbols robust enough to describe different subjects’
gait patterns, and comprehensive enough to span different
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walking patterns, rendering the analysis subject independent.
In addition, an algorithm will be designed to automatically
extract rules describing gait parameters, based on previous
knowledge of the system (unsupervised learning).

Three possible paths to finding more informative symbols
seem particularly interesting to consider: investigating new
segmentation methods; investigating new features and rules;
and investigating new clustering and symbolization techniques.
New segmentation methods could be based on statistical
characteristics of the signal, such as the probability of cer-
tain values occurring, or non-linear local descriptions, such
as reoccurring sequences of values. New features and rules
could exploit the parallelism between feet. In normal walking
patterns, for example, both feet should be performing the
same activity but shifted in time. Using this information may
improve or ease the detection of gait parameters. The third path
may investigate appropriate initial conditions for the clustering
method or the use of system identification approaches and
hybrid Markov models to cluster and symbolize the data.

The motion language methodology was here applied to
acceleration data, but it can be extended to any time-series.
Different types of sensors could undergo the same analysis.
This method provides also a good compression of the original
signal and can be used to reduce the computational complexity
of different techniques in learning or adaptive systems.

IX. CONCLUSION

The motion language methodology is a powerful tool for
representing human movements and it has been used in
different research areas. An important application in the health
care area is gait analysis. Since accelerometers are inexpensive
and convenient sensors for recording human movements, this
work investigated the used of motion primitives to analyze
accelerometer-based gait data.

Results show that the motion language methodology can
be used for identifying gait parameters such as heel-strike
and toe-off, as well as gait symmetry. The symmetry index
based on motion primitives proposed here outperforms the
traditional index in that it is not biased and it conveys not
only static but also dynamic information about the gait pattern.
This symmetry index is an example of how the motion
language can contribute to the understanding of movements,
the interpretation of accelerometer signals, and therefore, the
development of wearable monitoring systems.
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