
Smart Environment Application Architecture
Zigor Salvador, Mikel Larrea, Alberto Lafuente

Department of Computer Architecture and Technology
The University of the Basque Country, Spain

Email: zigor@zigorsalvador.com, mikel.larrea@ehu.es, alberto.lafuente@ehu.es

Abstract—Pervasive computing is a field where many different
entities come into play. In particular, development of useful appli-
cations in the field of pervasive healthcare requires dealing with
substantial levels of complexity regarding the management of
the pervasive environment where users and applications coexist.
Service oriented middleware architectures simplify the task of
creating those applications and turn the management of pervasive
environments into a productive activity. We present our ongoing
approach to the design of such a middleware architecture, known
as the Smart Environment Application Architecture.

I. INTRODUCTION

Pervasive healthcare, as is the case with most of the applica-
tions of ubiquitous computing [7], is based on the integration
of a wide range of devices, resources and the infrastructure
for their communication. Ideally, these constituent elements
are well integrated with each other and become a robust,
seamless and efficient distributed system on top of which
various software applications can serve users in different and
complementary ways.

Reality, however, is still far from this ideal vision, both
regarding ubiquitous computing as a whole or speaking about
the very particular realm of pervasive healthcare technologies.
Bridging the gap between the technological reality and the
social expectations is the main focus of our research, and we
believe that one of the most important factors limiting the
real-world deployment of pervasive applications lies on the
integration methodologies, or lack thereof.

This paper analyses the main software requirements of ap-
plications which are being developed in the areas of pervasive
healthcare and ubiquitous computing, presenting a middle-
ware [1] architecture which integrates key aspects in the devel-
opment of such applications. The inner workings of different
elements from the architecture are discussed, and finally some
conclusions are drawn with regards to the implementation and
validation of the aforementioned architecture.

II. PERVASIVE COMPUTING APPLICATIONS

Providing application developers with the right software
tools is vital in order to allow pervasive applications to live
up to their full potential and effectively achieve their objec-
tives. However, careful consideration of generic application
requirements [4] and scopes is needed before these tools can be
formulated and included into an architecture for the integration
of pervasive resources and the applications which use them.

Research partially supported by the Spanish Research Council, grant
TIN2006-15617-C03-01, and the Basque Government, grant S-PE06IK01.

In the context of this work, we will define a pervasive
computing application as a high-level software entity, which
exists inside the boundaries of a pervasive computing en-
vironment, is user-centric in its nature, and interacts with
both the environment and the people in it to achieve one or
more functional goals. Depending on the particular type of
application and the features of its surrounding environment,
applications will make use of certain types of resources to
achieve their goals. We group these resources in three main
categories, namely: control resources, context resources and
interaction resources.

III. PERVASIVE COMPUTING RESOURCES

Control resources include all the controllable networked
devices in the environment. These devices vary in form, size
and purpose, but all share the ability to change the environment
in one way or another. Many pervasive computing applications
need to act on the environment on behalf of users, and
consequently rely on remote control resources to fulfill that
task. Examples of such resources include security locks, fire
alarms, lighting controls, air conditioning systems, etc.

Context resources are formed by sensing devices [6] and
other networked sources of environmental information. From
wearable heart rate monitors to fall detection sensors, perva-
sive computing environments are full of devices with varying
degrees of sensing capabilities. The data gathered from all the
different sensing devices produces context information, which
can be used by applications to produce smart behaviour and
non-intrusive proactive reasoning.

Being built around users, pervasive applications often re-
quire human interaction in the form of feedback or commands
to carry out their functional goals. Interaction resources which
make this human-computer interaction possible are devices
such as mobile phones, PDAs, computers, TV sets, audio
systems and others, which can make use of one or multiple
interaction modalities in accordance with their features and
the limitations imposed by the environment and its context.

If the development of pervasive applications is to be
productive, and the resulting applications are to be correct,
developers need to be supplied with a stable set of tools which
will simplify, unify and standardize the access to all of the
underlying resources while keeping the flexibility, adaptability
and extendability of the system at a reasonable level. A service
oriented architecture [2] based on middleware has the potential
to fulfill those requirements and produce a qualitative leap in
the development of pervasive computing applications.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
PERVASIVEHEALTH 2008, 30 Jan - 1 Feb. Tampere, Finland
Copyright © 2008 ICST 978-963-9799-15-8
DOI 10.4108/ICST.PERVASIVEHEALTH2008.3175

IV. SMART ENVIRONMENT APPLICATION ARCHITECTURE

The software architecture for applications of smart environ-
ments, depicted in Fig. 1, presents a layered set of services or
modules, where the modules in the bottom layer unify access
to the various types of hardware resources described in Sec-
tion III and the modules in the middle layer provide additional
functionality by performing both horizontal interaction with
other middleware services and vertical interaction with the
application that sits on top of the stack and the hardware driver
modules beneath them.

Fig. 1. The layered middleware architecture

The context, control and interaction driver modules of the
architecture represent generic services that, once implemented,
encapsulate a given hardware, technology or device (e.g., a
X10 control driver, a Zigbee context driver or a Pocket PC
interaction driver). Driver modules are conceptually grouped
according to the nature of the resources they encode, and
provide one of three unified interfaces to the modules above
them. Driver modules can be very specific and therefore
contain specific parts of code to access the hardware and
control the flow of information between the application and
the target resources.

The middle layer contains the managers or main functional
modules, i.e. the context manager, control manager, interaction
manager and ontology manager. The first three modules are
closely related to a given type of resource and provide the
application with a unified and managed access layer to the
resource. The fourth module, the ontology [5] manager, is
in charge of managing the persistent ontology database, im-
porting ontological data from the driver modules, and setting
up the initial instance of the ontology reasoner which can
be leveraged by applications to produce smart behavior and
proactive interaction with end-users.

This service oriented middleware architecture is based on
distributed modules which can be deployed across a network
where loose coupling is a key feature and multiple instances
of both low level modules and applications can be found.
The overhead of locating instances of low level services,
managing their state, regulating access to them and granting
the general consistency of the distributed system is shared
by the main functional modules, and is thus transparent to

both applications and low level modules. This way, application
developers can concentrate in their applications, and resource
driver developers can create efficient hardware drivers without
worrying about the inner workings of the middleware.

V. IMPLEMENTATION AND VALIDATION

The empirical validation of the proposed software archi-
tecture is currently being carried out at the University of
the Basque Country, through the implementation of an open-
source middleware platform for the integration of generic per-
vasive applications known as Smart Environment Application
Middleware or, more briefly, Seamware.

Seamware is fundamentally a layered, object oriented mid-
dleware extension to the Apache River [3] technology (for-
merly known as Jini Network Technology). This technology
is a service oriented architecture that defines a programming
model which both exploits and extends Java technology to
enable the construction of secure, distributed systems con-
sisting of federations of well-behaved network services and
clients. Seamware uses the River technology to build a smart
environment application middleware which is adaptive, scal-
able and flexible as typically required in dynamic computing
environments, e.g., pervasive healthcare scenarios.

In Seamware, all of the functional modules presented in
Section IV become autonomous, yet interrelated, Apache
River services, which dynamically detect the existence of
other Seamware services and clients and provide application
developers with a unified way of accessing the underlying
hardware and software resources they need in order to build
their applications. Seamware focuses on providing an easy to
use and easy to extend middleware platform that will enable
the creation of pervasive computing application prototypes
with a very modest investment in development time, suitable
for both small development teams and didactic purposes.

Seamware is still in its early development stages but already
shows some promise. Release to the general public is expected
during the year 2008, followed by the introduction of a per-
vasive computing application and hardware prototype in order
to validate the architecture with a real-world implementation.

REFERENCES

[1] Philip A. Bernstein. Middleware: A model for distributed system services.
Communications of the ACM, 39(2):86–98, 1996.

[2] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology,
and Design. Prentice Hall PTR, 2005.

[3] The Apache Software Foundation. Apache river jini implementation
community (http://incubator.apache.org/river/).

[4] Zigor Salvador, Mikel Larrea, and Alberto Lafuente. Infrastructural
software requirements of pervasive health care. In AC 2007: Proceedings
of the IADIS International Conference on Applied Computing, pages 557–
562, Salamanca, Spain, 2007. IADIS Press.

[5] Frank Van Harmelen and Deborah L. McGuinness. Owl web ontology
language overview (http://www.w3.org/tr/owl-features/).

[6] Kristof Van Laerhoven. The pervasive sensor. In UCS 2004: Second
International Symposium on Ubiquitous Computing Systems, pages 1–9,
Tokyo, Japan, 2004. Springer.

[7] Mark Weiser. The computer for the 21st century. SIGMOBILE: Mobile
Computing and Communications Review, 3(3):3–11, 1999.

