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Abstract—The manual assessment of Activities of Daily Living
(ADLs) is a fundamental problem in elderly care. The use of
miniature sensors placed in the environment or worn by a
person has great potential in effective and unobtrusive long term
monitoring and recognition of ADLs. This paper presents an
effective and unobtrusive activity recognition system based on the
combination of the data from two different types of sensors: RFID
tag readers and accelerometers. We evaluate our algorithms on
non-scripted datasets of 10 housekeeping activities performed
by 12 subjects. The experimental results show that recognition
accuracy can be significantly improved by fusing the two different
types of sensors. We analyze different acceleration features and
algorithms, and based on tag detections we suggest the best tags’
placements and the key objects to be tagged for each activity.

I. INTRODUCTION

In order to fulfill the special needs of an increasing el-
derly population, elderly care is becoming a rapidly growing
problem, especially in western societies. The most common
way of detecting the first changes in behaviour of an elderly
person is monitoring of everyday activities that are usually
performed on a daily basis. For that purpose, two specific sets
of activities that describe the functional status of a person
(Activities of Daily Living (ADL) - bathing, dressing, toileting,
transferring, continence, feeding), as well as interaction with
the physical and social environment (Instrumental Activities
of Daily Living (IADL) - using telephone, shopping, food
preparation, housekeeping, doing laundry, transportation, tak-
ing medications, handling finances) have been defined [1]. The
assessment of ADLs/IADLs is mostly done manually through
interviews and questionnaires. As this is a time consuming and
error prone process [2], it could highly benefit from automatic
assessment technology.

Various approaches to the ADL recognition problem can
be found in literature. The two most common approaches are
based on complementary assumptions. The first approach is
based on the assumption that the objects people use during
the execution of an activity robustly categorize the activity.
In this approach, sensors are typically placed in the envi-
ronment to detect user’s interactions with objects [3]. Radio
Frequency Identification (RFID) tags and readers are usually
used in these activity recognition systems, because of their
durability, small size, and low costs. The second approach
adopts the assumption that the activity is defined by motion
of the body during its execution. Research in the wearable
computing community has shown that characteristic movement

patterns for activities such as running, walking or lying can
effectively be inferred from body-worn accelerometers (e.g.
[4], [5]). More specialized activities that have been recognized
with accelerometers include household activities [4], physical
exercises [6], wood workshop activities [7], and American
Sign Language [8].

The goal of the research presented in this paper is to
improve the recognition results by integrating these two ap-
proaches, while also aiming to compensate for the shortcom-
ings of both. In order to be able to accurately recognize
different activities, the RFID approach requires a large number
of objects to be tagged. However, we argue that it is not
feasible to tag all objects, because of several reasons. First,
the deployment of the large number of tags is still time
consuming and error prone. Second, it is not practical to tag
some objects because of their material (e.g. metal) or specific
usage (e.g. objects used in microwave). We propose to use only
the key objects for a specific set of activities by augmenting
the object usage with a complementary sensing technique
(i.e. accelerometers). On the other hand, the accelerometers
approach requires multiple sensors to be placed on strategic
body locations, such as wrist, hip, and thigh [4] for accurate
recognition. We propose to use only a single 3D accelerometer
at the dominant wrist of the user. Since the target user
group of elderly people might not be familiar with modern
information technologies, limiting the hardware to a single
wrist-mounted device containing both the RFID tag reader and
the accelerometer could increase user acceptance of our ADL
monitoring system.

There have been attempts to combine accelerometers with
other sensor modalities, such as microphones (e.g. [7], [9]),
wearable cameras [8] and recently, RFID tag readers [10].
We extend this promising approach [10] in the following
directions: 1) Since we want to tag only a few important
objects per activity, we perform the experiments with different
numbers of tagged objects. Results of the experiments show
that satisfactory recognition results can be achieved with
fewer tagged objects than are usually used. 2) We evaluate
our algorithms on a challenging multi-person dataset. The
dataset is released and publicly available [11]. 3) We analyze
different features and window lengths, as well as different
ways of combining the activity recognition results from the
two sensor modalities. Unlike in [10], our primary source of
information is the RFID data, because it provides accurate
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high-level information for the activity inference. We rely on
accelerometers in cases when the RFID data is not sufficient,
such as in the periods when the antenna can not detect
person-object interactions and in case of tag ambiguities in
terms of objects shared among the activities. 4) We do not
incorporate in our approach decomposition of activities into
phases (i.e. simple actions performed on objects), because we
want to avoid scripted activity stages, as well as their temporal
modeling, training and labeling.

The rest of the paper is organized as follows. In Section II
we introduce the hardware used in our experiments and the
recorded dataset. Section III describes the three approaches
used for ADL recognition. In Section IV we report on the
results of all the approaches used. Finally, in Section V we
summarize our results and give an outlook on future work.

II. EXPERIMENT SETUP

We have focused in our experiment on recognition of a spe-
cific class of IADLs, i.e. housekeeping activities. So far, there
have been efforts on recognizing various selected instances
of different ADL/IADL classes such as hand washing [12]
or eating activities (e.g [13], [14]). Housekeeping activities
are an important and often occurring IADL class, for which
assessment can highly help in the early detection of symptoms
of different age-related diseases. We use a dataset [15] of four
standard IADL housekeeping activities (vacuuming, ironing,
dusting, and brooming) for the evaluation of our approach that
we augment with six additional activities (mopping, cleaning
windows, making bed, watering plants, washing dishes, and
setting the table).

The overall length of the dataset is 240 minutes. The dura-
tion strongly varies among some of the activities, reflecting
the natural distribution of activities in daily life. The data
was recorded by 12 subjects (3 females and 9 males), in a
controlled lab environment that was converted in a living space
with typical objects found and used in a domestic setting,
to make it resemble a common home environment (Figure
1(a)). We wanted to avoid bias in the dataset by the subject’s
online annotations, so we recorded the whole process by video
camera and did the annotation offline.

Although a recent study [16] showed that the movements
of elderly subjects are less pronounced, it was still impractical
to ask elderly people to participate in the experiment at this
early stage. However, we plan to do that in the future when
all the necessary requirements are fulfilled. Since the scenario
presented to the subjects was kept as vague as possible, there
was no significant bias in the dataset. The subjects were told
to choose a certain set of activities to perform based on the
list of 10 targeted activities. We did not require them to follow
any description of the tasks which resulted in a wide variety
of ways different people performed the same activity. In
order to examine the feasibility of person-independent activity
recognition, we perform a 12-fold leave-one-person-out cross
validation on the data. This is a highly important requirement
for our system, considering the target user group of elderly
people.

(a) Laboratory

(b) Tagged Objects (c) Sensors

Fig. 1. Experiment setup.

We deployed 191 tags on 55 objects (Figure 1(b)). The
number of tags per object varies between 18 tags for a
pillow and 1 tag for a dusting cloth. We aimed to tag as
many objects as possible with multiple tags for the following
reasons: 1) to find the key objects for the targeted set of
housekeeping activities, 2) to evaluate the influence of the
number of deployed tags on the recognition results by using
different number of tags, and 3) to optimize tag detection for
objects that are difficult to detect because of their size, shape
or material.

Figure 1(c) shows the sensor platform that was used for
recording of the dataset. The users wore the sensors on
their dominant wrist. Three subjects that participated in our
experiment were left-handed, which later influenced the recog-
nition of the targeted set of activities. We used the Porcupine
[17], a wearable multi-sensor platform that includes a 3D
accelerometer to infer relevant arm movements. For detection
of person-object interactions, the iBracelet [18], a wireless
RFID reader, was used.

III. APPROACH

The main goal of our experiment is to study the combination
of RFID and accelerometer sensing technology for ADL
recognition. In order to do that, we first use the accelerom-
eter and RFID tags separately, and afterwards we apply an
integrated approach to overcome the shortcomings of both
approaches. In the following, we describe all three approaches
used.

a) Recognition based on Acceleration Data: The 3D-
acceleration data as recorded from the sensor was downsam-
pled from 250Hz to 100Hz for our experiments. We computed
the following features from the raw signal: mean, variance, en-
ergy, spectral entropy, pairwise correlation between the three
axes, the first ten FFT coefficients and exponential FFT bands
[19]. Each feature is computed over a sliding window shifted
in increments of 0.5 seconds. We evaluated the performance
of the features both individually and in combination, and over
different window lengths (0.5sec-128sec).



For classification of activities we evaluate three different
approaches, namely Naive Bayes, Hidden Markov Models
(HMMs) and Joint Boosting. Previous work has shown that
Naive Bayes and HMM classifiers are well-suited for low-level
activities such as sitting, standing and walking [20] or wood
workshop activities [7]. Boosting methods have also been
successfully applied to data from wearable sensors [19]. The
third method we employ, Joint Boosting [21], is a multi-class
variant of traditional boosting approaches in which multiple
weak classifiers are combined into a single strong classifier.

b) Recognition based on RFID Data: We associate all
the tagged objects with the activities in which they are usually
involved. This process is done manually, but as we aim at
tagging fewer objects in our final ADL recognition system,
that should not be a major constraint for the implementation of
our approach. With this object-activity mapping, each detected
tag clearly indicates a candidate set of possible activities.

The used dataset contains very few accidentally detected
interactions with objects. Also, many interactions with objects
are not detected, mostly because of the short range of the
RFID reader’s antenna. Generally, the number of tag detections
highly varies among the activities. In the entire dataset, 0.764
tag detections happened per second on average. To overcome
the problem of sparse detections, we use a sliding window over
the detected RFID tags and classify each window based on the
majority voting scheme of the tag readings, i.e. mapped activ-
ity labels in that window. We shift the window in increments
of 1 second and we evaluate the recognition performance for
different window lengths (1sec-120sec). Additionally, the tags’
votes are weighted proportionally to their relative position in
the window, in order to avoid bias from the previous activity
at activity transitions for longer window lengths.

For the evaluation of the influence of the number of used
tags on the recognition results, we use the following procedure
(Figure 2). In the first run, we use all the deployed tags.
Since we aim to tag as few objects as possible, we decrease
the number of used tags in each run by half by using the
following procedure. We rank the tags for each activity based
on the number of detections and then use the best 50% of
these tags until in the last fifth run we only have one tag
per activity. Some of the activities include fewer objects than
others, which is reflected in the dataset. E.g. activities such
as watering plants and brooming require fewer interactions
with objects. In some other activities, such as washing dishes,
tagged objects are not detected, probably due to the absorption
of the radio waves by water and metal.

c) Combining RFID and Accelerometer Sensing: For the
combination of RFID and accelerometer sensing, we use the
RFID recognition as a baseline method for the recognition of
activities. In cases when we fail to recognize the activity based
on RFID tags, we rely on the accelerometers’ recognition.
In principle, there are two different cases when the RFID
approach fails.

In the first case, the majority of detected tags within a
window is shared among several activities. Based on the RFID
approach, the window is classified as one of the activities that

Fig. 2. Key objects for activities and number of tags in different runs.

share the tags in that window, each of those activities having
the same probability. To decrease the classification errors, we
resolve this ambiguity by using the acceleration classification.
We classify the window as the activity which has the highest
likelihood among the activities that share the detected tags in
that window.

In the second case, the RFID reader fails to detect any tags
within a window. We classify the window as an unknown
activity, because we do not have any information about the
current activity, based on the RFID data. We resolve the
issue of gaps in RFID data by assigning the activity with
the cumulative highest likelihood to windows without tags,
based on the acceleration data. In this combined classification
process, we accept the acceleration-based classifications only
if their likelihood is above a certain threshold.

IV. RESULTS

In this section we present the experimental results for the
three approaches described in Section III. We evaluate our
algorithms on the dataset presented in Section II by using
standard metrics, namely precision (i.e. the number of true
positives in the test set divided by the sum of true positives
and false positives in the test set), recall (i.e. the number of true
positives in the test set divided by the sum of true positives and
false negatives in the test set), and accuracy (i.e. the number of
true positives in the test set divided by all samples in the test
set). The ground truth for the sliding window used in all three
approaches is the label of the last sample in the window. All
results are averaged over 12 cross validation runs. In each run
we train our algorithms on the data recorded by 11 subjects
and test them on the left out subject’s data.

a) Acceleration Results: In the following we report on
our recognition results based on features computed from the
wrist-mounted accelerometer alone. For the HMMs, in addi-
tion to the window length, we vary the number of states (1-4),
the number of Gaussians per state (1-4), and the observation
length (1-32). For Joint Boosting we vary the number of
weak classifiers (100-200). In order to filter out occasional
misclassifications, the output of all classifiers is smoothed
with a majority filter. The overall best result of 68% accuracy
is achieved with the Joint Boosting approach when using
all features and 200 weak classifiers. For Naive Bayes and
HMMs, we found that using mean and variance of the signal



Fig. 3. Classification based on data from the accelerometer. The plot shows
the accuracy across different algorithms and window lengths.

as features works best for our set of activities. From Figure 3
one can observe that both Joint Boosting and Naive Bayes
work best at relatively large window sizes of 32 seconds,
while HMMs perform better at smaller window sizes of up
to 4 seconds. One reason for this might be that the smaller
windows preserve more of the temporal structure inherent in
the data, which the HMMs are able to exploit.

The seemingly low accuracy of slightly below 70% should
be seen in the light that there were several factors making this
recognition task more challenging than others reported in the
literature: First, the use of only a single 3D accelerometer,
and second the fact that we trained and tested the system on
different users, some of which performed the same activity in
distinctly different ways and sometimes with different hands.
Third, we did not edit the recordings e.g. by cutting out only
the part during which the user actually ironed, but we included
the entire activity from setup (e.g. assembling the ironing
board) to teardown (e.g. stowing away the ironing board).

b) RFID Results: In the following we report on the
recognition results based on the RFID tags only. Figure 4 (left
column) shows how overall precision and recall change with
different window lengths. One can observe that our approach
performs best in terms of precision for very short windows.
On the other hand, recall is best for longer windows. That is
due to the fact that with longer windows we propagate the
labels to the regions where tags were not detected, so we
have fewer false negatives. At the same time, longer windows
increase the number of false positives, because of the tags’ bias
from the previous activity at the transitions between activities.
When using all deployed tags, the best results for precision
lie slightly above 92% when using windows of 7 seconds.
Recall reaches its maximum of 72% for windows of 82
seconds. Since recall dramatically increases when we increase
the window length from 1 to 40 seconds, and afterwards only
a slight improvement is achieved, we propose to use 40 second
windows as an optimal window length in this setting. Precision
in that case still remains high (89%/70% precision/recall).

Figure 4 (left column) also shows the effect of different
numbers of tags. As can be seen from the plots, by decreasing
the number of tags, recall decreases as well, but surprisingly
precision does not change much. On the contrary, in some
cases precision even increases with fewer tags, because some
of the tags shared among the activities are discarded from the
dataset in that way. When we use only one tag per activity,

Fig. 4. Overall precision and recall for different window lengths and different
number of used tags in case of the recognition based on the RFID tags only
(left) and based on the RFID tags and acceleration for shared tags (right).

we choose the tag that was detected most often during the
execution of each activity. That way, we define the key objects
per activity (Figure 2). Since the run with 12.5% of the most
detected tags performs overall better than the run when we use
only one tag per activity, we add three more objects to the set
of key objects. That way, we also avoid the gloves as a single
key object for window cleaning, since they are shared among
that activity and washing dishes.

We tagged most of the objects with multiple tags to find
the best placement of the tags. For many objects (e.g. vacuum
cleaner, mop, broom, iron) the tags placed on the handle of the
object were detected more often than the other tags attached
to the same object. That is because of the very short distance
between the object handle and the RFID reader during the
performed activities. For other objects the best placement is
at the place where users usually grab the object (e.g. corner
of the pillow) or at the place where users spend considerable
time during the execution of the activity (e.g. buttons on
the pillow case). For some objects (e.g. cupboard, window
cleaning liquid, and dusters’ box) the best placement depends
on whether the subject is left or right-handed.

The results show that a satisfactory trade-off between pre-
cision and recall can be achieved with appropriate window
lengths. A decreased number of tags does not influence
the recognition results significantly and the key objects for
activities are defined. Finally, the best placement for the tags
highly depends on the person, as well as on the activity.

c) Combining RFID and Accelerometer Sensing Results:
In the following we report on the recognition results based
on the combination of RFID tags and acceleration. As the
experiments show, we can improve overall precision and
recall by augmenting the RFID classification with acceleration
recognition scores in two cases: 1) when detected tags are
shared among the activities and 2) when interactions with
objects are not detected. For the combination of RFID and
acceleration classification, we use the parameters that yielded



the best results for the classification of acceleration data (Joint
Boosting, all features over windows of 32 seconds).

We present the results of resolving tag ambiguities by means
of acceleration classification in Figure 4 (right column). We
have only four types of objects (tagged with 16 tags) that are
shared among five activities in the dataset. Still, when we com-
pare the results when we use all the tags to the classification
based on RFID tags only, there is a clear tendency of about
3% improvement in recall. The precision increases, especially
for shorter windows (from 10% increase for windows of 1
second to 6% increase for windows of 7 seconds, when the
classification based on the RFID tags reaches its maximum).
For larger windows, the gain in precision is smaller but still
noticeable (for windows of 40 seconds, the increase is 4%, and
for the largest windows of 120 seconds, there is still increase
of 3%). This decrease of improvement for larger windows is
due to the fact that in larger windows, we usually have not
only the shared tags, but also additional tags that resolve the
tag ambiguities already on the level of RFID classification.

The results of additional filling in of gaps where no RFID
tags are sensed by using the acceleration classification are
shown in Figure 5. Here, we present the results for the run
when we use only one tag per activity. We vary the threshold
between 0 (when all acceleration-based classifications are
accepted) and 1 (when all acceleration-based classifications
are rejected, which brings us to the previous case of using
the acceleration for shared tags only). From the plot one can
observe that recall increases with the number of accepted
acceleration-based classifications. However, at the same time,
the more accepted acceleration-based classifications we have,
the more precision decreases. This is due to the fact that the
recognition of higher level activities such as housekeeping is
difficult using only one accelerometer placed at the dominant
wrist of a user. This trade-off between precision and recall
has to be taken into account based on the specific application
requirements.

In the extreme case, when the threshold is 0, there is no
unknown sample in the test data, which means that overall
precision and recall become the same. For shorter windows the
increase of recall is between 40% for windows of 1 second and
33% for windows of 7 seconds. At the same time, we observe
a significant decrease of precision (from 100% to 63% for
windows of 1 second, and from 99% to 69% for windows
of 7 seconds). For larger windows, the trade-off between
precision and recall is better, since we have higher increase
of recall comparing to the decrease of precision. For example,
for window length of 40 seconds, the recall increases by 24%
and precision decreases by 17%. For the largest window of
120 seconds, the decrease of precision is almost three times
lower than the increase of recall, i.e. precision decreases by
7% and recall increases by 19%. This is probably due to the
fact that the probability that there is no detected tag is lower
for larger windows than for shorter windows. Therefore, the
shorter windows need to rely more often on acceleration-based
classification which decreases the precision.

Classification results are slightly better in the run when

Fig. 5. Overall precision and recall for different window lengths and different
likelihood thresholds in case of 1 used tag per activity.

we use 100% of tags, but the overall improvement in pre-
cision/recall is higher in the run when we use only one tag
per activity. Thus, we can achieve good recognition results
with only a few RFID tags when combining them with
accelerometer sensing.

d) Discussion: The activity recognition scheme based on
the combination of RFID and accelerometer sensing yields
better recognition scores than either sensing technology alone.
Still, in order to augment the manual assessment of ADLs our
system needs to overcome a few limitations.

The main issue in the RFID part of our system is a
significant number of false negatives, i.e. tags were not de-
tected even though the subjects were interacting with the
tagged objects, because of the short range of the RFID reader
but also because of the usage of the non-dominant hand in
some activities. For example, during the ironing activity two
subjects occasionally used their non-dominant hand for ironing
some parts of the clothes that were easily reachable in that
way. Also, in four cases of cleaning windows, the dominant
hand of the subjects was occupied with cleaning utensils and
subjects had to open the window with the non-dominant hand.
Therefore, an additional bracelet on the non-dominant hand
might improve the number of detected tags, with a risk of a
lower user acceptance of the system. In the future we will
aim for an RFID reader with a more appropriate antenna
range. Another issue encountered during the experiment is tag
ambiguities, i.e. an object is used in more than one activity.
We aim to overcome these problems by relying on acceleration
classification.

For the activity classification based on the accelerometers,
we used state of the art algorithms, but the recognition scores
for the acceleration part of our system still encountered issues
most likely because of the following reasons.

First, in our experiment, we aimed at person-independent
training with 12 subjects who performed activities in very
different ways. For example, two subjects vacuumed not only
the floor but also the sofa. Also, the subjects had different



strategies for washing dishes. Three subjects did the washing
by repetitive scrubbing and rinsing of each dish and the other
subjects first scrubbed and then rinsed all the dishes.

Second, we had three left-handed subjects and even by
visual inspection of the acceleration data it can be clearly
seen that the range of their data is not the same as for the
right-handed subjects. One possible solution to this problem
would be to train and test the algorithms only on right-handed
or left-handed people.

Third, we used only a single accelerometer worn on the
wrist of the user which caused lower recognition scores
than usually presented in the literature. Some of the specific
movements during the execution of the activities could not be
inferred. For example, two subjects were turning the vacuum
cleaner on and off with their foot. Additional accelerometers
would probably increase the accuracy of the system, but again
with a risk of lower user acceptance.

Fourth, we did not divide the activities into phases because
we wanted to avoid the tedious labeling and manual modeling
of all the sub-activities. After comparing the recognition re-
sults with the ground truth and the video recordings, we found
that the acceleration classifiers often fail to recognize parts of
the activities that do not include discriminative movements
typical for that specific activity. For example, during the
ironing activity, parts when users were really ironing were
correctly recognized, but parts when users were finishing
ironing of one piece of clothing and preparing the next piece
of clothing were usually misclassified. Also, different users
performed beginning and ending of the activities differently,
which introduced additional misclassifications.

V. CONCLUSIONS AND FUTURE WORK

The main goal of this paper was to demonstrate the fea-
sibility of combining RFID and accelerometer sensing for
ADL/IADL recognition. We conducted an evaluation of our
algorithms’ performance on 10 housekeeping activities, ex-
ecuted by 12 subjects. Detailed analysis of the algorithms’
parameters indicates the optimal window lengths and features,
which are 40 seconds window for RFID-based recognition and
32 seconds window and combination of all the acceleration
features for Joint Boosting. The results show that combined
recognition helps in cases when tagged objects are being
shared among the activities, as well as in periods when the
RFID reader can not detect interactions with objects due to its
short range.

We aim to decrease the number of tagged objects and
accelerometers worn by users, while keeping satisfactory
recognition results when combining the two sensor modalities.
By using different numbers of tags in the dataset, we explored
how the number of tags influence the recognition. The results
indicate that a decreased number of tags does not significantly
change the precision of our system. In some cases, by decreas-
ing the number of tags, tag ambiguities disappear from the
dataset, which increases precision. This supports the scenario
of Ambient Assisted Living environments with the tags placed
strategically on the key objects.

In the future, we plan to validate our approach on larger
datasets consisting of activities performed by elderly people.
We want to investigate to which extent our results can be
generalized in that case, as well as the user’s acceptance of
our system. In order to make the deployment of our system in
home environments feasible, we aim to improve our approach
in terms of hardware setup and algorithms performance. We
will explore other learning methods that could enable more
accurate activity recognition with less supervision.
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