
Cellular Authentication & Key Agreement for
Service Providers

John A. MacDonald
Information Security Group

Royal Holloway, University of London,
Egham, England TW20 0EX

john@madgo.com

Abstract—This paper proposes an alternative to the 3GPP
Generic Bootstrapping Architecture protocol for bootstrapping
security credentials in mobile networks. The proposed protocol
avoids certain privacy issues arising from the use of the 3GPP
protocol, which may be of particular concern in e-health appli-
cations.

I. INTRODUCTION

Marti et al. describe [13] e-health services that incorpo-
rate the use of mobile technologies to communicate with a
Body Area Network (BAN) comprising diagnostic sensors and
treatment dispensing actuators. There are serious user privacy
concerns with the 3GPP Generic Bootstrapping Architecture
(GBA) protocol when used as the basis for security for certain
applications such as health.

This paper proposes an Authenticated and Key Agreement
(AKA) protocol that reduces the privacy risk inherent in the
3GPP Generic Bootstrapping Architecture (GBA). Reduction
of risk is achieved by both eliminating the mobile operator
as a trusted third party and removing the dependency on the
native GBA Bootstrapping Client in the mobile equipment
(ME). Section 2 reviews the assumptions and requirements,
whilst section 3 describes the proposed protocol. Section 4
lists the properties of the novel protocol, and compares it with
the GBA architecture.

II. PREREQUISITES FOR PROTOCOL

The proposed AKA protocol builds on the dual capabilities
of SMS Security [1] and USIM Application Toolkit (SAT) [8].
The former provides end to end security services for an SMS
message sent to or from the USIM card, whilst the SAT API
allows a USIM card application to communicate with the host
ME.

It is assumed that the ME provides a J2ME java runtime
environment [16], complemented by additional classes from
the Mobile Information Device Profile 2.0 specification [11]
including the SATSA-APDU and SATSA-PKI [12] packages.
These enable J2ME applications installed in the ME to access
the tamper resistant USIM card using APDU communication,
and provide support for digital signatures and management
of security credentials. Java applications that run on MIDP
compliant MEs are known as MIDlets. The USIM [3] is

assumed to be a multi application UICC Java Card, and the
USIM application [4] is just one possible java application [5].

It is further assumed that the USIM provides a random
number generator function, and that the Mobile Operator
which issued the USIM offers a delivery and installation
service of MIDlets and Applets to UEs. To allow installation
of MIDlets to the MIDP2.0 Operator domain of the ME, the
Mobile Operator generates an asymmetric key pair and obtains
a certificate CertMO for the public key from a Certification
Authority. The private key is used to digitally sign the MIDlet.
Our protocol is based on the assumption that the ME has
access to a trusted copy of the public key of the Certification
Authority used to sign the Mobile Operator’s public key
certificate CertMO. We also assume that the Mobile Operator’s
certificate is in a format processable by the ME. The associated
trust issues are beyond the scope of this paper.

III. PROTOCOL

The end points of the proposed AKA protocol reside in java
application space of the ME and the USIM. The protocol uses
both symmetric and asymmetric cryptographic techniques [14]
to provide the authentication and integrity services required,
and is summarised in figure 1.

Fig. 1. Scheme Description

In this figure, the numbered protocol exchanges of the four
phases refer to the detailed description below. We use the

ziglio
Typewritten Text
PERVASIVEHEALTH 2008, 30 Jan - 1 Feb. Tampere, Finland
Copyright © 2008 ICST 978-963-9799-15-8
DOI 10.4108/ICST.PERVASIVEHEALTH2008.2571

following notation:

MO = Mobile Operator and Card Issuer
S = Application Server of e-health provider

M = MIDlet application resident on ME
C = USIM card

KCI = Card Manager shared secret key
KSC = e-health application shared secret key

CertMO = Public key certificate of Operator domain
εK(D) = encryption of data D using key K

εSAT (D) = encryption of data D using 03.48 standard
S(D, sx) = Signature on data D using private key sx

MACK(D) = MAC of data D using secret key K

APDU() = APDU command from MIDlet to USIM
AIDn = USIM Card Manager identifier for Applet n

SMS() = SMS communication mechanism
sx = private key corresponding to CertMO

rC = Random nonce generated by USIM C

rS = Random nonce generated by Server S

iS & iC = identifier of Server & USIM respectively
CK & IK = Cipher & Integrity Keys respectively

PHASE 1: Install MIDlet in MIDP device.
The security requirement for this protocol phase is to

install a MIDlet application on the ME with the necessary
permissions to allow subsequent installation on the USIM of
Applet bytecode.

1) S → C : SMS(εSAT (KSC))
A long term secret key KSC known only by the e-health
application provider is securely copied to the USIM by
the e-health provider using the TS03.48 mechanisms.
This is used to provide end to end security [9], using
credentials known only to the e-health provider.

2) MO → C : SMS(εSAT (SAT Application))
The payload of this SMS message from the Mobile
Operator contains the SAT code to be installed on
the USIM. Once installed, the SAT application uses
proactive commands to register to be informed, via the
ISO/IEC 7816-4 ENVELOPE APDU command , when a
specific event occurs.

3) MO → M : SMS(CertMO)
A Domain Protection Root Certificate, CertMO, is sent
to the ME by the Mobile Operator as the payload of a
series of SMS messages .

4) M → C : APDU(ENVELOPE: CertMO)
The ME transfers the payload to the SAT application in
the data field of an ENVELOPE APDU command. The
Domain Protection Root Certificate is securely stored in
the USIM Card.

5) C → M : APDU(ENVELOPE: UID)
The SAT application retrieves the USIM’s unique iden-
tifier UID, and returns it to the ME as the response to
the ENVELOPE command.

6) M → MO : SMS(UID)
The unique identifier is then returned to the Mobile
Operator in the Response Packet. This acts as a proof
of delivery and enables the Card Issuer (in our scenario
the Mobile Operator) to fetch the specific Card Issuer
Key KCI of the USIM from the centralised database.
Although a USIM card can execute multiple applets
from different providers, in accordance with the Global
Platform [6] specification, the Card Manager application
guarantees the overall coherency of the multi-applet
USIM card by ensuring that new Applets are integrity
checked and their source authenticated prior to installa-
tion. The Card Manager application is provided by the
entity which issued the card [7], [15].

7) MO → M : S(MIDlet,sx)‖(MIDlet)
Using the USIM’s unique identifier, the Mobile Oper-
ator packages the e-health MIDlet application, which
contains the appropriate install commands and the byte-
code for the e-health Applet. The Applet bytecode is
encrypted and integrity protected with a MAC using keys
derived from the Card Issuer key KCI , and packaged
within the MIDlet JAR file. The MIDlet is signed using
the private key corresponding to the public key contained
within CertMO. This signature and certificates to vali-
date the application are inserted within the application
descriptor of the MIDlet and the JAR file transferred to
the ME. The JAR file groups compiled Java code and
associated metadata. The ME J2ME implementation ver-
ifies the signature using the public key in the certificate
CertMO, and installs the MIDlet in the Operator domain
of the MIDP2.0 runtime environment.

This protocol phase uses standardised MExE [2] techniques
to authenticate the source and validate the integrity of the
MIDlet JAR file to ensure installation in the ME with the
required security permissions.

PHASE 2: Install Applet in USIM card
The security requirement for this protocol phase is to install

the Applet bytecode in the USIM without threat of tampering.

1) M → C : APDU(SELECT: AIDCM)
The MIDlet now executes its Applet installation routine
using APDU communications provided by the SATSA-
APDU package. The MIDlet starts by using the SELECT
command to select the USIM Card Manager application
via its unique application identifier AIDCM , to initiate
communication with the USIM Card Manager applica-
tion.

2) M → C : APDU(INITIALIZE UPDATE)
Once the Card Manager application has been selected,
the MIDlet issues a INITIALISE UPDATE command
to advise the Card Manager that it wishes to install a
new Applet onto the USIM.

3) C → M : APDU(rC−MO)
Before the Card Manager will accept installation of an
Applet onto the SIM Card, it must first authenticate
the source of the Applet. It does this by respond-
ing to INITIALISE UPDATE with a random number
rC−MO.

4) M → MO : rC−MO

The MIDlet is not in possession of the Card Manager
secret KCI required to prove a trusted source for a
new applet, so the challenge rC−MO is sent back to
the Mobile Operator (i.e. the USIM Card Issuer) by
initiating an http session.

5) MO → M : εKCI (KCI‖rC−MO)
The Card Issuer encrypts KCI and rC−MO with KCI

and returns the byte string to the MIDlet.
6) M → C : APDU(EXT. AUTHEN.: εKCI

(KCI‖rC))
The MIDlet requests the Card Manager to authenticate
the source of the Applet by issuing the EXTERNAL
AUTHENTICATE command providing the encrypted
response to the random challenge rC−MO. The Card
Manager, also in possession of KCI , authenticates the
source of the Applet.

7) M → C : APDU(MACKCI (Applet)‖εKCI (APPLET))
The MIDlet now transfers the encrypted and integrity
protected Applet bytecode to the USIM card via the
ENVELOPE command. At no point does the MIDlet have
any knowledge of the key KCI as it acts as a delivery
mechanism between USIM and Server for predefined
parcels of bytes. The integrity and confidentiality of the
Applet code and the Card Issuer secret KCI is assured.
The Applet includes e-health application functions f1,
f2 and a unique identifier iC . It is also copied with
the identity of the e-health Server application iS ; these
functions and parameters are used for mutual authen-
tication and derivation of keys for subsequent session
management. After the bytecode is downloaded to the
card, the Card Manager uses the Global Platform spec-
ified Data Authentication Pattern to verify the integrity
of the received ciphertext bytecode. Verification allows
the ciphertext bytecode to be decrypted using KCI . An
applet instance is created and registered with the Java
Card runtime environment.

8) M → C : APDU(INSTALL(Install): AIDSC)
The Applet is installed by the MIDlet issuing the
INSTALL command to the Card Manager using the
unique Applet application identifier AIDSC .

9) M → C : APDU(INSTALL(Selectabled): AIDSC)
This final instruction in the Applet installation phase
instructs the Card Manager to allow the Applet to be
selected by any application capable of issuing APDU
commands. APDU communication with the Applet can
now proceed under the control of the e-health provider’s
ME resident MIDlet application, which communicates
directly with the e-health Server using any of the sup-
ported network protocols such as http or https.

This protocol phase uses standardised Global Platform [6]
techniques to validate the origin and integrity of the Applet to
ensure installation in the USIM.

PHASE 3: Perform mutual entity authentication
The security requirement for this protocol phase is to

perform mutual entity authentication between the application
provider Server and Applet without risk of a “man in the
middle” or “replay” attacks. The choice of protocol to agree
a session key is influenced by the constraints of the mobile
environment: a MAC based approach limits network traffic
while protection against replay attacks is through the use of
nonces.

1) S → M : start MIDlet with push registry
If the Server side e-health application initiates the pro-
cess to agree a sesion key then the MIDlet is invoke by
J2ME push register.

2) M → C : APDU(SELECT: AIDSC)
The MIDlet commences a session with the e-health
Server side application and selects the Applet application
on the USIM using the unique application identifier
AIDSC .

3) C → M : APDU(rC)
Once invoked, the Applet generates a random nonce rC ,
stores it, and supplies it to the MIDlet.

4) M → S : rC

The MIDlet pases the nonce (without storing) back to
the e-health Server.

5) S → M : iS‖iC‖rC ||rS‖MACKSC (ıS‖iC‖rC ||rS)
The Server generates a second nonce rS , stores it
together with the received nonce rC and responds to
the MIDlet with a challenge using the e-health shared
secret KSC and the Applet and Server identities iC and
iS respectively.

6) M → C : APDU(iS‖iC‖rC ||rS‖MACKSC (ıS‖iC‖rC ||rS))
The MIDlet performs no function on the received string,
but passes it onto the Applet in the form of an APDU
command.

7) C → M : APDU(iC‖rS‖MACKSC (iC‖rS))
After verifying that the received rC and identifiers
are correct, the Applet recalculates the MAC using
the shared secret KSC to authenticate the Server. To
allow the Server to authenticate the Applet, the Applet
provides the MIDlet with an integrity protected card
identity iC and Server nonce rS as an APDU response
.

8) M → S : iC‖rS‖MACKSC
(rS‖rC)

Once the Server confirms the validity of the MAC and
received values then the Applet is authenticated to the
Server.

This protocol phase conforms to the three-pass mutual
authentication protocol using MACs and nonces as specified
in ISO/IEC 9798-4 clause 5.2.2 [10].

PHASE 4: Set up e-health session keys
The security requirement for this protocol phase is to

derive session keys without risk of eavesdropping. Both Server
and Applet contain identical functions f1 and f2 that are

defined by, and known only to, the application provider. These
functions are used to calculate the session cipher CK and
integrity IK keys using the protocol nonces rS and rC and
the long term shared secret KSC .

CK = f1KSC (rS‖rC)
IK = f2KSC (rS‖rC)
KS = CK‖IK

This key derivation technique using authentication nonces
and a shared secret in an application specific function, con-
forms to international standards.

IV. PROTOCOL PROPERTIES

The session key KS is now shared between the application
Server and the e-health Applet. The novel protocol presented
in this paper provides the following privacy benefits over
the 3GPP GBA protocols when applied to privacy sensitive
applications such as e-health.

1) The mobile operator is not privy to the derived session
keys KS used to secure the application. The privacy per-
formance of the Mobile Operator’s operating procedures
need not be considered eliminating the need to accredit
the Mobile Operator as a trusted third party.

2) The MIDlet and Applet clients are both under the control
of the application provider. There is no dependency,
other than implementation of the java virtual machine,
on the capability of native ME and USIM vendor code
to resist attack.

3) The application vendor can determine the most appro-
priate client architecture for the needs of the application.
Sensitive functions may be performed by the Applet
within the tamper resistant USIM, whilst functions that
require the processing power and I/O capabilities of
the ME can be performed by the MIDlet. In sensitive
applications the master session key Ks could remain
within the tamper resistant USIM card, and a derived
key provided to the MIDlet. Unlike GBA U where the
derived session key KS ext NAF is provided to the
native GBA Boostrapping Client of the ME, with this
novel approach, the derived key is provided directly to
the application MIDlet, eliminating any dependency on
native ME code.

From a deployment perspective, unlike GBA, this novel ap-
proach uses existing technology. Neither the ME nor the USIM
need be GBA compliant. Furthermore it is not necessary for
the participating mobile operator to provide a Bootstrapping
Server Function service. The AKA protocol is also suitable
for over-the-air deployment to pre-issued and capable, but un-
prepared, standard M.E.’s

V. CONCLUSION

This paper describes a novel alternative to the 3GPP GBA
that could be deployed to incorporate the mobile end point
within an e-health service.

ACKNOWLEDGMENT

This work was supported by sponsorship funding from
Telefonica Móviles, España. The author wishes to thank the
Information Security Group at Royal Holloway, University of
London for their continued financial and academic support
during the course of these studies.

REFERENCES

[1] 3GPP TS 03.48. Technical Specification Group Terminals; Se-
curity Mechanisms for the SIM application toolkit; stage 2.
http://www.3gpp.org, 2001.

[2] 3GPP TS 23.057. Technical Specification Group Terminals; Mo-
bile Execution Environment (MExE); Functional description; Stage 2.
http://www.3gpp.org, 2003.

[3] 3GPP TS 31.101. Technical Specification Group Terminals;
UICC-terminal interface; Physical and logical characteristics.
http://www.3gpp.org, 2003.

[4] 3GPP TS 31.102. Technical Specification Group Terminals; Character-
istics of the USIM application. http://www.3gpp.org, 2003.

[5] ETSI TS 101 476. Digital cellular telecommunication system (Phase
2+); Subscriber Identity Module Application Programming Interface
(SIM API); SIM API for Java Card; Stage 2 (GSM 03.19). ETSI,
http://www.etsi.org, 2000.

[6] Global Platform. Open platform card specification 2.1, 2001.
[7] GSM 03.19, Version 8.2.0. Digital Cellular Telecommunications Sys-

tem (Phase 2+); Subscriber Identity Module Application Programming
Interface (SIM API); AIM API for Java Card; Stage 2. ETSI,
http://www.etsi.org, 2001.

[8] GSM 11.14. Digital cellular telecomunnications system (Phase2+);
Specification of the SIM Application Toolkit for the Subscriber
Identity Module-Mobile Equipment (SIM-ME) interface. ETSI,
http://www.etsi.org, 2001.

[9] S. B. Guthery and M. J. Cronin. Mobile Application Development with
SMS & the SIM Toolkit. McGraw-Hill, 2002.

[10] ISO/IEC 9798-4. Information technology — Security techniques
— Entity authentication — Part 4: Mechanisms using a crypto-
graphic check function. International Organization for Standardization,
http://www.iso.org, 2nd edition, 1999.

[11] JSR-118 JCP. Mobile Information Device Profile, v2.0 (JSR-118). Sun
Microsystems, http://java.sun.com, 2002.

[12] JSR-177 JCP. Security & Trust Services API (SATSA) (JSR-177). Sun
Microsystems, http://java.sun.com, 2004.

[13] R. Marti, J. Delgado, and X. Perramon. Security specification and
implementation for mobile e-health services. In EEE’04: Conference on
e-technology, e-Commerce and e-Service, pages 241–248. IEEE, 2004.

[14] Fred Piper and Sean Murphy. Cryptography – A Very Short Introduction.
Oxford University Press, 1st edition, 2002.

[15] Wolfgang Rankl and Wolfgang Effing. Smart Card Handbook. John
Wiley & Sons, Ltd, 3rd edition, 2003.

[16] K. Topley. J2ME In a Nutshell. O’Reilly, 2002.

