
An Abductive Multi-Agent Framework for
Distributed Service Coordination and Reasoning in

Emergency Scenarios
Sergio Storari

ENDIF - University of Ferrara
Via Saragat, 1 - 44100 - Ferrara - Italy

Email: sergio.storari@unife.it

Anna Ciampolini and Paola Mello
DEIS - University of Bologna

Viale Risorgimento, 2 - 40136 - Bologna - Italy
Email: {aciampolini,pmello}@deis.unibo.it

Abstract—In this paper we will show how an abductive multi-
agent approach could be successfully exploited in a emergency
scenario. To this purpose we will present MeSSyCo, a multi-agent
system that integrates and coordinates heterogeneous medical
and non medical services. MeSSyCo agents can perform different
tasks such as diagnosis, service coordination and intelligent
resource allocation. The MeSSyCo coordination infrastructure
based on abductive reasoning allows several distinct specialized
service providers to be aggregated and properly coordinated in
order to perform more complex medical and non medical tasks.

I. INTRODUCTION

Emergency scenario management is usually a complex and
dynamic task since it requires the coordination of several
different organizations and resources (e.g., resource depots,
hospitals, fire departments, etc.). Such organizations are typi-
cally distributed on the territory and provide different sets of
services so, in order to perform such complex tasks, each of
these entities needs to be properly coordinated with the others.
In this way the results obtained by the execution of different
services could be collected, integrated and possibly returned
as a unique final response. Therefore, in such cases it should
be very important to make different independent organizations
interact and coordinate.

The literature has proposed multi-agent systems as an ap-
propriate solution to face these issues (e.g., [1]). These systems
should guarantee the autonomy of involved entities, facilitate
the communication and the coordination between them, and
proactively provide information and services to the involved
entities.

Following these considerations, this paper presents MeS-
SyCo, a multi-agent system whose main purpose is the integra-
tion of heterogeneous knowledge-based services. This system
can be used to represent virtual organizations: each service
provider is encapsulated into a MeSSyCo agent; the coordina-
tion infrastructure allows the interaction of several (possibly
heterogeneous) agents. Services may be implemented either by
traditional programming technologies or by using knowledge-
based systems with automatic reasoning mechanisms. In this
way, the MeSSyCo system is able to perform complex tasks

such as intelligent resource allocation, distributed service
coordination and distributed diagnosis.

MeSSyCo agents may take advantage from some well
known automatic hypothetical reasoning mechanisms such as
logic based abduction [2], [3] that allows reasoning in presence
of incomplete knowledge. This is the case, for instance,
of medical diagnosis: given a set of symptoms, abductive
reasoning can produce a set of plausible diagnosis for them.
However, the MeSSyCo architecture allows to integrate also
non abductive agents.

In this paper we exploit how MeSSyCo can be used to face
several issues related to emergency scenario management.

II. MEDICAL SERVICES SYNERGY AND COORDINATION

MeSSyCo is a multi-agent system for Medical Services
Synergy and Coordination that can accomplish several tasks,
such as, intelligent resource allocation, distribute service coor-
dination and distributed diagnosis.

Intelligent resource allocation is performed by choosing,
among entities offering the same service in a specific context,
the most suitable one.

Distributed service coordination is used to answer to com-
plex service requests which require the identification of the
agents capable of providing a particular set of services and
resources.

In distributed diagnosis, the knowledge bases of different
agents (each representing a virtual single expert) are consulted
in order to produce a final diagnosis that will take advan-
tage from a more comprehensive, wide and heterogeneous
knowledge and can be more precise. This is very useful, for
example, in the medical domain when a single agent is maybe
unable to explain all the patient symptoms.

MeSSyCo can be considered a JADE [4] implementation
of ALIAS [5] with some extensions regarding the distributed
probabilistic reasoning [6] and the identification of most
appropriate service provider among the available ones.

Its architecture, shown in Figure 1, is characterized by two
kind of agents: the application agents and the system agents.

Each entity providing services within an organization is
modeled by an application agent (shown in Figure 1 as Ag1,

ziglio
Typewritten Text
PERVASIVEHEALTH 2008, 30 Jan - 1 Feb. Tampere, Finland Copyright © 2008 ICST 978-963-9799-15-8DOI 10.4108/ICST.PERVASIVEHEALTH2008.2538



Fig. 1. Schema of the MeSSyCo system architecture.

Ag2) which provides several services. Each application agent
contains a reasoning module, described in Section III, which
stores the knowledge used to provide each agent service. This
knowledge may be elicited, for example, from clinician inter-
views or medical literature. It is also necessary to express how
these entities interacts with the others in order to accomplish
their objectives.

System agents provide the services necessary to the correct
functioning of the whole system. These agents, shown in
Figure 1, are the Broker agent and the WebProxy agent.

The Broker agent is an extension of the Directory Facilitator
agent defined by FIPA [7] that registers all services provided
by virtual organization agents and offers a “yellow pages”
service. A MeSSyCo agent can also specify a set of service
requirements that the Broker uses to identify the most suitable
agents among the available ones.

The WebProxy agent allows web users to access MeSSyCo
services.

III. LOGIC-BASED ABDUCTION FOR DISTRIBUTED
SERVICE COORDINATION AND REASONING

In MeSSyCo we use abduction as the main form of agent
reasoning. To this purpose, each application agent encapsulates
an abductive logic program [2], [3]. An abductive logic
program is a triple 〈P,A, IC〉 where P is a logic program
possibly with abducible atoms in clause bodies; A is a set
of abducible predicates, i.e., open predicates which can be
used to form explaining sentences; IC is a set of integrity
constraints: each constraint is a denial containing at least one
abducible.

Given an abductive program 〈P,A, IC〉 and a formula G,
the goal of abduction is to find a (possibly minimal) set of
atoms ∆ which together with P entails G. It is also required
that the program P ∪∆ is consistent with respect to IC.

Abduction has been extended toward a multi-agent approach
in ALIAS [5]. The MeSSyCo architecture designs and im-
plements a coordination multi-agent based framework which

follows the ALIAS approach. To this purpose, we equip each
agent with a distinct abductive logic program.

Agents can dynamically join into groups (from now on, we
refer to the group of agents with the term bunch), with the
purpose, for instance, of finding the solution of a given goal
in a collaborative way. In this perspective, although the set
of program clauses and integrity constraints might differ from
agent to agent, we assume that the set of abducible predicates
(default predicates included) is the same for all the agents in
a bunch. This implies that when proving a given goal, if an
agent A assumes a new hypothesis h, all the agents belonging
to the same bunch must check the consistency of h with their
own integrity constraints. These checks could possibly raise
new hypotheses, whose consistency within the bunch has to
be recursively checked. Therefore, in MeSSyCo, the abductive
explanation of a goal within a bunch of agents is a set of
abduced hypotheses, agreed by all agents in the bunch.

MeSSyCo agent behavior is expressed by means of the
Language for AbductIve Logic Agents (LAILA, for short).
This language, described in details in [8], allows to model
agent actions and interactions in a logic programming style.
In particular we will focus on agent social behavior, and espe-
cially on how each agent can request demonstration of goals to
other agents in the system. To this purpose, two composition
operators are available: the collaborative AND operator (&)
and the competitive operator (;) that can be used by each agent
to express and coordinate abductive queries to other (set of)
agents. A competitive query is useful when the same service
can be provided by several agents, in order to collect all the
answers provided by such agents. A collaborative query is
useful when for the the execution of a goal we need a set of
services that are not provided by only one agent.

The language provides also a communication operator (>)
that is used to submit service request (queries) to other agents.

IV. DISTRIBUTED COORDINATION IN AN EMERGENCY
SCENARIO

Emergency scenarios are usually very difficult to manage
since they are characterized by an extreme complexity and
dynamism. MeSSyCo can be used to support the emergency
manager in the identification and coordination, among the
available resources (e.g. resource depots, hospitals, fire depart-
ments, etc.), of the most appropriate and consistent ones. This
is made by using the distributed abductive reasoning approach
described in Section III.

This section describes, by mean of a simple but meaningful
example, the implications introduced by MeSSyCo in emer-
gency scenario management.

First of all, we introduce the example, then we present how
MeSSyCo manages the single service reasoning and several
issues related to the coordination of different services.

Example Scenario. In example scenario, we suppose to be
in the Emilia Romagna region of Italy, an emergency ma-
nager is in charge of reaching an emergency site, evaluating
the problems related to the emergency and requesting the



resources (e.g., vehicles, work teams) needed to solve the
emergency. Resources are located in several Civil Protection
Center/Depots within the Emilia Romagna region, available
for the emergency Control Center if needed.

We have modeled this example scenario with three
MeSSyCo agents, the Control Center, the Bologna depot and
the Civil Protection of Ferrara. The Control Center Agent
(CC) models the Emergency Control Center. It offers the
emCond(COND) service that is used to adapt the resources
used to particular emergency condition and/or requirements
(e.g., environment conditions, special instruments). The Civil
Protection Ferrara Agent (CP-FE) models the resources
offered by the Civil Protection of Ferrara. In particular, it
offers the cat(DAY) service, that is used to request if there
is a caterpillar free on DAY, and the team(DAY,MINWORK)
service, that is used to request if there is a work team of at
least MINWORK workers free on DAY. The Depot Bologna
Agent (DP-BO) models the resources offered by the vehicle
Depot of Bologna. In particular, it offers the cat(DAY)
service.

Single Service Reasoning. MeSSyCo agents use abductive
reasoning in order to hypothesize solutions for their services.
Suppose for example that the emergency manager asks the
cat(’11:09:07’) service to CP-FE through the query:
PC-FE > cat(’11:09:07’)

PC-FE receives the request and starts and abductive deri-
vation process on its knowledge base in order to hypothesize
solutions for this service.

The part of its knowledge base related to the cat(DAY)
service is the following:
cat(DAY) ← catN(’cat1’), free(’cat1’,DAY).

cat(DAY) ← catN(’cat2’), hvyCat, free(’cat2’,DAY).

free(X,DAY) ← not work(X,DAY).

work(’cat1’,’11:09:07’).

The abductive derivation process works as follows. Initially
the set ∆0 of abduced assumptions is empty and catN,
hvyCat and noGPSCat are abducible predicates. Given the
cat(’11:09:07’) goal, named G0, the abductive resolu-
tion process unifies it with the head of the first rule and collects
the body literals of this rule as new query to prove. The new
goal is then:

G1= ← catN(’cat1’), free(’cat1’,’11:09:07’).

and ∆1 = ∆0.
The first literal catN(’cat1’) is then removed from G1

and the resolution process start again on the new single literal
goal G2= ← catN(’cat1’). The knowledge base for this
literal is incomplete (does not have any information about
this predicate). But in the given example this is an abducible
predicate, so the abductive derivation instead of failing to
prove this goal, adds the literal catN(’cat1’) temporarily
to ∆1 which becomes ∆2 = {catN(’cat1’)}. A consi-
stency derivation is activated on ∆2. Since PC-FE contains no
integrity constraints, the consistency check is successful and

the abductive derivation process continues its proof on the re-
maining goal G3= ← free(’cat1’,’11:09:07’) and
the set of abduced predicates ∆3 = ∆2 = {catN(’cat1’)}.

Given the free(’cat1’,’11:09:07’) goal, the ab-
ductive resolution process unifies it with the head of the
fourth rule and the new query to prove becomes G4=
← not work(’cat1’,’11:09:07’) and ∆4 = ∆3 =
{catN(’cat1’)}.

The prove of G4 fails as work(’cat1’,’11:09:07’)
is a fact in the knowledge base so the current abductive deriva-
tion fails (the caterpillar named ’cat1’ cannot be hypothesized
as a solution of the cat(’11:09:07’) service), and the
abductive derivation process backtracks to G0 and starts a new
derivation considering the second rule.

The new goal to prove becomes
G5=← catN(’cat2’), hvyCat, free(’cat2’,’11:09:07’).

with ∆3 = ∆2 = {}.
The abdcutive derivation process for G5 succeeds as

catN(’cat2’) and hvyCat (hvyCat stands for heavy
caterpillar) are abducibles predicates in our example, and
’cat2’ is not working on ’11:09:07’.

Therefore, PC-FE responds to the cat(’11:09:07’)
request by notifying to the emergency manager one (minimal)
set of hypotheses:
∆6 = {catN(’cat2’), hvyCat}

This solution expresses that PC-FE hypothesizes the
provision of the cat(’11:09:07’) service by mean of
the heavy caterpillar named ’cat2’.

Distributed Service Coordination. As described in Section
III, local abductive reasoning has been extended to face
distributed service coordination. This is useful in the context
of emergency management when more than one service is
required. Usually, resource coordination can be manually
performed by emergency managers, constructing step by step
resource combinations capable of covering all the necessary
scenario requirements. During this construction step, partial
resource combinations may become inconsistent with the ones
necessary to face all the requirements, therefore backtracking
should be performed in order to identify the final solution. This
time consuming step increases its importance for scenarios in
which the reaction time is a critical point.

Given scenario requirements, MeSSyCo interacts with all
its agents in order to automatically find consistent solutions:
it checks which agents can provide specific services, combines
the resources they offers to provide that services and verifies
the consistency of such combinations.

Consider, for example, that a landslide is happened. An
emergency coordinator reaches the landslide location, observes
the emergency context and issues a service request to block
and repair the landslide. An example of service request can
be the following:
{cat(’11:09:07’), team(’11:09:07’,3), emCond(’wet’)}

MeSSyCo, interacting with the Directory Facilitator, identi-
fies the agents which provide the requested services and try to



accomplish the whole service request by creating the following
LAILA query Q:
(PC-FE > cat(’11:09:07’) ; DP-BO > cat(’11:09:07’) )

& PC-FE > team(’11:09:07’,4) & CC > emCond(’wet’)

The cat service is asked in competition between PC-FE
and DP-BO because they can provide this service.

MeSSyCo, using the distributed abductive reasoning, an-
swers to this complex service request hypothesizing two
possible solutions, both consistent with the knowledge bases
of the participating agents CC, PC-FE, and DP-BO:
SOL1: {catN(’cat3’), teamN(’FE1’,5), not hvyCat}
SOL2: {catN(’cat4’), noGPSCat, teamN(’FE1’,5), not

hvyCat}
where catN is used to identify a specific caterpillar,

teamN a specific team, noGPSCat is used to indicate that
the caterpillar proposed in the solution is not equipped with
a GPS and not hvyCat is used to indicate that since the
landslide location is wet, an heavy caterpillar is unusable.

Intelligent Resource Allocation. The emergency manager
can choose among the previous solutions its preferred one.
MeSSyCo also support such choice by mean of a suitability
value. In particular, a knowledge base can be associated to the
Broker in order to allow the computation of the suitability of
an agent in providing a specific service in a specific context.
For example, let us suppose that the emergency manager
should ward an injuried man with heavy burns in a hospital
and that two hospitals, one specialized in the management
of burnt patients and one without specific skills, provide a
warding service. When the emergency manager agent requires
the warding service to the MeSSyCo Broker, specifying in
the service request information that the patient is burnt, the
Broker uses, if provided, its knowledge base to associate
an higher suitability level to the agent which represents the
hospital specialized in burnt management.

Dynamic Solution Adaptation. Adaptation to changing
conditions is another feature allowed by the distributed
abductive reasoning infrastructure. Suppose, for example,
that, due to the worsening of the weather conditions on the
landslide site, a GPS becomes a necessary equipment for
all the caterpillars. Adding emCond(’GPSCat’) to the
previous service coordination request, expressed by mean
of the LAILA query Q, and supposing the constraint ←
emCond(’GPScat’), noGPSCat. to be part of the CC
knowledge base, SOL2 becomes inconsistent and the only
applicable service request solution becomes SOL1.

MeSSyCo can also handle distributed diagnosis, but due to
lack of space we cannot show an example of such functiona-
lity. Interested readers can find more detail in [6].

V. CONCLUSION AND FUTURE WORKS

In this paper we focused on the definition and development
of a multi-agent architecture for the management of heteroge-

neous medical knowledge-based services.
Abduction is an important technique in the MeSSyCo

implementation as it is used both to express agent reasoning
and to manage the coordination between different agents.

The literature proposes other multi-agent systems for health
care service management (e.g., [9]) and a lot of systems
for service coordination [10], [11]. The distinguishing feature
of MeSSyCo is the use of distributed abductive reasoning.
Thanks to this approach MeSSyCo can manage complex
service request identifying, among different agents, the ones
that combined can provide consistent solutions. It can also
identify, among these solutions, the most suitable one w.r.t.
the emergency scenario characteristics. Moreover, it can ma-
nage the dynamic aspects of an emergency scenario changing
appropriately the proposed solutions.

We experimented MeSSyCo in the development of a simple
emergency scenario in which distributed services are coordi-
nated to support the emergency management.

Performances have been evaluated for distributed diagnosis
and intelligent resource allocation scenarios in [12]. In the
future we will complete the implementation of the system
and the evaluation of its performance by using real emergency
scenarios.

ACKNOWLEDGMENT

This work has been partially supported by the PRIN 2005
project “Specification and verification of agent interaction
protocols”.

REFERENCES

[1] G. Cabri, F. De Mola, and R. Quitadamo, “Supporting a territorial
emergency scenario with services and agents: A case study comparison,”
in Proceedings of WETICE ’06. IEEE Computer Society, 2006, pp. 35–
40.

[2] K. Eshghi and R. A. Kowalski, “Abduction compared with negation by
failure,” in Proceedings of ICLP-89, G. Levi and M. Martelli, Eds. MIT
Press, 1989, pp. 234–255.

[3] A. C. Kakas and P. Mancarella, “Generalized stable models: a semantics
for abduction,” in Proceedings of ECAI-90. Pitman, 1990.

[4] “Jade framework,” available at: http://sharon.cselt.it/projects/jade/.
[5] A. Ciampolini, E. Lamma, P. Mello, C. Stefanelli, and P.Torroni, “An

implementation for abductive logic agents,” in Proceedings of AI*IA-99,
ser. LNAI, vol. 1792. Springer, 2000, pp. 61–71.

[6] A. Ciampolini, P. Mello, and S. Storari, “Distributed medical diagnosis
with abductive logic agents,” AI*IA Notizie, vol. XV, no. 3, pp. 12–21,
Sep. 2002.

[7] “FIPA,” available at: http://www.fipa.org/.
[8] A. Ciampolini, E. Lamma, P. Mello, and P. Torroni, “LAILA: A language

for coordinating abductive reasoning among logic agents,” Computer
Languages, vol. 27, no. 4, pp. 137–161, February 2002.

[9] B. Lopez, S. Aciar, B. Innocenti, and I. Cuevas, “How multi-agent
systems suport acute stroke emergency treatment,” in IJCAI Workshop
on Agents Applied in Health Care, 2005, pp. 51–59.

[10] E. Simperl, R. Krummenacher, and L. Nixon, “A coordination model
for triplespace computing.” in COORDINATION, ser. LNCS, vol. 4467.
Springer, 2007, pp. 1–18.

[11] H. Helin, M. Klusch, A. Lopes, A. Fernandez, M. Schumacher,
H. Schuldt, F. Bergenti, and A. Kinnunen, “Context-aware business
application service co-ordination in mobile computing environments.”
in AAMAS05 workshop on Ambient Intelligence - Agents for Ubiquitous
Computing, 2005.

[12] A. Ciampolini, P. Mello, and S. Storari, “Integration of medical services
in the messyco agent system,” Demo session at AAMAS 2004, 2004.




