
Algorithm for the Choice of Topology in Reconfigurable
On-Chip Networks with Real-Time Support

Kristina Kunert
Centre for Research on Embedded

Systems (CERES), Halmstad
University, Sweden

kristina.kunert@ide.hh.se

Mattias Weckstén
Centre for Research on Embedded

Systems (CERES), Halmstad
University, Sweden

mattias.wecksten@ide.hh.se

Magnus Jonsson
Centre for Research on Embedded

Systems (CERES), Halmstad
University, Sweden

magnus.jonsson@ide.hh.se

ABSTRACT
Many future embedded systems are likely to contain System-on-
Chip solutions with on-chip networks and in order to achieve high
aggregated throughputs in these networks, a switched topology
can be used. For further performance improvements, the topology
can be adapted to application demands, either when designing the
chip or by run-time reconfiguration between different predefined
application modes. In this paper, we present an algorithm for the
choice of topology in, e.g., on-chip networks, considering real-
time demands in terms of throughput and delay often put on such
systems. To further address possible real-time demands, we
include a feasibility analysis to check that the application, when
mapped onto the system, will behave in line with its real-time
demands. With input information about traffic characteristics, our
algorithm creates a topology and generates routing information for
all logical traffic channels. In a case study, we show that our
algorithm results in a topology that can outperform the use of state
of the art topologies for high-performance computer architectures.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – distributed networks, network
communications, network topology, packet-switching networks.

General Terms
Algorithms, Performance, Design.

Keywords
Network-on-Chip, topology design, feasibility analysis, real-time
communication, reconfigurable systems.

1. INTRODUCTION
Today, more and more embedded applications have real-time
requirements and to be able to fulfil these requirements, networks
with real-time support are needed. For applications such as radio
base stations and radar signal processing, not only high bandwidth
is required, but also deterministic real-time properties of the
communication are crucial. In the future, we see the possibility of
chips with tens or even hundreds of processors connected by a
switched network, running applications with real-time
requirements. The advantages of using reconfigurability in a
Network-on-Chip (NoC) are obvious. The topology can be
adapted to different applications, different modes of applications,
or even different traffic patterns in one single application. In this
way, the high cost of designing and manufacturing a new chip can
be reduced.
This paper presents an algorithm for the design of network
topologies in, e.g., packet-switched on-chip networks [2],
considering the real-time demands in terms of throughput and
delay often put on such systems. To further address those real-
time demands, we include a feasibility analysis to check that the
application, when mapped onto the system, will behave in line
with its real-time demands. With input information about the
traffic characteristics, our algorithm creates a topology and
generates routing information for all logical real-time channels.
The proposed algorithm can be used both to select topologies to
reconfigure between in case hardware for this is provided, and in
the design stage of a static NoC for the decision on which network
topology to implement for any intended target application. When
having a reconfigurable topology (e.g., implemented by a
crossbar), a specific topology can be chosen in the design stage for
each working mode executed during run-time. A case study with
simulation of two types of radar signal processing chains
demonstrates the algorithm’s applicability for applications with
different traffic patterns.
The problem of topology design or link allocation according to
certain parameters is found in a variety of research areas. Most
research on topology design today is conducted in the area of
System-on-Chip (SoC) design and NoC architectures. At a lower
level, the advance of research on on-chip interconnection
networks is mainly driven by the limitations of the
interconnections used today, i.e., principally bus networks. Busses
are simple to implement but have scalability problems since they
can only transfer one message at a time. The authors of [3] and [5]
point out the advantage of designing arbitrary topologies, adapted
towards a target application’s specific demands and properties. In
[5], a recursive algorithm is suggested to both find minimal
topologies and share the communication medium with low

peri
Typewriter
Nano-Net 2007 September 24-26, 2007, Catania, Italy.

Copyright 2007 ICST ISBN 978-963-9799-10-3

DOI 10.4108/ICST.NANONET2007.2148

peri
Typewriter

peri
Typewriter

contention. However, those papers do not present algorithms
considering real-time demands. SUNMAP [1,10,11] is a mapping
algorithm which can map any target application on a certain
limited set of standard topologies, considering both parameters
given by the technology and communication requirements. The
algorithm we propose in this paper contributes by finding a
suitable topology as well as a traffic mapping and schedule.
Moreover, we do not restrict ourselves to a fixed set of topologies.
The authors of [14] use linear programming based techniques to
design application specific NoC architectures, but in contrast to
our approach, no delay-bound guarantees for real-time traffic are
provided. Since scheduling and topology generation are known to
be NP-complete problems, we have to resort to a heuristic
solution. A similar problem, finding a logical topology to meet all
existing traffic demands in an optical network, is solved in [7] by
the use of a shortest-path algorithm that constructs a route for one
light path (a virtual channel comprising one single wavelength
between two nodes) at a time. Although not the same problem,
this method resembles our own solution. However, the major
difference, again, is that our solution takes the real-time demands
of the traffic into account. In [4] the authors describe a routing
algorithm very similar to the one presented in this paper, a shortest
path algorithm, where path selection is based on the timing
requirements. To guarantee the real-time behaviour of the
resulting system the authors use a TDMA (time-division multiple
access) scheme. The experiments presented in [4] are based on
silicon level simulation, resulting in area and energy parameters.
However, although mapping and routing problems are addressed
in the paper, topology exploration is not. In [15] the authors use a
similar shortest path algorithm for routing but in this case the path
selection is not based on timing requirements directly, but rather
on energy consumption and operating frequency of the links. The
experiments presented in [15] are also based on silicon level
simulation. Although we decided not to conduct experiments on
silicone level, the results of our real-time performance oriented
work could be used for guidance of low-level implementation.

Figure 1. Schematic system architecture.

Communicating
end nodes

Router 2

Router 1 R
econfigurable

topology

.

.

.

Router M

Switch circuit to
reconfigure

topology

1
:

N

1
:

N

1
:

N

The rest of the paper is organized as follows. In Section 2 we
describe our system’s architecture, while Section 3 introduces our
topology choice algorithm. Section 4 describes the feasibility
analysis as used in the algorithm. A case study is implemented to
evaluate the algorithm and the results are discussed in Section 5.
Conclusions are drawn and possibilities for future work are
pointed out in Section 6.

2. SYSTEM ARCHITECTURE
Our target system architecture consists of a reconfigurable
topology, connecting M switched processor clusters, each
containing N communicating end nodes (see Figure 1). The
incorporation of the reconfigurable interconnection network
allows for the adaptation to different application characteristics
and can therefore improve network performance. While the links
between the end nodes and the router in a cluster are bidirectional,
the links between the router and the reconfigurable topology are
assumed to be unidirectional with identical amounts of bandwidth.
Using unidirectional links makes it possible to utilize the
bandwidth more efficiently as the flexibility in traffic allocation
increases. Communication between nodes in the same cluster is
assumed to be unrelated to the cluster-to-cluster communication,
as intra-cluster communication has no influence on the bandwidth
bottleneck over the reconfigurable topology. This system model

can be mapped onto different kinds of networks on different
scales, not only NoCs. It can also encompass networks between
nodes on several boards in one rack or between boards in several
racks.

3. TOPOLOGY SELECTION ALGORITHM
This section provides the assumptions for the algorithm, and gives
a detailed description of its different stages. At this point of time,
computational complexity is not the major limitation, as the
algorithm can be run offline for all possible online working
modes. The results of the algorithm are the topologies of the
interconnection network that the reconfigurable system will switch
between during run-time and the necessary routing information.
For a static NoC, the algorithm is just executed once, at design
stage, to get the topology for the intended application. Due to the
limited amount of space, we refer to [8] for a more detailed
specification of the algorithm.

3.1 Assumptions
For each target application, the algorithm uses input traffic
specifications in the form of real-time channels. A real-time
channel is a logical flow, modelled as a virtual unidirectional
channel with the following parameters (for any real-time channel
i): the source Si , the destination Di , the maximum message length
in bits (per period TP,i) Ci , the deadline in seconds TD,i, and the
period (maximum message inter-arrival time) in seconds TP,i.
Therefore every real-time channel i is characterized in the
following form:

 { }iPiDiiii TTCDSCH ,, ,,,,= (1)

Additionally, the throughput demand in bits per second of each
real-time channel i is given by:

iP

i
i T

CB
,

= (2)

Also provided is the number of input and output ports on each
router towards the topology, denoted as MAX_LINK. The
reconfigurable topology can connect each such router output port
towards the topology to an arbitrary free input port on another
router. Assuming priority support in the routers, non real-time
traffic can be given lower priority and will interfere with the real-
time traffic. However, this interference will be bounded to a single
packet due to the non-preemptiveness of a packet.
For the intra-cluster traffic from the end nodes towards the router,
which they are directly connected to, and vice versa, simply the
link utilization is checked to ensure that there are no bottlenecks at

this first and last hop of the communication path. However, they
will still have to be included in the delay analysis, which is
described later in the paper (Section 4). After this utilization
check, the algorithm will not regard the links between end nodes
and routers, but only the links over the reconfigurable topology.

3.2 Description
The d sign approach of e the algorithm has been to prioritize the

itializations. For the algorithm to know in which

allocation of physical links to connect pairs of nodes with real-
time channels between each other, demanding high guaranteed
throughput and/or short bounded delays. When multihop
communication over the reconfigurable topology is needed, we
prioritize shorter paths for this throughput and/or delay demanding
communication. The algorithm works in three main phases:
singlehop routing with link allocation, multihop routing with link
allocation, and feasibility testing. Prior to the main phases, certain
initializations are needed. In order to decide upon the sequence in
which the logical real-time channels should be allocated, we
introduce an individual weight Wi for each channel i. This weight
is calculated by one of two weight functions, depending on the
phase in which the channel is allocated. Details on those weight
functions are given in the detailed description of the different
phases below.
1) Phase 0 - In
order to process the real-time channel demands during the
upcoming Phase 1, the initialization phase is started by calculating
Wi for each channel i. A channel’s weight in Phase 1 is dependent
on its throughput demand and its deadline, i.e. Ci, TD,i, and TP,i.
Furthermore, this first weight function is solely aimed towards the
singlehop routing case, where the length of a routing path is equal
to three for every path. “Singlehop” in this context denotes thus
only the hop over the reconfigurable topology. Considering these
facts, we define the following weight function s_wfcn for Phase 1:

()
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

==

iP

iD

iP

i

iPiDii

T
T

MIN

T
C

TTCwfcnsW

,

,

,
,,

3
,1

,,_
 (3)

The minimum value function used in the denominator leads to one

real-

hop routing with link allocation. After having

algorithm first examines

of two cases. If the deadline TD,i is longer than three times the
period TP,i (due to a path length of three and the assumption of
equal deadline partitioning; more on deadline partitioning in
Section 4.), then the only relevant factor for the weight of the link
becomes its throughput demand (the numerator). On the other
hand, if the deadline becomes shorter than three times the period,
then these two parameters become significant enough to be
included in the weight calculation. In other words, the hop through
the topology is assumed to be either utilization constrained or
delay constrained. This is an approximating hypothesis based on
the fact that, for the case when the period is equal or shorter to the
per-hop deadline for all channels, only the aggregated utilization
needs to be verified to be less or equal to 100% [9]. Those results
have their origin from the field of processor task scheduling.
After having assigned an individual weight to each logical
time channel, the channels are grouped into bundles, each bundle
GS,D containing channels with a specific source-destination pair
(S,D). The channels in each bundle are sorted in a priority queue
QS,D, with the channel that has the highest bandwidth demand
getting the highest priority. By summarizing the individual
weights Wi of all channels in one bundle, each bundle is assigned

an individual weight WS,D. Lastly, all bundles are sorted in a
priority queue Qbundle, giving highest priority to the bundle with
maximum weight.
2) Phase 1 - Single
initiated the necessary parameters in Phase 0, the algorithm enters
Phase 1, during which the algorithm routes singlehop paths, and
when necessary allocates new physical links over the topology.
The algorithm sequentially tries to allocate all logical real-time
channels contained in bundle G (defined to be the one with the
highest weight) through direct links over the topology. The
channels are treated according to bandwidth demand, with the
highest demand getting the highest priority. After having allocated
all channels in one bundle, the algorithm treats the bundle with the
next highest weight in the same fashion.
When allocating a path for a channel, the
if a link already exists between the channel’s source and
destination router and if its capacity can meet the throughput
demands of the channel. The sum of the throughput demands of
all logical real-time channels over the same physical link must not
exceed the maximum bit rate of that link. If it does not, the
additional channel can be allocated on the existing link. (More
details about the utilization constraint will follow in Section 4.) In
case there is not enough capacity left on the link, the algorithm
checks for the possibility to allocate a new physical link, parallel
to the recently examined, using unallocated output ports at the
source router and unallocated input ports at the destination router.
When the algorithm no longer can find a singlehop path for a
channel, it only tries to allocate the remaining channels in the
current bundle as singlehop paths before terminating Phase 1.
Then it will enter into Phase 2 to start with multihop routing. In
case all real-time channels could be allocated in Phase 1, the
algorithm continues directly with the feasibility check in Phase 3.
3) Phase 2 - Multihop routing with link allocation. In the multihop
routing phase, the prioritization is solely based on the deadlines
specified in the real-time channel demands and the concept of
bundles is no longer used. The decision of making the priority
solely dependent upon the end-to-end deadline of the real-time
channel is based on the approximate assumption of the uniformity
of all links, resulting into longer delays over paths with a larger
number of hops. The new individual weight Wi of all remaining
channels is calculated by a new weight function m_wfcn, which
has TD,i as its only input parameter:

()
iD

iDi T
TwfcnmW

,
,

1_ == (4)

All individual channels are sorted in a priority queue Qchannel, with
the highest weight and, by that, the shortest relative deadline
getting highest priority. Each routing path R is found by an
unweighted shortest path algorithm, related to Dijkstra’s
algorithm, with all link costs being one. This leads to a routing
algorithm with a hop-based cost metric, and therefore the shortest
path signifies the path with the smallest number of hops between
Si and Di. For each real-time channel demand, the shortest path
algorithm searches a route through the partly allocated network,
trying primarily to use the existing links unless their remaining
capacity is too small to cope with the throughput demand of the
channel currently under consideration. Only secondarily new,
unallocated, links are set up. In case a path could not be found for
all channels, the algorithm is terminated, as no suitable topology
could be found for the given traffic specifications, otherwise the
algorithm proceeds further to the feasibility check (Phase 3).

4) Phase 3 - Feasibility testing. A feasibility test has been added

haracteristics for hard

tion U of periodic real-time traffic is defined as

to verify that all real-time demands can be met. In case of a
positive outcome, our algorithm provides as output the
recommended network topology and a routing table belonging to
the traffic demands. Otherwise, no suitable topology for the target
application could be found. The theory of the feasibility analysis
and the details of its application in our algorithm are given in the
next section.

4. FEASIBILITY ANALYSIS
To be able to determine the performance c
real-time traffic over an arbitrary topology, this section provides a
throughput guarantee and delay bound analysis. Due to the
assumption of earliest deadline first (EDF) scheduling in all end
nodes and intermediate routers, the feasibility analysis suggested
in [6] can be used in a similar manner for our network. Real-time
channels correspond to periodic tasks, where a physical link in the
network can be seen as a processor and the maximum message
length in our traffic specification is the equivalent to the worst-
case execution time Ci for task i in the original analysis. For the
description of the feasibility check, a number of concepts need to
be defined.
• The utiliza

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

i iP

i

T
CU

,

 (5)

where TP,i denotes the period (minimum message inter-arriva

• on multiple of all

• s any interval within HP in which the

• of time slots elapsed

• network corresponds to the

l
time) of traffic over the logical channel i.
The hyperperiod HP is the least comm
periods of a periodic task set, i.e., the length of time from
when all tasks' periods start at the same time, until they start at
the same time again.
The busyperiod BP i
resource, in our case the link, is not idle.
The point in time t signifies the number
since the beginning of the HP.
The traffic demand on the
processor demand in a real-time system and is defined by the
workload function h(t). h(t) is calculated as the sum of Ci for
all message instances of all real-time channels with an
absolute deadline less then or equal to t. h(t) is computed as
follows [13].

() ()
∑

≤

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢ −
+=

tT
i

iP

iD

iD

C
T

Tt
th

, ,

,1 (6)

 r algorithm, the feasibility analysis is conducted for each In ou

physical link, which means that the total end-to-end deadline has
to be partitioned into local single hop deadlines instead. For the
matter of simplicity we have chosen an even distribution of the
deadline over the entire path, i.e., the local deadline di corresponds
to the end-to-end delay bound TD,i divided by the number of hops
NoHj that the relevant path j consists of.

j

iD
i NoH

T
d ,= (7)

owever, this type of feasibility analysis assumes fully pre-

 (8)

This means that the workload function is remodelled as follows.

H
emptive tasks. In interconnection networks packets normally
cannot be pre-empted and consequently the possibility of further

delay has to be considered. Therefore, we define the blocking time
BT, which denotes the maximum blocking time that one (possibly
lower-priority) packet can introduce to the system, i.e., BT equals
the transmission time of a maximum size packet. This
compensation results in a further shortening of the local delay
bound.

BTdd ii −='

() ()∑
≤

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
+=

td
i

iP

i

i

C
T

dt
th

,

'

1 (9)

While keeping U ≤ 1 is a necessary condition for being able to
feasibly schedule periodic tasks by EDF [13], a second constraint
was introduced in [13] to ensure the feasibility of the system when
adding a new task or channel:

() ttth ∀≤ (10)

introduces a high computational complexity, but This restriction
the number of instances of evaluation can be reduced to the
number of integer time values during an interval upper bounded
by BP1, the first BP in the first HP of the schedule where all
periods start at time zero. Again, this has to be adapted to our hop-
by-hop calculations by exchanging the end-to-end delay bound
TD,i with the local delay bound di. In our case of non-pre-emptive
communication, the local delay bound, di, further has to be
exchanged for di’ because of the possibility of blockage, which
results in the following instances of t having to be checked:

}{U 1
'

, ...2,1,0:
=

=+⋅∈
i iiP mdTmt (11)

here w

[]1;1 BPt ∈ (12)

In order for the whole path to be accepted, all contained hops must

CASE STUDY
y the proposed algorithm are evaluated

be found feasible.

5.
The topologies generated b
by comparing the network efficiency of the generated topologies
with that of a 2D-torus, a standard topology for high-performance
computer architectures. In a 2D-torus each node has four
neighbours and the topology has wrap-around edges. The
efficiency of a given topology is defined as the pair (Unet |L|),
where Unet denotes the total network utilization, or the sum of the
utilization Ui for all links i, and |L| is the number of physical links
used, or the sum of the ceiling function of the utilization Ui for all
links i.

 (13)

∑=
i

inet UU

⎡ ⎤∑=
i

iUL (14

ower value of Unet signifies a more energy efficient topology

)

A l
since it consumes less of the total network resources. In cases of
similar values of Unet, a lower value of |L| indicates a more

hardware efficient topology, since a smaller number of links is
needed as the capacity of the existing links is used to a higher
degree. Even though it can be argued that it is better to use all
available resources, a larger number of links with lower utilization
could be an indication that the algorithm has chosen longer paths
than necessary. In other words, a low value of |L| indicates an
efficient algorithm that can lead to a higher possible amount of
guaranteed real-time traffic in case this is requested.
In order to demonstrate the algorithm’s applicability for use cases
with different traffic patterns, the algorithm has been tested with
two types of radar signal processing chains. Case 1 is dominated
by one-to-many and many-to-one communication, while Case 2
contains more pipelined traffic and just a minor amount of one-to-
many and many-to-one transmissions. A specification of the
traffic demands is given in Figure 2 and Figure 3. The layout for
the 2D-torus was chosen to be 3x4 nodes and the mapping of the
nodes and links of the 2D-torus were done manually, keeping |L|
at a minimum. In order to be able to compare the efficiency of the

Figure 3. Case 2: Pipeline traffic demands

Figure 2. Case 1: Corner turn traffic demands

BA

D

C

E F G

I

H

J

K

L
2

1

1

1

1
2 2

4x1 4x0.25

G

B

D

H

A IE L

K

C

F

J

2

1.3
3

2

1.33

0.66

0.6
6

0.133

0.133

0.133

0.133

0.
13

3

3x5x0.2

Figure 4. Case 1: Topology and traffic allocation
produced as a result of the proposed algorithm

Figure 5. Case 2: Topology and traffic allocation
produced as a result of the proposed algorithm

BA

D

C

E F G

I

H

J

K

L
2

1

1

1

1
2 2

4x1 4x0.25

G

B

D

H

A IE L

K

C

F

J

2

1.3
3

2

1.33

0.66

0.6
6

0.133

0.133

0.1
33

0.
26

6

3x3x0.2

 0.33

0.
4

3x0.4

|L|**Unet*

32
12,4 28
21,8

1916
2722.5

Case 2:
Pipeline

Case 1:
Corner turn

2D-torus
Generated topology
2D-torus
Generated topology

Table1. Total utilization in the network
and total utilization of links

*Results are given in % of maximum link utilization.
**Results are given in number of used links.

Figure 6. Case 1: Topology and traffic allocation mapped onto a 2D-torus

Figure 7. Case 2: Topology and traffic allocation mapped onto a 2D-torus

A F G H

C E L I

B D K J

Link Load
G-L 0.25
H-J 0.25
I-L 0.75
J-I 0.5
K-L 0.25
K-J 0.25
L-K 0.25

All remaining
indicated links
have a load of 1.

A C F I

B E H L

D G J K

Link Load
B-E 0.86
B-L 0.33
C-E 0.66
C-F 0.2
C-G 0.53
D-B 0.2
D-K 0.8
E-G 0.8
E-H 0.4
F-H 0.533
F-J 0.4
G-J 0.863

Link Load
H-L 0.666
I-F 0.133
J-F 0.33
J-H 0.2
J-K 0.996
K-D 0.33
K-I 0.2
K-J 0.4
K-L 0.729
L-I 0.4
L-K 0.33

All remaining indicated links
have a load of 1.

generated topologies directly with the 2D-torus, the experiments
were carried out with the MAX_LINK constraint for the generated
topologies being set to four.
The proposed algorithm managed to find feasible solutions within
the specified requirements for both cases. As seen in Table 1 and
Figures 4-7, the proposed algorithm generated more efficient
topologies than the 2D-torus in both cases, and in neither of the
cases, the solutions fail the feasibility test. Using the proposed
algorithm and a reconfigurable topology, the experiments show a
10-30% reduction of the number of links used and a 20-40%
reduction of the used network bandwidth compared to when using
a manually configured 2D-torus. Practically this means that the
reconfigurable topologies have left more spare resources and can
therefore accept a higher amount of real-time traffic in case that
was requested. The difference is more noticeable in Case 1

because of the substantial number of one-to-many and many-to-
one transmissions. However, even for the pipelined structure of
Case 2, the proposed algorithm found a more efficient solution.
This depends upon the fact that several transmissions to the same
destination in our case require more than one link, and have to be
routed over a multi-hop path in a 2D-torus. The reconfigurable
topology, however, has the opportunity for the allocation of
several parallel links between node pairs. In the case of one-to-
many or many-to-one communication where the number of
parallel transmissions exceeds four, the usage of multi-hop paths
is inevitable though due to the MAX_LINK constraint, independent
of the topology. However, a reconfigurable topology gives the
option of a more flexible path allocation compared to the 2D-
torus.

6. CONCLUSION AND FUTURE WORK
It is clear that the SoC/NoC community is in need of more
powerful communication networks compared to the commonly
used bus hierarchies, both in terms of flexibility and efficiency.
This makes a dynamically reconfigurable topology a well-suited
alternative. However, to fully utilize the potential of a dynamic
topology, efficient tools such as the algorithm presented in this
paper, are needed. The advantages of using reconfigurability in a
NoC are obvious; the topology can be adapted to different
applications, or different modes of applications, and even different
traffic patterns in one single application. The proposed topology
allocation algorithm has been shown to produce solutions that
outperform a manually configured traditional topology for high-
performance networks. In comparison with a traditional 2D-torus
the results proved that the aggregated network utilization could be
decreased with approximately 40% by using the proposed
algorithm.
Possible extensions of the current version of the algorithm include
taking into account system demands for energy efficiency and
fault tolerance. In addition, a more advantageous deadline
partitioning could be used to further improve network
performance. The next step of the algorithm development is the
integration of the feasibility analysis in the actual algorithm and to
use this additional information when generating the topology in
order to be able to guarantee the timely treatment of hard real-time
traffic. Furthermore, there are plans for a more holistic approach
to system design.

7. REFERENCES
[1] Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R.,

Stergiou, S., Benini, L., and De Micheli, G. NoC Synthesis
Flow for Customized Domain Specific Multiprocessor
Systems-on-Chip, IEEE Trans. Parallel and Distr. Syst., 16,
2 (Feb. 2005), 113-129.

[2] Dally, W. J. and Towles, B. Route Packets, Not Wires: On-
Chip Interconnection Networks, 38th Conf. on Design
Automation. (DAC ‘01) (Las Vegas, NV, USA, June 18-22,
2001). 684-689.

[3] García, J. M. and Duato, J. An Algorithm for Dynamic
Reconfiguration of a Multicomputer Network, Proc. 3rd
IEEE Symposium on Parallel and Distr. Processing (Dallas,
TX, USA, Dec. 2-5, 1991). 848-855.

[4] Hansson, A., Goossens, K., and Rădulescu, A. A Unified
Approach to Constrained Mapping and Routing on
Network-on-Chip Architectures, Proc. 3rd Int. Conf. on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS’05) (Jersey City, NJ, USA, Sept. 19-21,
2005). 75-80.

[5] Ho, W. H. and Pinkston, T. M. A Methodology for
Designing Efficient On-Chip Interconnects on Well-
Behaved Communication Patterns, Proc. 9th Int. Symposium
on High-Performance Computer Architecture. (HPCA-9
‘03) (Anaheim, CA, USA, Feb., 8-12, 2003). 377-388.

[6] Hoang, H. and Jonsson, M. Switched Real-Time Ethernet in
Industrial Applications - deadline partitioning, The 9th Asia-
Pacific Conf. on Communication (APCC ‘03), 1 (Penang,
Malaysia, Sept. 21-24, 2003). 76-81.

[7] Lee, K. and Shayman, M. Single and Multipath Logical
Topology Design and Traffic Grooming Algorithm an IP
over WDM Networks, Proc. 12th Int. Conf. on Computer
Communications and Networks (ICCCN ’03) (Dallas, TX,
USA, Oct. 20-22, 2003). 59-64

[8] Kunert, K., Weckstén, M., and Jonsson, M., Algorithm for
the Choice of Topology in Reconfigurable Networks with
Real-Time Support, Technical Report IDE0754, School of
Information Science, Computer and Electrical Engineering
(IDE), Halmstad University, Sweden, 2007.

[9] Liu, C. L. and Layland, J. W. Scheduling Algorithms for
Multiprogramming in Hard Real-Time Traffic
Environments”, J. Association for Computing Machinery,
20, 1, (Jan. 1973).

[10] Murali, S. and De Micheli, G. SUNMAP: a Tool for
Automatic Topology Selection and Generation for NoCs”,
Proc. 41st Design Automation Conf. (San Diego, CA, USA,
June 7-11, 2004). 914-919.

[11] Murali, S., Benini, L., and de Micheli, G. Mapping and
Physical Planning of Networks-on-Chip Architectures with
Quality-of-Service Guarantees, Proc. Asia and South
Pacific Design Automation Conference (ASP-DAC ´05), 1
(Shanghai, China, Jan. 18-21, 2005). 27-32.

[12] Murali, S., Meloni, P., Angiolini, F., Atienza, D., Carta, S.,
Benini, L., De Micheli, G., and Raffo, L. Designing
Application-Specific Networks on Chips with Floorplan
Information, Proc. Int. Conf. on Computer-Aided Design
(ICCAD’06) (San Jose, CA, USA, Nov. 5-9, 2006). 355-
362.

[13] Stankovic, J. A., Spuri, M., Ramamritham, K., and
Buttazzo, G. C.Deadline Scheduling for Real-Time Systems
- EDF and Related Algorithms. Kluwer Academic
Publishers, Boston, MA, USA, 1998.

[14] Srinivasan, K., Chatha, K. S., and Konjevod, G. Linear
Programming Based Techniques for Synthesis of Network-
on-Chip Architectures, Proc. IEEE Int. Conf. on Computer
Design: VLSI in Computers & Processors (ICCD ’04) (San
Jose, CA, USA, Oct. 11-13, 2004). 422-429.

