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ABSTRACT 
Many future embedded systems are likely to contain System-on-
Chip solutions with on-chip networks and in order to achieve high 
aggregated throughputs in these networks, a switched topology 
can be used. For further performance improvements, the topology 
can be adapted to application demands, either when designing the 
chip or by run-time reconfiguration between different predefined 
application modes. In this paper, we present an algorithm for the 
choice of topology in, e.g., on-chip networks, considering real-
time demands in terms of throughput and delay often put on such 
systems. To further address possible real-time demands, we 
include a feasibility analysis to check that the application, when 
mapped onto the system, will behave in line with its real-time 
demands. With input information about traffic characteristics, our 
algorithm creates a topology and generates routing information for 
all logical traffic channels. In a case study, we show that our 
algorithm results in a topology that can outperform the use of state 
of the art topologies for high-performance computer architectures.  
 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – distributed networks, network 
communications, network topology, packet-switching networks. 
 

General Terms 
Algorithms, Performance, Design. 
 

Keywords 
Network-on-Chip, topology design, feasibility analysis, real-time 
communication, reconfigurable systems. 
 

 

 

1. INTRODUCTION 
Today, more and more embedded applications have real-time 
requirements and to be able to fulfil these requirements, networks 
with real-time support are needed. For applications such as radio 
base stations and radar signal processing, not only high bandwidth 
is required, but also deterministic real-time properties of the 
communication are crucial. In the future, we see the possibility of 
chips with tens or even hundreds of processors connected by a 
switched network, running applications with real-time 
requirements. The advantages of using reconfigurability in a 
Network-on-Chip (NoC) are obvious. The topology can be 
adapted to different applications, different modes of applications, 
or even different traffic patterns in one single application. In this 
way, the high cost of designing and manufacturing a new chip can 
be reduced.  
This paper presents an algorithm for the design of network 
topologies in, e.g., packet-switched on-chip networks [2], 
considering the real-time demands in terms of throughput and 
delay often put on such systems. To further address those real-
time demands, we include a feasibility analysis to check that the 
application, when mapped onto the system, will behave in line 
with its real-time demands. With input information about the 
traffic characteristics, our algorithm creates a topology and 
generates routing information for all logical real-time channels. 
The proposed algorithm can be used both to select topologies to 
reconfigure between in case hardware for this is provided, and in 
the design stage of a static NoC for the decision on which network 
topology to implement for any intended target application. When 
having a reconfigurable topology (e.g., implemented by a 
crossbar), a specific topology can be chosen in the design stage for 
each working mode executed during run-time. A case study with 
simulation of two types of radar signal processing chains 
demonstrates the algorithm’s applicability for applications with 
different traffic patterns.   
The problem of topology design or link allocation according to 
certain parameters is found in a variety of research areas. Most 
research on topology design today is conducted in the area of 
System-on-Chip (SoC) design and NoC architectures. At a lower 
level, the advance of research on on-chip interconnection 
networks is mainly driven by the limitations of the 
interconnections used today, i.e., principally bus networks. Busses 
are simple to implement but have scalability problems since they 
can only transfer one message at a time. The authors of [3] and [5] 
point out the advantage of designing arbitrary topologies, adapted 
towards a target application’s specific demands and properties. In 
[5], a recursive algorithm is suggested to both find minimal 
topologies and share the communication medium with low 

 

peri
Typewriter
Nano-Net 2007 September 24-26, 2007, Catania, Italy.

Copyright 2007 ICST ISBN 978-963-9799-10-3

DOI 10.4108/ICST.NANONET2007.2148

peri
Typewriter

peri
Typewriter



contention. However, those papers do not present algorithms 
considering real-time demands. SUNMAP [1,10,11] is a mapping 
algorithm which can map any target application on a certain 
limited set of standard topologies, considering both parameters 
given by the technology and communication requirements. The 
algorithm we propose in this paper contributes by finding a 
suitable topology as well as a traffic mapping and schedule. 
Moreover, we do not restrict ourselves to a fixed set of topologies. 
The authors of [14] use linear programming based techniques to 
design application specific NoC architectures, but in contrast to 
our approach, no delay-bound guarantees for real-time traffic are 
provided. Since scheduling and topology generation are known to 
be NP-complete problems, we have to resort to a heuristic 
solution. A similar problem, finding a logical topology to meet all 
existing traffic demands in an optical network, is solved in [7] by 
the use of a shortest-path algorithm that constructs a route for one 
light path (a virtual channel comprising one single wavelength 
between two nodes) at a time. Although not the same problem, 
this method resembles our own solution. However, the major 
difference, again, is that our solution takes the real-time demands 
of the traffic into account. In [4] the authors describe a routing 
algorithm very similar to the one presented in this paper, a shortest 
path algorithm, where path selection is based on the timing 
requirements. To guarantee the real-time behaviour of the 
resulting system the authors use a TDMA (time-division multiple 
access) scheme. The experiments presented in [4] are based on 
silicon level simulation, resulting in area and energy parameters. 
However, although mapping and routing problems are addressed 
in the paper, topology exploration is not. In [15] the authors use a 
similar shortest path algorithm for routing but in this case the path 
selection is not based on timing requirements directly, but rather 
on energy consumption and operating frequency of the links. The 
experiments presented in [15] are also based on silicon level 
simulation. Although we decided not to conduct experiments on 
silicone level, the results of our real-time performance oriented 
work could be used for guidance of low-level implementation. 

Figure 1. Schematic system architecture. 
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The rest of the paper is organized as follows. In Section 2 we 
describe our system’s architecture, while Section 3 introduces our 
topology choice algorithm. Section 4 describes the feasibility 
analysis as used in the algorithm. A case study is implemented to 
evaluate the algorithm and the results are discussed in Section 5. 
Conclusions are drawn and possibilities for future work are 
pointed out in Section 6. 

 

2. SYSTEM ARCHITECTURE 
Our target system architecture consists of a reconfigurable 
topology, connecting M switched processor clusters, each 
containing N communicating end nodes (see Figure 1). The 
incorporation of the reconfigurable interconnection network 
allows for the adaptation to different application characteristics 
and can therefore improve network performance. While the links 
between the end nodes and the router in a cluster are bidirectional, 
the links between the router and the reconfigurable topology are 
assumed to be unidirectional with identical amounts of bandwidth. 
Using unidirectional links makes it possible to utilize the 
bandwidth more efficiently as the flexibility in traffic allocation 
increases. Communication between nodes in the same cluster is 
assumed to be unrelated to the cluster-to-cluster communication, 
as intra-cluster communication has no influence on the bandwidth 
bottleneck over the reconfigurable topology. This system model 

can be mapped onto different kinds of networks on different 
scales, not only NoCs. It can also encompass networks between 
nodes on several boards in one rack or between boards in several 
racks. 
 

3. TOPOLOGY SELECTION ALGORITHM 
This section provides the assumptions for the algorithm, and gives 
a detailed description of its different stages. At this point of time, 
computational complexity is not the major limitation, as the 
algorithm can be run offline for all possible online working 
modes. The results of the algorithm are the topologies of the 
interconnection network that the reconfigurable system will switch 
between during run-time and the necessary routing information. 
For a static NoC, the algorithm is just executed once, at design 
stage, to get the topology for the intended application. Due to the 
limited amount of space, we refer to [8] for a more detailed 
specification of the algorithm. 

 

3.1 Assumptions 
For each target application, the algorithm uses input traffic 
specifications in the form of real-time channels. A real-time 
channel is a logical flow, modelled as a virtual unidirectional 
channel with the following parameters (for any real-time channel 
i): the source Si , the destination Di , the maximum message length 
in bits (per period TP,i) Ci , the deadline in seconds TD,i, and the 
period (maximum message inter-arrival time) in seconds TP,i. 
Therefore every real-time channel i is characterized in the 
following form: 
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Additionally, the throughput demand in bits per second of each 
real-time channel i is given by:  
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Also provided is the number of input and output ports on each 
router towards the topology, denoted as MAX_LINK. The 
reconfigurable topology can connect each such router output port 
towards the topology to an arbitrary free input port on another 
router. Assuming priority support in the routers, non real-time 
traffic can be given lower priority and will interfere with the real-
time traffic. However, this interference will be bounded to a single 
packet due to the non-preemptiveness of a packet. 
For the intra-cluster traffic from the end nodes towards the router, 
which they are directly connected to, and vice versa, simply the 
link utilization is checked to ensure that there are no bottlenecks at 



this first and last hop of the communication path. However, they 
will still have to be included in the delay analysis, which is 
described later in the paper (Section 4). After this utilization 
check, the algorithm will not regard the links between end nodes 
and routers, but only the links over the reconfigurable topology. 

 

3.2 Description 
The d sign approach of e the algorithm has been to prioritize the 

itializations. For the algorithm to know in which 

allocation of physical links to connect pairs of nodes with real-
time channels between each other, demanding high guaranteed 
throughput and/or short bounded delays. When multihop 
communication over the reconfigurable topology is needed, we 
prioritize shorter paths for this throughput and/or delay demanding 
communication. The algorithm works in three main phases: 
singlehop routing with link allocation, multihop routing with link 
allocation, and feasibility testing. Prior to the main phases, certain 
initializations are needed. In order to decide upon the sequence in 
which the logical real-time channels should be allocated, we 
introduce an individual weight Wi for each channel i. This weight 
is calculated by one of two weight functions, depending on the 
phase in which the channel is allocated. Details on those weight 
functions are given in the detailed description of the different 
phases below. 
1) Phase 0 - In
order to process the real-time channel demands during the 
upcoming Phase 1, the initialization phase is started by calculating 
Wi for each channel i. A channel’s weight in Phase 1 is dependent 
on its throughput demand and its deadline, i.e. Ci, TD,i, and TP,i. 
Furthermore, this first weight function is solely aimed towards the 
singlehop routing case, where the length of a routing path is equal 
to three for every path. “Singlehop” in this context denotes thus 
only the hop over the reconfigurable topology. Considering these 
facts, we define the following weight function s_wfcn for Phase 1: 
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The minimum value function used in the denominator leads to one

real-

hop routing with link allocation. After having 

algorithm first examines 

 

 
of two cases. If the deadline TD,i is longer than three times the 
period TP,i (due to a path length of three and the assumption of 
equal deadline partitioning; more on deadline partitioning in 
Section 4.), then the only relevant factor for the weight of the link 
becomes its throughput demand (the numerator). On the other 
hand, if the deadline becomes shorter than three times the period, 
then these two parameters become significant enough to be 
included in the weight calculation. In other words, the hop through 
the topology is assumed to be either utilization constrained or 
delay constrained. This is an approximating hypothesis based on 
the fact that, for the case when the period is equal or shorter to the 
per-hop deadline for all channels, only the aggregated utilization 
needs to be verified to be less or equal to 100% [9]. Those results 
have their origin from the field of processor task scheduling. 
After having assigned an individual weight to each logical 
time channel, the channels are grouped into bundles, each bundle 
GS,D containing channels with a specific source-destination pair 
(S,D). The channels in each bundle are sorted in a priority queue 
QS,D, with the channel that has the highest bandwidth demand 
getting the highest priority. By summarizing the individual 
weights Wi of all channels in one bundle, each bundle is assigned 

an individual weight WS,D. Lastly, all bundles are sorted in a 
priority queue Qbundle, giving highest priority to the bundle with 
maximum weight. 
2) Phase 1 - Single
initiated the necessary parameters in Phase 0, the algorithm enters 
Phase 1, during which the algorithm routes singlehop paths, and 
when necessary allocates new physical links over the topology. 
The algorithm sequentially tries to allocate all logical real-time 
channels contained in bundle G (defined to be the one with the 
highest weight) through direct links over the topology. The 
channels are treated according to bandwidth demand, with the 
highest demand getting the highest priority. After having allocated 
all channels in one bundle, the algorithm treats the bundle with the 
next highest weight in the same fashion.  
When allocating a path for a channel, the 
if a link already exists between the channel’s source and 
destination router and if its capacity can meet the throughput 
demands of the channel. The sum of the throughput demands of 
all logical real-time channels over the same physical link must not 
exceed the maximum bit rate of that link. If it does not, the 
additional channel can be allocated on the existing link. (More 
details about the utilization constraint will follow in Section 4.) In 
case there is not enough capacity left on the link, the algorithm 
checks for the possibility to allocate a new physical link, parallel 
to the recently examined, using unallocated output ports at the 
source router and unallocated input ports at the destination router. 
When the algorithm no longer can find a singlehop path for a 
channel, it only tries to allocate the remaining channels in the 
current bundle as singlehop paths before terminating Phase 1. 
Then it will enter into Phase 2 to start with multihop routing. In 
case all real-time channels could be allocated in Phase 1, the 
algorithm continues directly with the feasibility check in Phase 3. 
3) Phase 2 - Multihop routing with link allocation. In the multihop
routing phase, the prioritization is solely based on the deadlines 
specified in the real-time channel demands and the concept of 
bundles is no longer used. The decision of making the priority 
solely dependent upon the end-to-end deadline of the real-time 
channel is based on the approximate assumption of the uniformity 
of all links, resulting into longer delays over paths with a larger 
number of hops. The new individual weight Wi of all remaining 
channels is calculated by a new weight function m_wfcn, which 
has TD,i as its only input parameter: 
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All individual channels are sorted in a priority queue Qchannel, with 
the highest weight and, by that, the shortest relative deadline 
getting highest priority. Each routing path R is found by an 
unweighted shortest path algorithm, related to Dijkstra’s 
algorithm, with all link costs being one. This leads to a routing 
algorithm with a hop-based cost metric, and therefore the shortest 
path signifies the path with the smallest number of hops between 
Si and Di. For each real-time channel demand, the shortest path 
algorithm searches a route through the partly allocated network, 
trying primarily to use the existing links unless their remaining 
capacity is too small to cope with the throughput demand of the 
channel currently under consideration. Only secondarily new, 
unallocated, links are set up. In case a path could not be found for 
all channels, the algorithm is terminated, as no suitable topology 
could be found for the given traffic specifications, otherwise the 
algorithm proceeds further to the feasibility check (Phase 3). 



4) Phase 3 - Feasibility testing. A feasibility test has been added 

haracteristics for hard 

tion U of periodic real-time traffic is defined as 

 

to verify that all real-time demands can be met. In case of a 
positive outcome, our algorithm provides as output the 
recommended network topology and a routing table belonging to 
the traffic demands. Otherwise, no suitable topology for the target 
application could be found. The theory of the feasibility analysis 
and the details of its application in our algorithm are given in the 
next section. 

 

4. FEASIBILITY ANALYSIS 
To be able to determine the performance c
real-time traffic over an arbitrary topology, this section provides a 
throughput guarantee and delay bound analysis. Due to the 
assumption of earliest deadline first (EDF) scheduling in all end 
nodes and intermediate routers, the feasibility analysis suggested 
in [6] can be used in a similar manner for our network. Real-time 
channels correspond to periodic tasks, where a physical link in the 
network can be seen as a processor and the maximum message 
length in our traffic specification is the equivalent to the worst-
case execution time Ci for task i in the original analysis. For the 
description of the feasibility check, a number of concepts need to 
be defined. 
• The utiliza
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where TP,i denotes the period (minimum message inter-arriva

• on multiple of all 

• s any interval within HP in which the 

• of time slots elapsed 

• network corresponds to the 

 

 

l 
time) of traffic over the logical channel i. 
The hyperperiod HP is the least comm
periods of a periodic task set, i.e., the length of time from 
when all tasks' periods start at the same time, until they start at 
the same time again. 
The busyperiod BP i
resource, in our case the link, is not idle. 
The point in time t signifies the number 
since the beginning of the HP. 
The traffic demand on the 
processor demand in a real-time system and is defined by the 
workload function h(t). h(t) is calculated as the sum of Ci for 
all message instances of all real-time channels with an 
absolute deadline less then or equal to t. h(t) is computed as 
follows [13]. 
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 r algorithm, the feasibility analysis is conducted for each In ou

physical link, which means that the total end-to-end deadline has 
to be partitioned into local single hop deadlines instead. For the 
matter of simplicity we have chosen an even distribution of the 
deadline over the entire path, i.e., the local deadline di corresponds 
to the end-to-end delay bound TD,i divided by the number of hops 
NoHj that the relevant path j consists of. 
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owever, this type of feasibility analysis assumes fully pre-

                     (8) 

This means that the workload function is remodelled as follows. 

H
emptive tasks. In interconnection networks packets normally 
cannot be pre-empted and consequently the possibility of further 

delay has to be considered. Therefore, we define the blocking time 
BT, which denotes the maximum blocking time that one (possibly 
lower-priority) packet can introduce to the system, i.e., BT equals 
the transmission time of a maximum size packet. This 
compensation results in a further shortening of the local delay 
bound. 
 

BTdd ii −='  
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While keeping U ≤ 1 is a necessary condition for being able to 
feasibly schedule periodic tasks by EDF [13], a second constraint 
was introduced in [13] to ensure the feasibility of the system when 
adding a new task or channel: 

 

( ) ttth ∀≤                            (10) 
 

introduces a high computational complexity, but This restriction 
the number of instances of evaluation can be reduced to the 
number of integer time values during an interval upper bounded 
by BP1, the first BP in the first HP of the schedule where all 
periods start at time zero. Again, this has to be adapted to our hop-
by-hop calculations by exchanging the end-to-end delay bound 
TD,i with the local delay bound di. In our case of non-pre-emptive 
communication, the local delay bound, di, further has to be 
exchanged for di’ because of the possibility of blockage, which 
results in the following instances of t having to be checked: 
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In order for the whole path to be accepted, all contained hops must

CASE STUDY 
y the proposed algorithm are evaluated 

 

 
be found feasible. 
 

5. 
The topologies generated b
by comparing the network efficiency of the generated topologies 
with that of a 2D-torus, a standard topology for high-performance 
computer architectures. In a 2D-torus each node has four 
neighbours and the topology has wrap-around edges. The 
efficiency of a given topology is defined as the pair (Unet |L|), 
where Unet denotes the total network utilization, or the sum of the 
utilization Ui for all links i, and |L| is the number of physical links 
used, or the sum of the ceiling function of the utilization Ui for all 
links i. 
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ower value of Unet signifies a more energy efficient topology 

) 

A l
since it consumes less of the total network resources. In cases of 
similar values of Unet, a lower value of |L| indicates a more 



hardware efficient topology, since a smaller number of links is 
needed as the capacity of the existing links is used to a higher 
degree. Even though it can be argued that it is better to use all 
available resources, a larger number of links with lower utilization 
could be an indication that the algorithm has chosen longer paths 
than necessary. In other words, a low value of |L| indicates an 
efficient algorithm that can lead to a higher possible amount of 
guaranteed real-time traffic in case this is requested.  
In order to demonstrate the algorithm’s applicability for use cases 
with different traffic patterns, the algorithm has been tested with 
two types of radar signal processing chains. Case 1 is dominated 
by one-to-many and many-to-one communication, while Case 2 
contains more pipelined traffic and just a minor amount of one-to-
many and many-to-one transmissions. A specification of the 
traffic demands is given in Figure 2 and Figure 3. The layout for 
the 2D-torus was chosen to be 3x4 nodes and the mapping of the 
nodes and links of the 2D-torus were done manually, keeping |L| 
at a minimum. In order to be able to compare the efficiency of the 

Figure 3. Case 2: Pipeline traffic demands

Figure 2. Case 1: Corner turn traffic demands 
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Figure 4. Case 1: Topology and traffic allocation 
produced as a result of the proposed algorithm 

Figure 5. Case 2: Topology and traffic allocation 
produced as a result of the proposed algorithm 
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Generated topology
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Table1. Total utilization in the network
and total utilization of links

*Results are given in % of maximum link utilization.
**Results are given in number of used links.



Figure 6. Case 1: Topology and traffic allocation mapped onto a 2D-torus 

Figure 7. Case 2: Topology and traffic allocation mapped onto a 2D-torus 
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generated topologies directly with the 2D-torus, the experiments 
were carried out with the MAX_LINK constraint for the generated 
topologies being set to four.  
The proposed algorithm managed to find feasible solutions within 
the specified requirements for both cases. As seen in Table 1 and 
Figures 4-7, the proposed algorithm generated more efficient 
topologies than the 2D-torus in both cases, and in neither of the 
cases, the solutions fail the feasibility test. Using the proposed 
algorithm and a reconfigurable topology, the experiments show a 
10-30% reduction of the number of links used and a 20-40% 
reduction of the used network bandwidth compared to when using 
a manually configured 2D-torus. Practically this means that the 
reconfigurable topologies have left more spare resources and can 
therefore accept a higher amount of real-time traffic in case that 
was requested. The difference is more noticeable in Case 1 

because of the substantial number of one-to-many and many-to-
one transmissions. However, even for the pipelined structure of 
Case 2, the proposed algorithm found a more efficient solution. 
This depends upon the fact that several transmissions to the same 
destination in our case require more than one link, and have to be 
routed over a multi-hop path in a 2D-torus. The reconfigurable 
topology, however, has the opportunity for the allocation of 
several parallel links between node pairs. In the case of one-to-
many or many-to-one communication where the number of 
parallel transmissions exceeds four, the usage of multi-hop paths 
is inevitable though due to the MAX_LINK constraint, independent 
of the topology. However, a reconfigurable topology gives the 
option of a more flexible path allocation compared to the 2D-
torus.

 
 



6. CONCLUSION AND FUTURE WORK 
It is clear that the SoC/NoC community is in need of more 
powerful communication networks compared to the commonly 
used bus hierarchies, both in terms of flexibility and efficiency. 
This makes a dynamically reconfigurable topology a well-suited 
alternative. However, to fully utilize the potential of a dynamic 
topology, efficient tools such as the algorithm presented in this 
paper, are needed. The advantages of using reconfigurability in a 
NoC are obvious; the topology can be adapted to different 
applications, or different modes of applications, and even different 
traffic patterns in one single application. The proposed topology 
allocation algorithm has been shown to produce solutions that 
outperform a manually configured traditional topology for high-
performance networks. In comparison with a traditional 2D-torus 
the results proved that the aggregated network utilization could be 
decreased with approximately 40% by using the proposed 
algorithm. 
Possible extensions of the current version of the algorithm include 
taking into account system demands for energy efficiency and 
fault tolerance. In addition, a more advantageous deadline 
partitioning could be used to further improve network 
performance. The next step of the algorithm development is the 
integration of the feasibility analysis in the actual algorithm and to 
use this additional information when generating the topology in 
order to be able to guarantee the timely treatment of hard real-time 
traffic. Furthermore, there are plans for a more holistic approach 
to system design. 
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