
A methodology and a case-study for Network-on-Chip
based MP-SoC architectures

Sergio V. Tota, Mario R. Casu, Paolo Motto, Massimo Ruo Roch, Maurizio Zamboni
VLSI LAB

Electronic Department
Politecnico di Torino, Italy

{sergio.tota, mario.casu, massimo.ruoroch, maurizio.zamboni}@polito.it

ABSTRACT
The many-core design paradigm requires flexible and mod-
ular hardware and software components to provide the re-
quired scalability of next-generation on-chip multiprocessor
architectures. A multidisciplinary approach is necessary to
consider all the interactions between the different compo-
nents of the design.

In this work a complete design methodology is proposed,
tackling at once the aspects of hardware architecture, pro-
gramming model and design automation. The proposed de-
sign flow has been used in the implementation of a multipro-
cessor Network-on-Chip based system, the NoCRay graphic
accelerator.

The system uses 8 Tensilica LX processors and has been
physically implemented on a Xilinx Virtex-4 LX-160 FPGA
reporting a 17.3M equivalent gate-count. Performance are
compared with a commercial general purpose processor and
show good results considering the low frequency of the pro-
totype.

Nano-Net 2007 Catania, ITALY

Categories and Subject Descriptors
C.1.2 [Multiprocessors]: Interconnection Architectures;
D.1.3 [Concurrent programming]: Parallel programming

General Terms
Networks-on-Chip, Multiprocessor System-on-Chip

Keywords
NoC, MPSoC

1. INTRODUCTION
Network-on-Chip (NoC) is seen as the interconnection method-
ology for future homogeneous and heterogeneous Multipro-
cessor Systems-on-Chip (MP-SoC) [1]. The motivations for
this choice are the better scalability of performance with the
increasing number of processing elements (PEs) compared to
standard on-chip busses, the high regularity which improves
layout and particularly the allocation of wiring resources
and the layered design approach which enables tackling the
SoC complexity.

MP-SoC design is a multi-disciplinary research activity that
encompasses on-chip communication infrastructures, micro-
processor architectures, programming models, co-design/co-
simulation flows and EDA tools for automated system gen-
eration. So far the need for higher performance had led to an
increase of the architectures complexity in a monolithic way
of which the microprocessors evolution is the most evident
example. From the various x86 architectures to the more
recent super-scalar ones the trend was to implement always
more complex solutions, driven by a need for an ever increas-
ing system frequency and instructions per cycle. Recently,
this trend has started to slow-down even if the number of
transistors is expected to continue to double every two years.
Power-thermal issues as well as design complexity have be-
gun to limit the performance growth-rate compared with the
increasing number of transistors available in a single die [2].

One way to cope with this productivity gap is the “tile-
design” concept which underlies a simple yet effective paradigm:
parallelization through replication of many identical blocks
placed each in a tile of a regular array fabric. Instead
of focusing on improving the complexity of a single block,
the solution aims at delivering performance through sev-
eral replicas of the same basic blocks. The final aggregate-
performance will only be limited by the number of transis-
tors available in the same silicon. This approach has the
terrific consequence of making systems design a matter of

peri
Callout

peri
Callout

peri
Callout

peri
Typewriter
Nano-Net 2007 September 24-26, 2007, Catania, Italy.

Copyright 2007 ICST ISBN 978-963-9799-10-3

DOI 10.4108/ICST.NANONET2007.2122

peri
Typewriter

peri
Typewriter

instantiation capability instead of architecture complexity,
an objective which has to be pursued through innovative
scalable hardware/software solutions.

The computation is usually performed by a microprocessor.
Even if it is always possible to implement hard-wired PEs, a
programmable architecture gives the required flexibility to
adapt and reuse the system in different scenarios bringing
the concept of application-domain architectures. The possi-
bility of reusing the same chipset in different devices is the
only solution to face the growing costs of R&D as well as of
mask-set [3]. The performance of latest Application Specific
Integrated Processors (ASIPs) together with the high avail-
ability of transistors is making the design of custom hard-
wired logic always less convenient (time-to-market, respin
risks). All the components of the framework should be con-
figurable and with modularity capabilities as required in a
distributed environment.

Our research activity focused on the various aspects that this
new paradigm coalesces. The integration of a scalable NoC
communication infrastructure, a configurable microproces-
sor design, a distributed solid programming model and an
automated design flow is demonstrated through a MP-SoC
case study: a parallel graphics ray tracer rendering engine
has been mapped on a FPGA prototype board.

2. BACKGROUND AND RELATED WORK
An MP-SoC design flow requires several hardware/software
components and each of them plays an important part in the
overall architecture. One of the first works on the design
and implementation of a switch and the relative Network
Interface (NI) for the NoC infrastructure is the Aethereal
framework [4] [5]. In this work a switch with guaranteed ser-
vices (GEs) as well as best-effort services (BESs) based on
the time-division-multiplexing (TDM) approach is used. A
worm-hole routing algorithm has been implemented for the
switch while the NI offers interfaces for several SoC bus pro-
tocols (AXI, OCP, DTL). The architecture is highly domi-
nated by memory elements leading to an area of 0.24mm2

for the switch and of 0.11mm2 for the NI in a 130nm CMOS
technology. A more recent work [6] proposes a six-port
57GB/s Double-Pumped Nonblocking Router Core based
again on the worm-hole routing algorithm. While this im-
plementation provides high-performance, the cost in terms
of area is high as well requiring almost two million transis-
tors per switch with an area of 12.2mm2 in a 150nm CMOS
technology. A recent implementation of a complete MP-
SoC system using this switch has been recently proposed [7]
showing that such a complex architecture does not let the
system to scale due to thermal/power-consumption issues.
Zhonghai et al. [8] analyze different programming models
suitable for NoCs including the Message Passing but this
implementation appears to be too complex for light-weight
applications and it seems more suitable for Operating Sys-
tems.

In this paper a deflection-routing switch has been used. The
use of this routing algorithm for the NoC environment has
been analyzed in [9]. Compared to the usual worm-hole ap-
proach, a deflection-routing based switch shows advantages
in terms of area since memory elements are kept to the min-
imum. This approach gives also benefits in terms of power

consumption. A 64-bit wide 5 ports switch has an area of
0.038mm2 and a power consumption of 29 µW/MHz in a
130nm CMOS technology [10].

With the deflection-routing approach out-of-order flits can
reach the target PE thus a NI with reordering capabilities
is required. Instead of adopting a bridge-like approach to
interconnect the processor to the NoC translating a given
bus protocol, the NI has been embedded inside the proces-
sor with a point-to-point link using the Tensilica Instruction
Extensions (TIE) capabilities. This approach is more effi-
cient in terms of area and more flexibility is added with the
native support by the processor of NoC I/O primitives.

Concerning the programming model a set of light-weight
Application Programming Interface (API) compliant with
a subset of the Message Passing Interface (MPI) protocol
has been implemented being more suited for an embedded
environment, the embedded MPI (eMPI).

The generation of the whole architecture has been autom-
atized with RapidBuilder, an in-house developed EDA tool
for MP-SoC systems design. It is based on the well known
Eclipse [12] framework which is natively thought to be mod-
ular and scalable. RapidBuilder has been integrated with
the Tensilica Processor Generator, Xplorer, and automati-
cally generates the RTL description of the NoC as well as all
the scripts to perform cycle-accurate simulations using the
Mentor Graphics Seamless co-simulation environment. In
chapter IV the proposed methodology has been proven with
a case-study. A multiprocessor implementation on FPGA
of a Raytracer graphic application with 8 LX processors is
proposed.

3. MP-SOC DESIGN FRAMEWORK
The design of on-chip multiprocessor architectures requires
a completely new approach asking for a higher level of multi-
disciplinarity if compared with the current flow. Today more
than before the success of a platform depends on the smooth
integration of different components. Any choice, if not in-
tegrated and verified in the whole environment, can lead to
misleading results. In this section an integrated framework
is proposed tackling at once all the hardware/software com-
ponents.

3.1 Hardware Architecture
To make an architecture scalable and modular it is of key
importance to appropriately partition all the different sub-
systems. Partitioning is the only way to catch all the contri-
butions of the different blocks and the relationship between
them. The first natural step is to distinguish the computa-
tion from the communication. Depending on the application
domain these two components can significantly vary.

The computation is based on the Tensilica LX configurable
processor [11]. The native support for multiprocessing, the
complete configurability of the datapath and I/Os, the sup-
port for a strong co-design/co-simulation flow and the inte-
gration of the development environment in the Eclipse mod-
ular framework gave us the possibility to easily integrate it
with our design flow.

Multiprocessor capabilities have been enabled with the use

Switch
i

N

S

EW

TAP Controller TAP Controller

P
rocessor ID

 R
egister

P
rocessor ID

 R
egister

RAM

NoC TIE
 Ports

Data

Xtensa
 i+1

RAM

NoC TIE
 Ports

Data

 i

Switch

N

S

EW
i+1

 RAM

Instruction

Xtensa

Figure 1: Basic architecture of each processor cou-
ple. The Instruction RAM is shared between the
two instances.

of the ProcessorId Register (Fig. 1). The value of this reg-
ister is used by the software layer to identify the processor
where it is running on and behave consequently. This tech-
nique make the software self-adapting thus the whole archi-
tecture is scalable; with one basic instance of the processor
and of the firmware, the design of a MP-SoC architecture
becomes a matter of cloning, a task that can be easily au-
tomated.

The presence of a software locality between adjacent pro-
cessors gives also the possibility to simplify the hardware
infrastructure. For SIMD-like applications a single Instruc-
tion Memory with dual-port capabilities can be shared be-
tween two processors (Fig. 1). Strategies for efficient mem-
ory usage will be of key importance considering that next-
generation multi-core architectures will be memory-dominated.

To implement an high-speed direct link between each proces-
sor and the NoC, the NI has been embedded in the processor
using the TIE ports [13]. This I/O is directly connected to
the processor register-file and it is modeled as a FIFO con-
troller (Fig.2) thus giving an easy and efficient way to inter-
face the switch to the processor. Even if in this implemen-
tation only one clock domain has been used, this approach
gives the possibility of using different clock domains between
the NoC and the processor. Using the processor internal
register-file for flits storage, buffer elements in the switch
are kept to the minimum and a double buffer technique has
been implemented to support one clock cycle read/write op-
erations with re-ordering capability for out-of-order received
flits. Several are the reasons for taking the NI inside the pro-
cessor. The use of a point-to-point link instead of a classic
bus-bridge leads to a bandwidth improvement since no arbi-
tration is required and flit-size of any parallelism is possible.
The NoC I/O low-level primitives are directly supported by
the tool-chain. To send some data through the NoC the soft-
ware layer is only required to provide a pointer to the data
to be sent and the target processor ID to the corrisponding
function. The packetization engine automatically computes
the header of the flit, adds the data in the payload field and
send the flit through the network. The link parallelism can
be customized to accommodate the flit size for a given im-
plementation; the footprint overhead for integrating the NI

in the processor core is between 2K-5K gates for 32-64 bit
wide flits.

The communication between processors is based on a Network-
on-Chip approach with a folded-torus topology and a switch
based on the deflection-routing algorithm [14]. At the cost
of a possible out-of-order delivery, this routing algorithm
provides an area efficient implementation since it requires
only one register for each input port. The flow control has
been implemented with a simple yet efficient approach. At a
given clock cycle the processor can inject a flit only if at least
one of the four output ports (N,S,E,W) are not busy. This is
possible because no virtual channels are implemented. Thus
it becomes of key importance to appropriately dimension the
NoC.

In the NoCRay case-study the deflection-routing switch has
been used fulfilling all the bandwidth requirements while
keeping the area overhead as low as possible. This switch
has been implemented in a 130nm CMOS technology with
an area of 0.039mm2 and a clock frequency of more than
500 MHz [10].

3.2 Programming Model
The scalability of the hardware infrastructure must be fully
supported by the software layer, i.e. the programming model.
The shared-memory paradigm is the most adopted and well
understood by software architects. While this approach nat-
urally fits in uniprocessor machines, it does not provide
enough capabilities to support a distributed environment
where memory is distributed as well.

A more scalable paradigm, natively parallel and architec-
ture independent is the Message Passing Interface (MPI)
programming model. The MPI standard defines both the
syntax and semantics of a core of library routines providing
a solid methodology for parallel programming. A heteroge-
neous environment can take full advantage of MPI using a
common protocol for Inter Process Communications (IPC).
Furthermore such applications can be analyzed with stan-
dard MPI profiling tools to extract computation/communication
patterns. The full MPI standard provides a wide range of
communication primitives particularly suitable for computer
networks but for an on-chip environment a more light-weight
implementation is preferred.

We defined a subset of MPI primitives oriented more on
embedded application, the embedded MPI (eMPI) with two

Figure 2: Xtensa TIE queues modeled as FIFO con-
troller (Tensilica LX Processor User Guide.)

basic primitives: send() and receive(). With these two basic
primitives the barrier() synchronization function can be also
implemented. As discussed before, these functions are hard-
ware supported by the LX processor instruction-set and are
executed in one clock cycle each. When invoked the send()
automatically segments the variable size data into a number
of fixed size flits, computes the header and injects the flits
into the network. The receive() function reads an incoming
flit and analyzes the sequence number to check for out-of-
order data and performs reordering if needed. Since the
low-level I/Os primitives are hardware implemented, these
MPI libraries do not introduce any overhead compared to
a custom approach. For this first implementation blocking
primitives has been used and thus higher-level communica-
tions abstractions such as the many-to-many queues are not
supported. It is under development a non-blocking imple-
mentation using interrupts in order to make the architecture
more flexible.

The eMPI implementation thus can provide a compatibility
layer for applications when running on different hardware
and facilitate the refactoring of available MPI applications
to the embedded on-chip environment.

V X Y Seq Red Green Blue

Payload

8881 322

Header

02331

Figure 3: Flit structure with 8-bit Header and 24-bit
Payload (R-G-B)

3.3 Design Automation
The complexity of next-generation on-chip multiprocessor
architectures will require an higher level of design automa-
tion tools, capable of catching system level constraints to au-
tomatically generate the required computation/communication
infrastructure. The same considerations on modularity dis-
cussed previously can be applied in the same way on the
EDA tool framework. It must be flexible enough to let the
integration of different modules with possibly no limitations
on the extension/customization capability.

An ideal platform for this purpose is the Eclipse develop-
ment framework. The high availability of open-source com-
ponents and the easiness of integration of custom modules
provides a industrial-quality environment where sophisti-
cated tools can be tightly integrated. Our proposed de-
sign methodology relies on this framework with the integra-
tion of the in-house developed RapidBuilder MP-SoC gen-
erator module (Fig.4). It automatically generates the NoC
infrastructure with RTL synthesizable models as well as co-
simulation support through the Mentor Graphics Seamless
environment. The network topology, the switch routing al-
gorithm (wormhole/deflection-routing) and the number of
PEs are all parameters that RapidBuilder uses for the gen-
eration of the given MP-SoC architecture.

4. CASE STUDY: THE NOCRAY GRAPHIC
ACCELERATOR

Even if the Network-on-Chip paradigm is considered the
communication infrastructure of the next-generation mul-

Propietary Hardware Implementation

Hardware Abstraction Layer
(eMPI)

eMPI Applications

NoCRay Framework

Figure 4: NoCRay Hw-Sw stacked layers.

ticore architectures, there are almost no available physi-
cal implementations of full MP-SoC architectures as refer-
ence. For this reason a big effort has been done in this
work to join together all the previous considerations im-
plementing a real-life application running on the proposed
hardware/software infrastructure. As a case study a graphic
application, NoCRay, has been mapped in a MP-SoC NoC
based environment and prototyped on a FPGA.

The SPLASH-2 shared-memory parallel raytracing algorithm
has been used as a starting point. For more details on this
algorithm refers to this work [15]. This algorithm has been
manually ported to the distributed-memory programming
model using our eMPI APIs and fitted for the on-chip em-
bedded environment. The code requires 64KB of Instruction
Ram and 32KB of Data Ram (Fig. 1). The instruction code
is shared between two adjacent processors to reduce memory
requirements. Every line of the image is assigned to a spe-
cific processor belonging to the work-pool. Each processor
can be identified by the ProcessorID Register thus the same
firmware can be uploaded to all the processor instances us-
ing the Test Access Port (TAP) controller. Depending on
the value of the ProcID register the firmware computes the
assigned lines. To avoid the use of external memory, each
line is segmented into blocks of 256 pixels. As soon as a
block is computed it is sent through the NoC to the Mas-
ter Processor. This special processor has, in addition to
the standard TIE-NoC interface, another TIE custom inter-
face for a 10/100 Mbits OpenCores [16] Ethernet controller.
Computed pixels are sent through the ethernet interface to
a host computer which displays the image to a screen. With
this approach the architecture can compute images of any
size without the need of any external memory. Since the
computation is highly dominated by floating point opera-
tions, a hardware 16-bit multiplier has been added to the
LX processor to improve performance. The flit is 32-bit
wide with 24 bits for the payload (Red, Green, Blue) and 6
bits for the header (Fig. 3).

The system has been generated with RapidBuilder and veri-
fied with the Seamless co-simulation environment before the
physical implementation. The design has been mapped on
a Xilinx Virtex-4 LX-160 FPGA with 8 processors running
at 33MHz. It uses 90,036 4-Input LUTs and a gate count of
17.3M is reported by the XIlinx ISE implementation tool.

5. RESULTS
The system has been benchmarked varying both the number
of active processors, between 1 and 8, and the image size,

 1500

 900

 500

 250

 100

 50

 25

 10
 7

 4

 2

 1
 0.7
 0.5

 0.3
 0.2

 0.15

4e+052e+056.55e+042e+041e+044.1e+031e+03

E
xe

cu
tio

n
tim

e
[s

]

Image Size [pixel]

NoCRay Raytracing Performances (HW MUL16)

Intel Centrino 2 GHz
1 processor (33 MHz)
2 processors (33 MHz)
3 processors (33 MHz)
4 processors (33 MHz)
5 processors (33 MHz)
6 processors (33 MHz)
7 processors (33 MHz)
8 processors (33 MHz)

Figure 5: NoCRay multiprocessor architecture exe-
cution time with hardware MUL16 support.

from 32x32 to 756x512. Fig.5 shows the execution time for
each image-size/active-processors configuration. The results
have been compared with the execution time needed by an
Intel Centrino running at 2GHz. Fig.6 shows the completely
linear speedup of the performance varying the number of ac-
tive processors. Considering that our prototype has a clock
frequency of almost 2 order of magnitude less then the Cen-
trino processor, performance comparison clearly shows that
an ASIC implementation of the proposed architecture, run-
ning at a still relative lower frequency (200-300 MHz) could
anyway outperform the Centrino with a less complex design.

6. CONCLUSIONS
In this paper a modular and scalable methodology for Multi-
processor System-on-Chip design has been proposed. Differ-
ent aspects of the design flow have been tackled. Micropro-
cessor characteristics for an efficient Network-on-Chip link,
a high-speed low-area deflection-routing switch implementa-
tion, an efficient Network Interface solution, a scalable pro-
gramming model based on the MPI paradigm and an EDA
tools for automated architecture generation, have been all
proven in the design of a graphic parallel application, the
NoCRay MP-SoC Raytracer. Results show the feasibility of
the proposed design flow achieving good results when com-
pared with a general-purpose high-speed processor.

7. ACKNOWLEDGMENTS
We would like to thank Tensilica, Mentor Graphics, and
Xilinx for the precious technology support.

8. REFERENCES
[1] Jerraya A. and Wolf W. (editors), “Multiprocessor

Systems-on-Chip”, Elsevier Morgan Kaufmann, San
Francisco, California, 2005

[2] Held J., Bautista J, Koehl S., “From a Few Cores to
Many: A Tera-scale Computing Research Overview”,
Intel Development Forum, September 2006

[3] Weber C. M., Berglund C.N., Gabella P, “Mask Cost
and Profitability in Photomask Manufactoring: An
Empirical Analysis”, Transaction on Semiconductor
Manufactoring, pp. 465-474, Nov. 2006

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Active Processors

NoCRay Raytracing Performances: Speedup

Image size: 256x256
Image size: 512x512
Image size: 768x512

Figure 6: NoCRay multiprocessor architecture
speedup.

[4] K. Goossens et al., “AEthereal network on chip:
concepts, architectures, and implementations,” IEEE
Design & Test of Computers, Vol. 22, No. 5, Sept.-Oct.
2005, pp. 414-421

[5] Radulescu A. et al., “ An Efficient On-Chip Network
Interface Offering Guaranteed Services, Shared-Memory
Abstraction, and Flexible Network Configuration”, in
Proceedings of the Design, Automation and Test in
Europe 2004

[6] S. Vangal, N. Y. Borkar, and A. Alvandpour, “A
Six-port 57GB/s Double-Pumped Nonblocking Router
Core”, Dig. Symp. VLSI Circuits, pp.268-269, June
2005

[7] Sriram Vangal et al., “An 80-Tile 1.28TFLOPS
Network-on-Chip in 65nm CMOS”, ISSCC 2007

[8] Zhonghai Lu, Raimo Haukilahti, “NOC Application
programming interfaces: high level communication
primitives and operating system services for power
management”, Kluwer Academic Publishing,
“Networks on chip”, pp. 239-260, 2003

[9] Zhonghai Lu et al., “Evaluation of On-chip Networks
Using Deflection Routing”, GLSVLSI, April 30-May 2,
2007 Philadelphia

[10] S. V. Tota, M. R. Casu, L. Macchiarulo,
“Implementation Analysis of NoC: A MPSoC
Trace-Driven Approach”, pp. 204-209, in Proceedings
of the 2006 ACM Great Likes Symposium on VLSI,
Philadelphia, April 30-May 2

[11] Tensilica Inc., http://www.tensilica.com

[12] The Eclipse open development platform,
http://www.eclipse.org

[13] “Tensilica Extensible Instruction User Manual”

[14] F. Borgonovo, “Deflection Routing,” in [17] pp.
263-305.

[15] S. Cameron Woo et al., “The SPLASH-2 Programs:
Characterization and Methodological Considerations”,
In Proc. of the 22nd Symposium on C. A., p. 24-36,
Santa Margherita Ligure, June 1995

[16] The OpenCores Project, http://www.opencores.org

[17] M. Steenstrup, ed., Routing in Communication
Networks, Prentice Hall, 1995.

