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ABSTRACT

In this paper we propose a method to perform tunable spec-
tral sensing using globally coupled oscillators. The sug-
gested system may operate is analog (RF) domain with-
out high speed ADC and heavy digital signal processing.
Oscillator arrays may be made of imprecise elements such
as nano-resonators. Provided a proper coupling, the sys-
tem dynamics can be made stable despite the imprecision of
components. Global coupling could be implemented using
a common load and controlled by digital means to tune the
bandwidth. This method may be used for spectral sensing
in cognitive radio terminals.
H.4: Information Systems Applications: Miscellaneous

G.1.7: Mathematics of Computing: Numerical Analysis: ODE

G.3.14: Statistical Computing

1. INTRODUCTION
Development of high data rate communication systems

requires implementation of complicated algorithms operat-
ing at high speed with low power consumption. Despite the
progress in digital CMOS technology, high data rate digi-
tal processing poses a number of problems both for signal
digitizing and its processing.
These problems motivate a search for new architectures

capable to combine advances in scaling, new materials and
information processing at nano-scale. Currently there is
growing interest in development of signal processing sys-
tems using nano-scale devices such as molecular electronics,
nano-wires, nanomechanical systems and etc [1]-[9]. For ex-
ample, scaling MEMS to nano-scale gave rise for low power
nano-electromechanical systems (NEMS) with operational
frequencies above GHz (frequency range typical for modern
communication systems) [5],[6].
Recent advances in nanotechnology and scaling allow to

build systems with a large number of nano-resonators (such
as CNT-based NEMS [8]) integrated within CMOS chip. On
the other hand, scaling poses a problem to maintain accu-
racy of elements. It is especially pronounced in fabrication
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of nano-scale devices where top-down design is not possible,
and technology process and impurities may result in unpre-
dictable components’ accuracy.
A practical way to cope with inaccuracy may be seen

in building hybrid systems combining low precision ana-
log/nano components with digital calibration/control. Be-
sides, in network structures one may use a proper coupling,
such that the system dynamics may be made stable despite
the imprecision of components [10]. In particular, collective
behavior of coupled NEMS networks with assistance of cou-
pling and calibration provided by digital CMOS may allow
to implement low power information processing algorithms
in analog domain with digital calibration/control. For ex-
ample, it makes feasible spectral processing in RF domain
which is of the special importance for high data rate wire-
less communications systems. The suggested method may
be used for spectral sensing in cognitive radio terminals [11],
where wide radio spectrum bands are to repeatedly scanned
in real-time with low power consumption.
The paper is organized as follows. Sec.2 provides a back-

ground on coupled oscillators. Proposed method of spectral
sensing based on inhibitory globally coupled arrays and its
possible NEMS implementation are outlined in Sec.3 and
Sec.4, respectively, with conclusions followed in Sec.5.

2. COUPLED OSCILLATORS

2.1 Background
Coupled osillators have been under intensive studies in

different fields of science for decades (e.g., see [10][12][13][14]
and references within). In this section we outline the basic
concepts and introduce notation used in the following.
Let’s consider an oscillator in a steady state limit cycle

described by a single variable, the phase of the limit cycle θ.

This results in the simple motion equation,
dθ

dt
= ω, where

ω is the frequency of the oscillator with period T = 2π/ω.
The solution for this equation is θ(t) = ωt+ θ(0)(mod 2π),
where θ(0) is the initial phase at time t = 0. Geometri-
cally θ(t) is presented as a point moving on a circle. A
system of N coupled oscillators resides on N circles and
forms N-dimensional torus TN with vector coordinates θ =
(θ1, θ2, ...θN ), 0 < θn(t) < 2π, n = 1, ...N .
We consider weak coupling among the oscillators, such

that oscillators maintain their limit-cycle behavior perturbed
by coupling. It allows us to ignore coupling affect on os-
cillator’s amplitudes and describe system only with phase
relationships as
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dθn
dt

= ωn +Qn(θ1, θ2, ...θN )

where is ωn is natural (uncoupled) frequency of n-th oscilla-
tor, Qn presents a coupling effect from all other oscillators on
the n-th oscillator. The coupling function Qn is 2π-periodic
in each of its arguments (evolution of θn depends on a po-
sition of each of the N oscillators in their cycles, no depen-
dance on a number of cycles passed). We further assume
that coupling may be separated into contributions due to
the interaction between any two pairs of oscillators (i.e., the
total coupling effect is the sum of single-link effects)

Qn(θ1, θ2, ...θN ) =
N∑

m=1

qnm(θm, θn)

For weak coupling qnm(θm, θn) = qnm(θm−θn) and qnm(0)=0.
The latter corresponds to no interactions if two identical
oscillators are in phase with each other. Such coupling is
known as diffusive coupling, motion equations are
dθn
dt

= ωn+
N∑

m=1

qnm(θm−θn). (1)

Since gnm is to be 2π-periodic, we may present it in Fourier
series. Taking only the first Fourier term, (1) may be written
dθn
dt

= ωn +
N∑

m=1

anm sin(θm − θn) (2)

Cases when anm > 0 and anm < 0 are called excitatory
and inhibitory coupling, respectively. In the simplest exam-
ple of N = 2 coupled oscillators, their motion is described
by
dθ1
dt

= ω1 + a12 sin(θ2 − θ1)

dθ2
dt

= ω2 + a21 sin(θ1 − θ2)

By defining a phase lag ϕ(t) = θ1(t) − θ2(t) the motion
equations are simplified to
dϕ

dt
= (ω1 − ω2) + (a12 + a21) sinϕ

which may be solved exactly. A special solution called 1:1
phase-locking motion (phase lag ϕ = const) is

ϕ = arcsin
ω1 − ω2
a12 + a21

.

This equation may have either no, one or two solutions

depending on whether

∣∣∣∣
ω1 − ω2
a12 + a21

∣∣∣∣ > 1, = 1, or < 1. In the

former case, no phase-locking solution, the system is said
to drift. Note that the coupling anm > 0 may be increased
until the systems goes from drift into phase-locking.

2.2 Globally coupled oscillators
A special case of (2) with anm = a/N (a = const > 0)

corresponds to uniform global coupling and is well known as
globally-coupled Kuramoto model [12][13]
dθn
dt

= ωn +
a

N

N∑

m=1

sin(θm − θn) (3)

This equation may have a range of solutions from peri-
odic to chaotic. For example, periodic solutions include: (i)
phase sync state θn(t) = θ0(t) for all n; (ii) ”phase-lock”
state where all oscillators have the same waveform but are
shifted by a fixed phase θn(t) = θ0(t+nT/N), where T is os-
cillation period (creating a rotating wave); (iii) partial sync
there both states may co-exist. Kuramoto showed that the
system (3) may be analytically tractable and in the limit
N → ∞ there is a critical value of coupling strength kc,
such that for a/N = k > kc both frequency and phase sync
appear in the system [12].
Let’s define a complex mean field for N oscillators with

equal unit amplitude as

R(t) =
1

N

N∑

n=1

eiθn(t) = reiψ(t)

Global coupling may be seen as the total mean field effect
acting on a selected oscillator, then (3) may be rewritten as
dθn
dt

= ωn + kr sin(ψ − θn) (4)

where k is the strength of all-to-all coupling and r is mean-
field amplitude. If identical oscillators are all in phase-sync,
then oscillations added in phase create just one oscillation
with max mean field amplitude (r = 1), whereas for random
phases oscillators show a chaotic behavior with minimum
mean field amplitude (r = 0). For this reason the mean-
field amplitude r is also referred as the order factor.

2.3 Oscillators with attractive global coupling
First let’s consider oscillators with equal natural frequen-

cies ωn = ω0. On the phase plot this common frequency
appears as the collective angle motion of all oscillators. In
the following we use moving coordinates where ω0 = 0. Fig-
ures below present time evolution of randomly initialized
oscillator phases obtained by numerically solving system of
equations (4) for N = 50. Starting from uniform random
phase distribution (Fig.1a) the positive coupling k > 0 in
globally coupled network results first in phase clustering
(Fig.1b) followed by phase synchronization. As expected,
the order factor (shown as red-filled circle) is growing as
phases of oscillators are grouped and approaches max when
phase synchronization is reached (Fig.1c).

a) t=0 b) t=10 c) t=40
Fig.1. Evolution of phases of N = 50 identical (ωn = ω0)

oscillators with global coupling k = 0.3 in time t .

Fig.2. Evolution of phases of N = 50 oscillators with random

normal distributed frequencies (σ2ω = 0.02) with different global

coupling: a) t = 20, k = 0.3 no sync; b) t = 20, k = 0.5 part

sync,c) t = 40, k = 0.6, sync.
In practice the oscillators’ frequencies are not identical,

their natural frequencies may be modeled as random values
taken from some distribution. As an example, below we con-
sider Gaussian frequency distribution with zero mean and
variance σ2ω=0.02. System dynamics for non-identical oscil-
lators is more complicated. Provided that coupling strength
is large enough compared to frequency variations, the system
evolves from quasi-chaotic (Fig.1a; Fig.3a) to partial syn-
chronization (Fig.2b; Fig.3b), where oscillators with close
frequencies are frequency locked, resulting in growing mean-
field (red-filled point at Fig.2) which in turn attracts fur-
ther staying apart (in frequency) oscillators into the fre-
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quency lock. As illustration, evolution of different oscilla-
tors’ frequencies in time at different coupling strengths are
depicted at Fig.3. Note that oscillators with natural fre-
quencies |ωn − ω0| > kr can not be attracted to the fre-
quency lock, it results in partial frequency sync and lower
steady-state order factor r. But even in case when all oscil-
lators are frequency-locked, it results at best in phase-mode
locking (constant phase difference), but not in phase syn-
chronization (where phase difference is zero). Phase-mode
locking among oscillators result in fluctuating order factor
with variance proportional to N−1/2.
Effect of frequency synchronization in globally attractively-

coupled system allows to built fixed-frequency oscillators
from resonators with randomly spread frequencies. Possi-
ble applications of these systems to appear elsewhere [16].

Fig.3. Evolution of random (σ2ω = 0.02) oscillators’ frequen-

cies in time: a) k=0.3 no sync; b) k=0.5 part.sync; c) k=0.6

sync.

3. INHIBITORYCOUPLEDOSCILLATORS
As mentioned above, it is well known that oscillator ar-

rays with different natural frequencies may be driven into
a collective behavior without external force provided strong
enough positive global coupling. The convergence of these
kinds of systems into a sync (measured by the order factor)
depends mainly on coupling strength that masks external ex-
citations and limits signal processing possibilities. To make
coupled oscillators to be more sensitive for external excita-
tions we suggest to translate external signals into coupling
strength. However, before this mapping we need to keep
the system out of sync when no external signal is present.
It can be done by utilizing inhibitory coupling preventing
the system to fall into a collective behavior. Then, once
the external excitation is above the inhibitory coupling, it
forces the system (proportionally to the strength of the ex-
ternal excitation) to move into more ordered behavior. As

we outline below, it seems feasible to build systems sensitive
to a strength and the spectral content of the excitation.
In case of inhibitory global coupling it may be shown that

for identical oscillators (ωn = ω0) without external forc-
ing the mean field reaches zero from any initial condition
(cf. Fig.4a) at arbitrary small negative coupling strength
k < 0 (Fig.4b). The stationary regime corresponds to all
oscillators having identical amplitude, but different phases.
Note that the phase distribution is not uniform nor unique:
the stationary regime may have multiple phase distributions
among individual oscillators subject to the only constraint∑

n e
jθn = 0.

For non-equal oscillators’ frequencies and without exter-
nal force the mean field oscillates at small values of in-
hibitory coupling. The transition to the synchronized regime
depends on number of oscillators in the array. For N > 3 the
oscillators do not reach phase-sync at any value of coupling,
but r → 0 as the strength of inhibitory coupling increases.
If natural frequencies, e.g., ωn−1 and ωn, are sufficiently
close, then there is phase-locking between these oscillators
resulting in a stable independent of time periodic motion
ϕn = θn − θn−1. For large values of |θn − θn−1| there is
a phase drift with the faster oscillation processing over the
slow one.

3.1 Forced oscillations
Models for phase coupled oscillators (3) may be general-

ized to include external forcing
dθn
dt

= ωn+Qn(θ1, θ2, ...θN )+QF ((θ
ext
1 , θext2 , ...θextM ) (5)

where QF is 2π-periodic function in all of its arguments.
Repeating derivations of Sec.2 we may write
dθn
dt

= ωn+kr sin(ψ−θn)+q
ext
n sin(θextn ) (6)

Last term in (6) may be replaced by qextn sin(θn − ωextt),
where ωext is the frequency of the external force. Introduc-
ing new variable ϕn = θn−ωextt we obtain again the equa-
tion (6) for ϕn but with other natural frequencies ωn−ωext.
Hence, periodic external forcing may be seen as a modifica-
tion of natural frequencies in the oscillator array.
If external periodic forcing ωext = ω0 applied, oscillators

with identical frequencies synchronize with identical phases
to a non-zero mean field (the convergence is faster as |k|
increases).
For negatively-coupled oscillators with non-equal frequen-

cies and external periodic forcing ωext = ω0, there will be
fluctuations of mean field at any value of coupling. Oscilla-
tor phases and frequencies evolve from chaotic to partially
sync as amplitude of external force is increasing.
Dependence of (averaged) order factor from amplitude A

of external periodic driving force ωext = ω0 at different cou-
pling strength is shown at Fig.5. As one can see, at given
coupling the order factor r depends monotonically from am-
plitude of the external force. This property may be used
for energy sensing of external signals addressed below. Fig.6
shows averaged order factor for global inhibitory-coupled os-
cillators (coupling k = −1) with different amplitude-frequency
characteristics of forcing. Dependence of order factor of cou-
pled oscillators from frequency of forcing signal with fixed
amplitude A = 1 at different coupling is depicted at Fig.7.
As one may see, by adjusting coupling strength one may

tune the frequency bandwidth. It allows to utilize amplitude-
frequency selectivity and its dependance on tuning and the
amplitude of external excitation for spectral sensing in radio



systems (e.g., cognitive radio). Below we outline a possible
implementation of this kind of sensing with nanoscale res-
onators.

Fig.4. Evolution of phases of N = 50 oscillators with ran-

dom normal distributed frequencies (σ2ω = 0.02) with inhibitory

global coupling k = −1 and different amplitude of external forc-

ing A: (a) initial condition; (b) A=0, (c) A=0.5, (d) A=1 at

t=100.

Fig.5. Order factor of coupled oscillators as function of coupling

and amplitude of forcing signal ωext = ω0.

Fig.6. Order factor of coupled oscillators (k = −1) as function
of amplitude and frequency of forcing signal.

Fig.7. Order factor of coupled oscillators as function of coupling

and frequency of forcing signal, A=1.

4. NANOSCALE RESONATORS
Electromechanical systems (EMS) convert electrical sig-

nals into mechanical motion by exciting a resonant mode of
a mechanical element. Then mechanical response, namely
the displacement of the element, is transduced back into
electrical signals.
Resonant nanostructures have been addressed in a number

of papers. For example, parametric resonance in an electro-
statically driven nanowire is studied in [3], laser-driven limit
cycle oscillators in NEMS (nano-EMS) resonators in differ-
ent disc shapes and wires are reported in [7], mechanically
coupled NEMS with resonant frequencies up to 18 MHz are
presented in [15].
Besides silicon-based NEMS, carbon nanotubes (CNT)

are under intensive studies because of their superior me-
chanical properties, small cross-sections and possibility for
defect-free self-assembling [2]. Additionally, the CNT can
act as a transistor, may be able to sense its own motion and
can be made CMOS compatible. Recently it is shown that
CNT can be used as nano-switches [4] and as GHz oscillators
[5][6]. As an example we outline oscillator arrays formed by
CNT-based NEMS.
Let’s consider a suspended CNT clamped on both sides

to metal pads (source and drain) and capacitively coupled
to a gate as reported in [8], tunable CNT-based NEMS is
depicted at Fig.8. Similar to MEMS, we may add positive
feedback loop that converts drain output current into volt-
age (I/V block at Fig.8) which then is fed back to the gate
to excite CNT resonance modes. Provided a proper positive
feedback this structure may be used as limit-cycle oscillator
(rotator) shown as the dashed-dot box at Fig.8. The applied
DC gate voltage changes CNT strain and hence controls the
eigenmodes which may be excited by external AC source
ωext.
One-dimension motion of a nanotube can be described by

Duffing equation [2]
mẍ+ bẋ+ k1x+ k3x

3 = dEcap/dx
where Ecap = C(x)V 2/2 is capacitance energy, C(x) is the
displacement dependent capacitance, b and ki are dumping
and spring coefficients. In general a linearly (weakly) cou-
pled system may be described as
mẍn + f(xn)ẋn + h(xn) =

∑

m

(bnmẋm + knmxm)

It may be shown that for small displacements and weak



interactions globally coupled Duffing oscillators may be de-
scribed by (4) [9]. Under these assumptions we may consider
a system of inhibitory globally coupled oscillators shown at
Fig.9. Here current outputs from oscillators I(ωn) are com-
bined and coupled by connecting to a common load (sim-
ilar to globally coupled Josephson junctions) followed by
the feedback via current/voltage conversion (I/V block at
Fig.9). The amount and sign of the feedback may be con-
trolled by operational amplifiers (OA) with tunable amplifi-
cation. The same OA is used to block external signal leak-
age into the common load. In the absence of external signal
the global negative feedback is (digitally) calibrated to pre-
vent system convergence into frequency lock and keep the
order parameter close to zero1 . In the presence of external
signals V (ωext) the output of the oscillator array depends
on amplitude and frequency content of excitation (cf.Fig.5-
Fig.7). Global coupling strength k may be digitally con-
trolled to tune the bandwidth of spectral sensing (Fig.7).
Note that the absolute value of order factor is increasing
with the number oscillators allowing significant signal am-
plification, which is important for nano-scale resonators such
as NEMS.
CNT strain and its eigenmodes may be tuned by changing

DC voltage Vg (Fig.8). Tuning voltage gate Vg may be used
to adjust the whole set of frequencies Ω = {ω1, ..., ωN} in a
given oscillator array (Fig.9).
Several oscillator arrays with different frequency sets Ωn

tuned by DC gate voltage Vg (to adjust frequency) and cou-
pling k (to adjust bandwidth) may be used to make coarse
spectral sensing as shown at Fig.10. In particular, when
voltage V (r∆Ωn) corresponding to order factor(s) r∆Ωn of
some frequency band(s) is below a threshold E0 (set by the
control block), it indicates potential spectrum holes. Then
control block sends information on relevant frequency(s) band
∆Ωn to the frequency synthesizer which sets relevant local
frequency for the mixer, at the same time the input RF sig-
nal is connected to the mixer. After downconverting the
baseband signal in a selected (relatively narrow) frequency
band is digitized by ADC and then analyzed in the feature
detector. If needed the feature detector may refine frequency
and bandwidth of the osillator array via feedback control.

Fig.8. Tunable CNT-based NEMS oscillator (cf. [8]).

Fig.9. Oscillator array with global coupling.

1Recall that there is also positive feedback within each oscillator
to maintain limit cycle rotations.

Fig.10. Tunable coupled oscillator arrays for spectral sensing.

5. CONCLUSIONS
In this paper we present the method of coarse spectral

sensing in analog domain using globally coupled limit-cycle
oscillators which may be made of imprecise nanoscale com-
ponents such as CNT-based NEMS. Provided proper cou-
pling, the system collective behavior (measured by order
factor) becomes sensitive to amplitude and frequency con-
tent of excitation, digital control of coupling allows to tune
the spectral sensing position and bandwidth. This method
may be used in cognitive radio terminals.
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