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ABSTRACT
This paper presents a model order reduction technique using
subspace iterative scheme for high speed coupled integrated
circuit interconnects in nanometer designs. The salient fea-
ture of this technique is less complexity in computation of a
few smallest poles of the reduced order model. This paper
shows that the subspace iterative scheme produces reduced
systems that accurately follow the time- and frequency- do-
main responses of the original system. Experimental re-
sults show that the subspace iterative scheme achieves more
accuracy than the variational Krylov-subspace-based model
order reduction techniques. Significant reduction in com-
putational expense is achieved as the size of the reduced
equations is much less than that of the original system.

Categories and Subject Descriptors
B.7.1 [Types and Design Styles]: VLSI (very large scale
integration)
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Design
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1. INTRODUCTION
The recent trend in the VLSI industry toward nanometer
designs, low power consumption, high speed digital circuits
and increased integration of analog circuits with digital blocks
has made the signal integrity analysis a challenging task.
When analyzing high-performance integrated circuit designs,
it is well known that the single lumped resistor- capacitor
(RC) model of interconnect is insufficiently accurate. It has
been shown [1] that reasonably accurate electro-quasistatic,
or transient interconnect, simulations could be performed by
computing the time evolution of the electric field both inside
and outside the conductors via a finite-difference discretiza-
tion of Laplace’s equation. A boundary-element approach

[2] based on Green’s theorem was proposed which performs
the calculation using the same surface discretization used for
ordinary capacitance extraction, thereby avoiding the large
exterior domain mesh and computation. To verify the effects
induced by interconnects a combination of extraction and
analysis is necessary. Extraction determines the resistance,
the capacitance and the inductance of interconnects, which
can then be used to build a circuit model for the analysis of
interconnect effects. For analysis (or simulation), research
has been carried out of the use of model order reduction
(MOR) [3-5], complex frequency hopping[6-8], Krylov-space
techniques [9, 10] and multi conductor transmission lines [11-
13]. Model order reduction is based on approximating the
Laplace-domain transfer function of a linear (or linearized)
network by a relatively small number of dominant poles and
zeros. Such reduced order models can be used to predict the
time-domain or frequency-domain response of the linear net-
work. A multipoint moment-matching or complex frequency
hopping (CFH) technique extracts accurate dominant poles
of a linear sub-network up to any predefined maximum fre-
quency. This method generates a single transfer function for
a large linear sub-network and provides for a CPU/accuracy
tradeoff. Model order reduction can also be obtained using
projecting the original system described by nonlinear dif-
ferential equations into Krylov subspace of lower dimension.
This reduced model can be simulated using conventional nu-
merical techniques. Simulation of interconnects can also be
performed treating the interconnect as full-wave model. But
a few researchers have attempted to address the problem of
process aware model order reduction. A multivariate mo-
ment matching technique is used in [14], where parameters
are assumed to be linearly separable. A variational analy-
sis approach is taken in [15] for resistor-capacitor-inductor
(RCL) interconnect modeling with statistically varying pa-
rameters. An interpolation technique is proposed in [16]
for parametric interconnect analysis. SBT technique [17] is
proposed for tightly coupled interconnects with process vari-
ations. All these methods pose specific assumptions on the
models, and their potential for general applications is lim-
ited. In this paper, to start with, the telegrapher’s equations
have been considered to represent the large VLSI circuit to
reduce the order using subspace iterative scheme [18].

This paper is organized as follows: Section 2 gives an overview
of the model order reduction. Section 3 provides a mathe-
matical framework of dynamic RLC circuits. The proposed
algorithm is explained in Section 4. Section 5 discusses the
simulation results including the comparison between the pro-
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posed model reduction technique and different model-order
reduction techniques in [3-5]. Finally, Section 6 presents the
concluding remarks for this paper.

2. MODEL ORDER REDUCTION (MOR)
Model order reduction is a technique that takes a circuit con-
taining a large number of poles and reduces it to a smaller
representation consisting of the dominant poles from the
original linear circuit as shown in Fig. 1. There are two
approaches to model order reduction: moment matching [14-
16] and matrix approximation [19].

Figure 1: Model Order Reduction

A lumped linear time-invariant circuit can be described by
first-order differential equations

ẋ = Ax + Bu
y = Cx + Du

(1)

where u ∈ =m is the external stimulus to the system, B ∈
=n×m is the input matrix, x ∈ =n is the state vector, C ∈
=n×m is the output matrix, y ∈ =p is the output of the
model, D ∈ =p×n denotes the direct coupling term and is
the transformation matrix. We wish to obtain the zero-
state impulse response of a linear circuit described by (1),
which in turn can be used to determine its response to any
excitation. We apply the Laplace transform to (1) assuming
zero initial conditions and ignoring the term , which can be
treated separately. Then, we obtain

sX = AX + BU
Y = CX

(2)

Where X, Y , and U denote the Laplace transform of x, y,
and u respectively. It follows from eq. (2) that the transfer
function, or the Laplace transform of the impulse response,
defined as H(s) = Y (s)/U(s), is given by

H(s) = C(sI − A)−1
B (3)

Where I is identity matrix. H(s) can be expanded using
Maclaurin series

H(s) =
∞

X

i=0

mis
i (4)

Comparing eq (3) and (4) and equating like powers of s, it
can be shown that

mi = −CA
−i−1

B, i = 0, 1, 2 · · · · · · (5)

In a reduced-order model, especially one obtained by mo-
ment matching, the transfer function is approximated by
the reduced-order system of proper rational function of ‘s′

having q-poles

H(s) =
nq−1s

q−1 + nq−2s
q−2 + · · · · · · + n1s + n0

sq + dq−1sq−1 + · · · · · · d1s + d0
(6)

Because there are 2q unknowns in the reduced-order system,
it is forced to correspond to the first 2q terms of eq.(6) by
using Padé approximation, yielding the following equality:

nq−1s
q−1 + nq−2s

q−2 + · · · · · · + n1s + n0

sq + dq−1sq−1 + · · · · · · d1s + d0

= m0 + m1s + · · · · · · + m2q−1s
2q−1 (7)

Multiplying both sides of eq. (7) by the denominator of the
left-hand side yields a set of equations that can be solved
for 2q coefficients. After finding roots of the denominator
of the reduced-order model, eq. (6) can be expressed as a
partial fraction expansion form given by

Ĥ(s) =

q
X

i=1

ri

s − pi

(8)

where ri is a residue of Ĥ(s) at the pole pi. It is then
straightforward to obtain the approximated impulse response
ĥ(t) from (8).

3. MATHEMATICAL FRAMEWORK
Transmission line characteristics are in general described by
Telegrapher’s equations [19]. Consider the transmission line
system shown in Fig. 2. Telegrapher’s equations for such
a structure can be derived by discretizing the line into in-
finitesimal sections of length and assuming uniform per unit
length parameters of resistance (R), inductance (L), conduc-
tance (G), and capacitance (C). Each section, as shown in
Fig. 3. then includes resistance R∆x, inductance L∆x, con-
ductance G∆x, and capacitance C∆x. Using Kirchhoff’s

Figure 2: A Typical Transmission Line System

Figure 3: Cross Section of a Transmission Line



current and voltage laws, one can write [18]

v(x + ∆x, t) = v(x, t) − R∆xi(x, t) − L∆x
∂

∂t
i(x, t) (9)

or

v(x + ∆x, t) − v(x, t)

∆x
= −Ri(x, t) − L

∂

∂t
i(x, t) (10)

Taking the limit ∆x→0, one gets

∂

∂x
v(x, t) = −Ri(x, t) − L

∂

∂t
i(x, t) (11)

Similarly, the second transmission line equation can be ob-
tained as

i(x + ∆x, t) = i(x, t) − G∆xv(x, t) − C∆x
∂

∂x
i(x, t) (12)

substituting eq. (9) in (12) we have

i(x + ∆x, t)
= i(x, t) − G∆x

`

v(x, t) − R∆xi(x, t) − L∆x ∂
∂t

i(x, t)
´

−C∆x ∂
∂t

`

v(x, t) − R∆xi(x, t) − L∆x ∂
∂t

i(x, t)
´

(13)
or

i(x+∆x,t)−i(x,t)
∆x

= −Gv(x, t) − C ∂
∂t

v(x, t) + ∆x

×
“

GRi(x, t) + (GL + RC) ∂
∂t

i(x, t) + LC ∂2

∂t2
i(x, t)

”

(14)
Taking limit ∆x→0, one gets

∂

∂x
i(x, t) = −Gv(x, t) − C

∂

∂t
v(x, t) (15)

Taking the Laplace transform of eq. 11 and eq. 15

∂

∂x
V (x, s) = −(R + sL)I(x, s) = −ZI(x, s) (16)

∂

∂x
I(x, s) = −(G + sC)V (x, s) = −Y V (x, s) (17)

Where Z and Y represent the per unit length impedance
and admittance of the transmission line, and given by

Z = R + sL, Y = G + sC (18)

The set of equations represented by (16) and (17) can be
solved if they can be written in terms of one of the unknowns
[V (x, s)orI(x, s)] as follows

∂2

∂x2
V (x, s) = ZY V (x, s) = γ

2
V (x, s) (19)

∂2

∂x2
I(x, s) = Y ZI(x, s) = γ

2
I(x, s) (20)

Where γ(s) is the complex propagation constant and it is
given by

γ(s) = α + jβ =
√

ZY =
p

(R + sL) (G + sC) (21)

Where α is called the real part of the propagation constant
and is known as the attenuation constant, whose units are
expressed in nepers/m. β represents the imaginary part of
the propagation constant and is known as the phase con-
stant, whose units are expressed in radians/m.

The generalized dynamic equations of RLC circuit shown in
Fig.3 can be written as

MV̈ (x, s) + KV (x, s) = F (x, s) (22)

MÏ(x, s) + KI(x, s) = G(x, s) (23)

where K and M are governing equations of original model.
Observe from eq. (19) and eq. (20) K

M
= −γ2 and F (x, s)

and G(x, s) are two different excitations.

4. SUBSPACE ITERATION SCHEME
1. Choose set of (m) linearly independent voltages (cur-

rents) and construct a subspace ϕ
(0)
m in which the colu-

mns are occupied by voltages (currents).

2. This subspace is considered as an initial approximation
of the original order transfer function.

3. for i = 1, 2, ...... the following two steps are applied to
solve for the (i + 1)th approximation of poles of the
transfer function.

3.1 A set of new subspace X
(i+1)
m is obtained by the

simultaneous inverse iteration. i.e.

KX
(i+1)
m = Mϕ

(i)
m (24)

If the iterations proceeded using X
(i+1)
m as the next

estimation of the subspace, the subspace would
collapse to the subspace of dimension ’1’ and only
contain the voltages (currents) corresponding to
the a few number of poles. Therefore, Rayleigh-
Ritz procedure is adopted.

3.2 Compute the reduced order matrices V & I in the

subspace spanned by X
(i+1)
m :

K
(i+1)
R =

“

X
(i+1)
m

”T

KX
(i+1)
m

M
(i+1)
R =

“

X
(i+1)
m

”T

MX
(i+1)
m

(25)

where K
(i+1)
R and M

(i+1)
R are the governing equa-

tions of reduced model.

4. Now generate the dynamic equations of reduced order

model using K
(i+1)
R and M

(i+1)
R .

5. SIMULATION RESULTS
A distributed linear RLC circuit as shown in Fig.4. with
all its capacitors and inductors initially charged to a unit
voltage and unit current were considered for this example.
The order of the matrix was 250×250.

Figure 4: A Typical RLC Circuit

The proposed subspace iterative method, has been used to
find the order reduction of the system by considering the
derivatives of the linear network. The response of the net-
work is calculated using the proposed scheme. This result is
shown in Fig. 5.



Figure 5: Response of the Reduced Model using

Subspace Iterative Scheme

5.1 Time and Frequency Responses
As a sample of results, for the Fig. 6, comparison with
the output across one of the nodes using subspace itera-
tive method, obtained from the original model and reduced
model is shown in Fig. 6. and as seen both the responses
match accurately.

Figure 6: Transient Response Comparison

Similarly, the Bode plots are shown for both original and
reduced model in Fig. 7. which clearly indicate that the
proposed subspace iterative scheme gives better frequency
response matching at all frequencies of interest while the
stability of the original system preserved.

Figure 7: Frequency Response Comparison

5.2 Comparison with Existing Techniques
To demonstrate the efficiency achievable by using the sub-
space iterative scheme, we use the RLC ladder circuit in Fig.
4 again and reduce a sequence of models with sizes 10, 50,
250, and 1000. For each model, the reduced model govern-
ing equations have been obtained using proposed algorithm.
All these results are tabulated in Table 1. The proposed

Table 1: Reduced Model Order using Proposed

Scheme
Full Modle Size 10 50 250 1000

Subspace Iterative Scheme 5 19 116 87

technique, subspace iterative scheme is compared with the
existing techniques and the results are tabulated in Table 2.

Table 2: Comparison with Existing Techniques

Method Order (1000) Efficiency %
Dian [3] 182 82
Mike [4] 347 65
Telsen [5] 123 88

Proposed Scheme 87 92

6. CONCLUSIONS
A novel approach has been presented to create a reduced-
order model based on the model reduction technique. To
handle the very large matrices in nanometer designs, the
original linear system equations describing a distributed net-
work should be replaced by small and dense matrices which
form a reduced-order model to reduce the complexity and
CPU time of the system. This technique reduces the size
of the original model by the 92%, representing an efficient
way of handling complex VLSI systems and much suitable
for nanometer designs.
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