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ABSTRACT
We introduce a nanowire-based, sublithographic memory ar-
chitecture tolerant to transient faults. Both the storage el-
ements and the supporting ECC encoder and corrector are
implemented in dense, but potentially unreliable, nanowire-
based technology. This compactness is made possible by a
recently introduced Fault-Secure detector design [18]. Using
Euclidean Geometry error-correcting codes (ECC), we iden-
tify particular codes which correct up to 8 errors in data
words, achieving a FIT rate at or below one for the entire
memory system for bit and nanowire transient failure rates
as high as 10−17 upsets/device/cycle with a total area be-
low 1.7× the area of the unprotected memory for memories
as small as 0.1 Gbit. We explore scrubbing designs and
show the overhead for serial error correction and periodic
data scrubbing can be below 0.02% for fault rates as high as
10−20 upsets/device/cycle. We also present a design to unify
the error-correction coding and circuitry used for permanent
defect and transient fault tolerance.

1. INTRODUCTION
Nanotechnology provides smaller, faster, and lower energy

devices, which allow more powerful and compact circuitry;
however, these benefits come with a cost—the nanoscale de-
vices may be less reliable. Thermal- and shot-noise estima-
tions [14, 11] alone suggest that the transient fault rate of
an individual nanoscale device (e.g., transistor or nanowire)
may be orders of magnitude higher than today’s devices. As
a result, we can expect combinational logic to be susceptible
to transient faults, not just the storage and communication
systems. Therefore, to build fault-tolerant nanoscale sys-
tems, we must protect both combinational logic and memory
against transient faults. In the present work we introduce a
fault-tolerant nanoscale memory architecture which tolerates
transient faults both in the storage unit and in the support-
ing logic (i.e., encoder and decoder (corrector) circuitry).

Our proposed system with high fault-tolerant capability
is feasible when the following two fundamental properties
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are satisfied: 1) Any single error in the encoder or correc-
tor circuitry can only corrupt a single codeword digit (i.e.,
cannot propagate to multiple codeword digits). 2) There is
a Fault Secure detector (FSD) circuit which can detect any
limited combination of errors in the received codeword or
the detector circuit itself. Property 1 is guaranteed by not
sharing logic between the circuitry which produces each bit.
The FSD (Property 2) is possible with a more constrained
definition for the ECC (Section 2).

Figure 1 shows the memory architecture based on this
FSD. There are two FSD units monitoring the output vector
of the encoder and corrector circuitry. If an error is detected
at the output of the encoder or corrector units, that unit has
to redo the operation to generate the correct output vector.
Using this detect-and-repeat technique we can correct po-
tential transient errors in the encoder or corrector output to
provide a fault-tolerant memory system with fault-tolerant
supporting circuitry.

The fault-tolerant capability of this design is as follows:
Let E be the maximum number of error bits that the code
can correct and D be the maximum number of error bits that
it can detect, and in one error combination that strikes the
system let ee, em, and ec be the number of errors in encoder,
memory-word, and corrector. With fault secure detector we
guarantee that the system can correct any error combination
as long as em ≤ E, ee + ede ≤ D, and em + ec + edc ≤ D,
where ede and edc are the number of errors in two separate
detectors monitoring the encoder and corrector units. In
contrast, the fault-tolerant capability in the existing state-
of-the-art design is only guaranteed for em ≤ E and ee =
ec = 0. The conventional strategy only works as long as we
can expect the encoding, decoding, and checking logic to be
fault-free, which would prevent the use of nanoscale devices.

It is important to note that transient errors accumulate
in the memory words over time. In order to avoid error
accumulation which exceeds the code correction capability,
the system must scrub memory frequently to remove errors.
Memory scrubbing is periodically reading memory words
from the memory, correcting any potential errors, and writ-
ing the corrected words back into the memory (e.g., [19]).
The frequency of scrubbing must be determined carefully.
The scrubbing frequency impacts the throughput from two
directions: 1) The memory cannot be used on scrubbing
cycles, reducing the memory bandwidth available to the ap-
plication; more frequent scrubbing increases this throughput
loss effect. 2) During the normal operation, when an error
is detected in a memory word, the system must spend a
number of cycles correcting the error; these cycles also take
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Figure 1: This figure shows the overview of our proposed fault-tolerant memory architecture.

bandwidth away from the application. When scrubbing hap-
pens less frequently, more errors accumulate in the memory,
and therefore more memory reads require error correction,
increasing bandwidth loss.

In this article we show how the FSD corrector introduced
in [18] can be implemented in fault-prone nanowire-based
logic and used to protect the nanowire-based memory in-
troduced in [5] against transient upsets in both the memory
and the logic (Section 4). We further show how to determine
the optimum combination of bank size, corrector parallelism,
and scrubbing interval for this memory system (Section 5).

Before presenting this design and analysis, we review the
fault-secure detector design in Section 2 including a brief
review of ECC. Section 3 then reviews the nanowire-based
memory architecture.

2. ECC AND FSD REVIEW

2.1 Error-Correcting Codes
Since we build upon linear ECCs, this section briefly re-

views the terminology and composition of linear block ECCs.
Let i = (i0, i1, ..., ik−1) be k-bit information vector that will
be encoded into n-bit codeword, c = (c0, c1, ..., cn−1). For
linear codes the encoding operation essentially performs the
following vector-matrix multiplication: c = i×G, where G is
a k×n generator matrix. Checking the validity of a received
encoded vector is done by employing the Parity-Check ma-
trix, which is an (n− k)× n binary matrix named H. The
checking or detecting operation is basically summarized as
the following vector-matrix multiplication: s = c×HT . The
(n− k)-bit vector s is called syndrome vector. A syndrome
vector is zero if c is a valid codeword and non-zero if c is an
erroneous codeword. Each code is uniquely specified by its
generator matrix or parity-check matrix.

A code is a systematic code if every codeword consists
of the original k-bit information vector followed by n − k
parity-bits [17]. With this definition, the generator matrix
of a systematic code must have the following structure: G =
[I : X], where I is a k×k identity matrix and X is a k×(n−
k) matrix that generates the parity-bits. The advantage of
using systematic codes is that there is no need for decoder
circuitry to extract the information bits. The information
bits are simply available in the first k bits of any encoded
vector. A code is said to be Cyclic code if for any codeword c,
all the cyclic shifts of the codeword are still valid codewords.

2.2 Fault-Secure Detector
In this work we use a fault secure detector capable ECC

(FSD-ECC) to design a fault-tolerant memory system. The
FSD-ECC is an error-correcting code with a more constrained

definition that is introduced in [18]. The FSD-ECC defini-
tion is as follows: Let C be an ECC with minimum distance
d. C is FSD-ECC if it can detect any combination of overall
d − 1 or fewer errors in the received codeword and in the
detector circuitry.

Theorem I: Let C be an ECC, with minimum distance
d. C is FSD-ECC iff any error vector of weight e ≤ d − 1,
has syndrome vector of weight at least d− e.

Theorem I is proved in [18].
The standard ECC definition simply requires that the syn-

drome have a non-zero weight. The stronger requirement
here guarantees that a limited number of detector errors will
still result in a non-zero syndrome so the erroneous codeword
is detected.

The above theorem is valid when any single error in the
detector circuitry can corrupt at most one output (one syn-
drome bit). This can be easily satisfied by guaranteeing
that the logic circuit of the syndrome bits do not share any
nodes; therefore, any single error in the circuit corrupts at
most one syndrome bit.

2.3 Euclidean Geometry Codes
Type-I two dimensional Euclidean Geometry (EG) codes

[16] are interesting for several reasons: (1) they are FSD-
ECC as shown in [18], (2) they are One-Step Majority cor-
rectable, meaning they admit to simple and low latency cor-
rection, and (3) they are cyclic codes meaning we can imple-
ment compact serial correctors. Here, we briefly review these
codes and properties. The parity-check matrix for EG codes
is an n×n matrix, and each row of H has weight ρ, and each
column has weight γ. This guarantees that the complexity
of the parity-check calculation is linear in the product γ×n,
and that the fanin to any single syndrome bit is limited to
γ, resulting in low latency for the computation. The rows
of H are not necessarily linearly independent. The rank of
H is (n − k) which makes the code of this matrix an (n, k)
linear code. Lin and Costello [16] show an algorithm for
the construction of these codes and demonstrate that H is
a Low-Density Parity-Check matrix, and therefore the code
is an LDPC code [12]; henceforth we call these codes, EG-
LDPC codes. All the parameters of the EG-LDPC codes are
summarized in Table 1. Type-I two-dimensional EG-LDPCs
are One-Step Majority correctable up to γ/2 errors, which
means that a codeword can be corrected one code bit at a
time up to γ/2 errors, with γ ρ-input xor gates followed by
a single γ-input majority gate (see Section 4). This corrector
can be arbitrarily parallelized, up to the width of the code-
word, using multiple copies of the single-code-bit correction
logic.



Table 1: Parameters of EG-LDPC for any s ≥ 2.

Information bits (k) 22s − 3s

Length (n) 22s − 1
Minimum distance (d) 2s + 1
Dimensions of the H n× n
Row weight of the H (ρ) 2s

Column weight of the H (γ) 2s

3. BACKGROUND

3.1 Nano-Memory and NanoPLA
Nanoelectronic molecular technologies have made it possi-

ble to design a very compact memory array, and small mem-
ory arrays have been successfully fabricated using these tech-
niques [1, 13]. A memory architecture based on a nanowire
substrate is developed in [5] that can achieve greater than
1011 b/cm2 density even after including the lithographic-
scale address wires. This design uses a nanowire crossbar
to store memory bits and a limited number of lithographic
scale wires for address and control lines. Figure 2(a) shows
schematic overview of this memory structure. The fine cross-
bar shown in the center of the picture stores one memory
bit in each crossbar junction. To be able to write the value
of each bit into a junction, the two nanowires crossing that
junction must be uniquely selected and an adequate volt-
age must be applied to them [3]. The nanowires can be
uniquely addressed from lithographic wires using a program-
mable deterministic address decoder, shown in the top and
right side of the picture. However to program the determin-
istic decoder, the nanowires passing through each junction
must be uniquely selected as well; this is achieved by us-
ing a stochastic decoder [20, 9]. The stochastic decoder is
used only for bootstrapping and configuring the determinis-
tic decoder. Once the deterministic decoder is programmed,
only this decoder is used for normal operation. The area
model accounting all the lithographic-scale addressing wires
is provided in [5]. Here we use that area model, and com-
pute the area overhead of the fault tolerant design following
that model. To implement the supporting logic we use the
nanoPLA architecture model [6]. It has a regular structure
like conventional PLA and implements logic in consecutive
nor planes.

4. FAULT-TOLERANT NANO-MEMORY
In this section we provide the detail design for the pro-

posed fault-tolerant memory system (shown in Figure 1) im-
plemented on a sub-lithographic nanowire-based substrate.
This section starts by showing the detail of each unit (detec-
tor, corrector, and encoder) and then shows how these units
can be integrated together in nanowire-based substrates and
connected to the memory unit.

Large memory systems are partitioned into a collection
of limited-size banks to avoid long wiring in large memo-
ries which reduce both yield and performance. If we further
give each memory bank a separate corrector unit, they can
be scrubbed in parallel, reducing scrubbing latency. How-
ever, since scrubbing does not require the encoder unit, all
the memory banks share a single encoder unit. This is illus-
trated in Figure 2(b).
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Figure 3: One-step majority corrector for (15, 7) code.

4.1 Fault-Secure Detector
The core of the detector operation is to generate the syn-

drome vector, which is basically implementing the following
vector-matrix multiplication on the received encoded vector
c and parity-check matrix H: s = c×HT , and therefore each
bit of the syndrome vector is the product of the following
vector-vector multiply: si = c · hi

T , where hi
T is the trans-

posed of the ith row of the parity-check matrix. The above
product is a linear binary sum over digits of c where the cor-
responding digit in hi is 1. This binary sum is implemented
with an xor gate. Since the row weight of the parity-check
matrix is ρ, to generate one digit of the syndrome vector we
need a ρ-input xor gate, or (ρ − 1) 2-input xor gates in
a tree structure. For the whole detector, it takes n(ρ − 1)
2-input xor gates.

An error is detected if any of the syndrome bits has a non-
zero value. The final error detection signal is implemented
by an or function of all the syndrome bits. The output of
this n-input or gate is the error detector signal. In order
to avoid a single point of failure, we must implement the
or gate in a reliable substrate—i.e., we use a lithographic-
scale wired-or. This n-input wired-or is much smaller than
implementing the entire n(ρ− 1) 2-input xors at the litho-
graphic scale. The area of each detector is computed using
the model form [6] and [5] accounting all the supporting
lithographic wires. Details of this implementation are pro-
vided in the Appendix.

4.2 One-Step Majority Corrector
For EG-LDPC, the one-step majority-logic corrector cor-

rects up to γ/2 error bits in the received encoded vector. It
computes γ ρ-bit parity-check sums, which are simply im-
plemented with a ρ-input xor function each, similar to the
ρ-input xor gates of the detector. The majority value of the
parity-check sums are then evaluated, with a γ-input major-
ity gate. Figure 3 shows a corrector for the (15, 7) EG-LDPC
code. If the majority value is 1 then the code bit under con-
sideration holds an erroneous value and has to be inverted.
When majority value is 0 the code bit is correct. Since EG-
LDPC are cyclic codes, a single majority corrector circuit
can be used for all the code bits [16]. To correct each code
bit, the received encoded vector is cyclically shifted and fed
into the xor gates. If implemented in flat, two-level logic,
a majority gate could take exponential area. Naeimi and
DeHon [18] shows a compact implementation of a majority
gate using Sorting Networks [15].

4.3 Encoder
The encoder structure of a systematic code calculates the

parity function of each parity bit based on the information
bits. Each parity function is an xor gate similar to the de-
tector. Therefore the encoder circuitry consists of (n − k)
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xor gates. The exact fan-in size of the xor gates is deter-
mined in [18]. The area of the encoder is further computed
using the area model in [5] and will be analyzed further in
Section 5.

4.4 Memory Access with NanoScale Interface
The nano-memory architecture introduced in [5] has a

lithographic scale interface. For our fault-tolerant system
the supporting logic is implemented at the sub-lithographic
scale; we replace the lithographic scale interface with a sub-
lithographic one. The main part of the interface is a de-
multiplexer designed with gate-able nanowires [2], shown in
Figure 4(a). Each of the output nanowires (vertical wires)
is gate-able by r/n nanowires of the memory rows, where r
is the number of memory rows. For example, in Figure 4(a),
the four topmost rows gate the first output nanowire. The
deterministic lithographic wires selecting the memory rows
are programmed to select exactly one of the r/n control-
ling nanowires of each output nanowire. This way at most
one nanowire is driven high and can actually gate the con-
trollable region. With this design, on each read, the de-
multiplexer selects n rows and presents them to the output
nanowires; these outputs are then routed to the encoder,
corrector and detectors. Figure 4(b) shows the integrated
demultiplexer with the nano-memory system. With a few
additional transformations, the demultiplexer can be statis-
tically assembled similar to the restoration array used by
the nanoPLA [7, 4].

5. SYSTEM ANALYSIS

5.1 Performance Analysis
As noted in the introduction, high scrubbing rates will

decrease the time spent correcting data at the cost of ad-
ditional cycles lost to scrubbing, while low scrubbing rates
do the opposite. In this section, we quantify these effects to
determine the balance which yields the optimum scrubbing
interval. We further explore the appropriate level of bank-
ing and corrector parallelism to contain throughput loss. Fi-
nally, we note how this design can accommodate both per-
manent memory defects and transient memory upsets.

As you can see in Figure 1, when there is no error in the
memory word, the memory words are pipelined through the
detector and therefore we can read one word per cycle with-
out any throughput loss. If we select our memory word size
and scrubbing rate appropriately, the vast majority of read
operations can take this fast path. However, when the detec-
tor observers an error, the memory word must pass through
the corrector to be corrected. The total number of cycles
that will be lost is equal to the latency of the corrector and
the detector (the dataflow of the detector must be flushed);
for our serial corrector design, the main latency is due to
the corrector. For larger codes, where the serialized correc-
tor can take a long time, multiple copies of the corrector can
be used to reduce the throughput loss.

Scrubbing frequency also impacts the rate at which cor-
rection is required; longer scrubbing intervals increase the
number of errors accumulated in the memory and therefore
more retrieved memory words have to go through the cor-
rection operation. Figure 5 shows the throughput loss due
to correction for various parallelism in the correction. This
system is of size 1 Gbit and frequency of 10 GHz; it is pro-
tected by a (63, 37) EG-LDPC code and the device failure
rate is 10−20 faults/device/cycle.

The throughput lost to scrubbing cycles has the opposite
effect as the scrubbing interval decreases. When the sys-
tem scrubs more frequently, it has to spend more time per-
forming the scrubbing operation. When there are multiple
memory banks in the system where each has its own cor-
rector, the scrubbing operation happens in parallel, and the
throughput loss is divided by the number of memory banks.
Figure 5, shows the throughput loss due to scrubbing with
separate curves for various logical bank sizes. The logical
bank size is the size of the memory that share one corrector.
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operating at 10 GHz using a (63,37) code at Pf = 10−20.

Since the practical physical bank size is around 1 Mbit [8],
the logical bank size of e.g., 10 Mbit, essentially consists of
10 physical bank of size 1 Mbit sharing a detector and cor-
rector. The optimum scrubbing interval is circled for each
logical bank size for the fully serialized corrector case. With
multiple parallelism and banking curves (Figure 5), there are
multiple configurations which achieve the same throughput
loss (e.g., the configurations with correction parallelism and
memory banks size pair of (16 copy, 100 Mbit) and (1 copy,
10 Mbit) both have a throughput loss around 10−4). For
a given throughput loss target, we can then select the con-
figuration which requires least area. In this example, the
(16 copy, 100 Mbit) configuration is smaller.

5.2 Area and Reliability Analysis
In this section we analyze the area overhead of the fault-

tolerant memory system using the banking structure ex-
plained in Section 4 and illustrated in Figure 2(b). There are
three parts contributing to the area overhead of the fault-
tolerant memory: 1) The code overhead (n/k), 2) The en-
coder and its detector, 3) The corrector and its detector.
Figure 7 shows the area/bit of each of the above parts vs.
the memory size for the (15,7) code. In this model, the max-
imum memory bank size is limited to 1 Mbit. For system
with memory size smaller than 1 Mbit, the whole memory
is one bank. Since the area of the encoder is amortized over
a larger number of memory bits, the encoder area/bit de-
creases as memory size increases. Since each memory bank
has a separate corrector and detector, the corrector area/bit
is impacted by memory bank size. The area/bit of the cor-
rector remains flat after the memory size exceeds the fixed
memory bank size of 1 Mbit, as does the memory area/bit.
The area/bit decrease of the original memory and the fault-
tolerant memory as the bank size increases is due to the fact
that the lithographic scale wires, mainly used for address
lines, will be amortized over a larger number of memory bits
at the larger bank sizes. In this area analysis the full pitch
for nanowires is 10 nm, the full pitch of the lithographic-
scale wires is 108 nm, and the substrate is assumed defect
free. In practice, permanent nanowire defects would force us
to overpopulate both the rows and the columns [8]; to first-
order, this impacts the population of both the raw memory
and the corrected memory by similar factors.

The area overhead, which is the area of the fault-tolerant
memory plus the area of the encoder, corrector and detec-

 1

 2

 3

 4

 5

 6

 7

 2  4  6  8  10  12

A
re

a 
O

ve
rh

ea
d

log(Memory Size)

Area Overhead

(15,7,5) 
(63,37,9) 

(255,175,17) 

Figure 6: Area overhead for different codes.
Chart1

Page 1

Decomposed Area

0.
01

0.
1

1
10

10
0

10
00

10
00

0
2 3 4 5 6 7 8 9 10 11 12

log(Memory)

A
re

a 
pe

r N
et

 D
at

a 
B

it 
(s

q.
 n

m
)

Org. Mem
ECC Mem
Encoder
Corrector
Total (15,7)
Total (63,37)
Total (255,175)

Figure 7: Decomposed area for (15, 7) code and total

area for all the three codes.

tors divided by the area of the original memory is plotted
in Figure 6. If the system were implemented with one bank
and there were no limitation on the bank size, we would
expect that, at large memory sizes, the dominant area over-
head factor would be due to the code overhead (n/k), and
therefore the smallest to largest area overhead were asso-
ciated to (255, 175), (63, 37), and (15, 7) codes respectively
similar to the data presented in [18]. However the limited
bank size prevents us from reaching the point where code
rate overhead completely dominates these other overheads.
With limited bank size the area of the lithographic-scale
wires are not completely amortized over the memory bits,
and therefore the ratio of the ECC memory to the original
memory is less than the code overhead.

The other factor that determines the area overhead in the
flat part of the curve is the area overhead of the corrector
and its detector compared to each memory bank size. This
is more visible for the larger codes (e.g., (255, 175)) since
the area of the corrector and detector is not negligible com-
pared to the area of the memory bank. The above factors
determines the area overhead factor illustrated in Figure 6
which is different than the code overhead. Here, the (63, 37)
code provides the most compact implementation.

The reliability of such a system is developed in [18]. We
computed the reliability analysis of the system using the
analysis from [18] with the encoder, corrector, detector and
memory cell size of the current system. The reliability in
FIT (Failure In Time (109 hours)) is plotted in Figure 8 for
various codes and fault rates.
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5.3 Permanent Defect Tolerance
DeHon et al. [8] suggest a strategy to tolerate defective

crosspoints in the memory crossbar: when a nanowire has
more than a set threshold number of defective junctions the
entire nanowire will be discarded and replaced with a spare.
Consequently to achieve a fixed memory size, the nanowire
crossbar has to be overpopulated with nanowires, so that
the remaining crossbar after removing the defective wires
has the desired size. If the crosspoint defect rate is small
enough, then removing nanowires that have any defective
crosspoint does not required large redundancy overhead for
overpopulating; i.e., only a small number of nanowires will
be removed. For example, with our 1K×1K memory banks,
a crosspoint defect rate of 0.001% would add approximately
1% to the nanowire defect rate. However, when the defect
rate is high, removing all the nanowires with defective junc-
tions can result in an unreasonably large area overhead. A
0.05% crosspoint defect rate on a nanowire with 1000 junc-
tions implies that each nanowire has roughly a 50% chance of
including a defective junction. Therefore for high crosspoint
defect rates, we only discard nanowires with more defective
junctions than a set threshold, and we use ECC to tolerate
the limited number of defective junctions on the remaining
nanowires [8].

Here we use the same EG-LDPC code to tolerate errors
due to the defective junctions and transient faults. This
forces us to partition the error correction capabilities of the
code between permanent defects and transient upsets. For
instance, we might allocate 4 of the 8 tolerable memory word
errors available in the (255,175,17) code to permanent de-
fects and 4 to transients. This means we discard nanowires
containing any memory words with more than 4 permanent
defects; we end up with a transient fault capability in the
memory of only 4 memory bits, increasing the effective FIT
rate of the memory block relative to the case where we had
all 8 errors available to tolerate transient upsets.

For these high defect rate scenarios, many words will con-
tain at least one defect and require correction. This makes
correction a common event meaning correction throughput
is now important. Consequently, we employ a fully parallel
and pipelined corrector to correct each memory word as it is
read from memory. Since the corrector is pipelined there will
be no extra latency accessing the corrector. This fully par-
allel corrector is implemented on the nanotechnology sub-
strate for compact design, and consequently it is susceptible
to transient faults. Therefore a fault secure detector must

monitor the operation of this corrector block. When the de-
tector identifies an error, it is due to a transient fault in the
corrector or detector circuitry and repeating the correcting
operation will fix the error. Note that this repeating op-
eration will take latency and cause some throughput loss,
but since it is only due to the errors in the corrector cir-
cuit, it happens with low frequency and does not cause high
throughput loss. To economize area, only one corrector is
fully parallelized and this one is used to correct all the mem-
ory words read from the memory core in normal operation.
During the scrubbing operation, each bank has its own se-
rialized corrector.

Full characterization of the unified design that tolerates
these permanent defects and faults across a range of defect
rates is beyond the scope of this paper and will be developed
in future work.

6. SUMMARY
In this paper we have presented a fault-tolerant nanotech-

nology memory system that tolerates faults in the encoder,
corrector and detector circuitry as well as the memory. We
use Euclidean Geometry codes with a fault-secure detector
to design this memory system. We demonstrate particular
codes which tolerate up to 8 errors in the stored data and
up to 16 total errors in memory and correction logic with an
area less than 1.7 times the unprotected memory area; we
determine an optimum scrubbing interval, banking scheme,
and corrector parallelism so that error correction has negligi-
ble performance overhead. We further note that this design
shows how we may be able to use a nanoscale corrector to
tolerate permanent crosspoint defects.
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APPENDIX
Figure 10 shows the implementation of the detector on a
nanoPLA substrate. The framed block shows a γ-input xor
gate, implementing a log2(ρ)-level xor tree in spiral form
(Figure 9). The solid boxes display the restoration planes
and the white boxes display the wired-or planes of nanoPLA
architecture model [10, 6]. The signals rotate counter clock-
wise, and each round of signal generates the xor functions
of one level of the xor-tree. The final output then gates a
robust lithographic-scale wire. This lithographic-scale wire
generates a wired-or function of all the n ρ-input xors and
is the final output of the detector circuit. The xor gate is
the main building block of the encoder and corrector as well.
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