Implementation and Evaluation of a Mobile
Tetherless VOIP/PSTN Gateway

Jui-Hao Chiang

Tzi-cker Chiueh

Computer Science Department
Stony Brook University
Email: {j-chiang, chiueh}@cs.sunysb.edu

Abstract—A voice-over-IP (VoIP) gateway bridges IP-based
packet-switched networks (i.e. Internet) with public circuit-
switched telephone networks (i.e. PSTN). The key building block
of a VoIP gateway is a telephony card that interfaces with
the PSTN and converts signals from the PSTN to bits that
can be manipulated by a computer and vice versa. Because
commercially available telephony cards only work with wired
PSTN lines, almost all existing VoIP gateways are tethered and
therefore do not support the kind of mobility enabled by modern
wireless communications technology. This paper describes the
implementation and evaluation of a mobile VoIP gateway called
WGate that is designed specifically to bridge wireless VoIP clients
and cellular phones, and can thus be easily deployed on demand
in particular geographical locations. The key innovation of WGate
is the ability to use a Bluetooth link as a wireless backplane
by exploiting the Hands-Free profile of the Bluetooth protocol
stack and eventually turning a set of commodity bluetooth-
capable cell phones into a multi-port telephony card. Empirical
measurements on a working prototype show that this approach
can scale a VoIP gateway up to 8 cell phones because state-of-
the-art Bluetooth adapters can only support up to 8 simultaneous
Synchronous Connection-Oriented (SCO) connections when they
operate in physically close proximity.

I. INTRODUCTION

Voice over IP (VoIP) technology enables a packet-switched
IP network to support voice connections with a similar quality
of service (QoS) as in public switched telephone networks
(PSTN). Rather than relying on specific QoS mechanisms
on the network, most existing VoIP applications use sender-
side transmission rate adaptation and receiver-side packet loss
recovery, and exploit the increasing availability of broadband
connectivity to deliver an acceptable level of QoS. VoIP
technology is not only available on wired IP networks, but
is also emerging as a killer application for wireless LANs
(WLAN), especially with the advent of new WLAN standards
such as IEEE 802.11n.

As WLAN-based VoIP technology matures, increasingly
cell phones [1]-[3] are equipped with a WLAN interface,
which is initially for Internet access but is designed to leverage
WLAN-based VoIP whenever possible and resort to cellular-
based voice communication only in the absence of WLAN
connectivity. Such hybrid WLAN/cellular phones are quite
compelling because previous studies show that most voice
communications are between parties that are within a small
geographical area and thus coverable by wireless LANs.
At one extreme of the hybrid phone’s design space, e.g.,
unlicensed mobile access (UMA) [4], a voice connection can

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.7026
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

be handed over from VoIP to cellular technologies and vice
versa during its lifetime. Unfortunately, such seamless vertical
handoff is still uncommon because coordination between these
two technologies, e.g., translation between a PSTN number
and a VoIP ID, remains largely unavailable. A more practical
design for the hybrid phone is to support each voice connection
either through VoIP or through a combination of VoIP and
cellular technologies when the target party is not reachable via
VoIP. However, this design requires a gateway that interfaces
WLAN-based VoIP and cellular voice networking.

Because most of the world’s telecommunication networks
are still based on the largely closed PSTN technology, VoIP
clients can only communicate with PSTN clients through a
gateway that bridges IP telephony and PSTN telephony. The
key building block of these VOIP/PSTN gateways is telephony
cards that are plugged into a computer and interface with
PSTN lines. Unfortunately, existing VoIP gateways have two
limitations. First, they are typically quite expensive because
the telephony cards are mostly proprietary and thus not com-
moditized. Second, most if not all of existing gateways are
tethered and cannot support the type of mobility enabled by
WLAN-based VoIP, because commercially available telephony
cards only work with wired PSTN lines. This paper describes
the design and implementation of the first known mobile
tetherless VolP/cellular gateway (called WGate) that eliminates
both of these two limitations.

The most important innovation in WGate is its application of
commodity cell phones as telephony cards. More specifically,
WGate is equipped with WLAN interfaces and cell phones and
is able to exercise control over these cell phones. As a result,
WGate can seamlessly bridge WLAN-based VoIP connections
with cellular phone connections, and is completely tetherless
and fully mobile. The ability to support tetherless operation
makes WGate an attractive building block for first response
applications. In addition, applying cell phones as telephony
cards entails several cost advantages. First, because of the
enormous economies of scale (over 1 billion cell phones sold
each year), the price of a commodity Bluetooth-capable cell
phone is below $35 USD, which is one third to one half of
the per-port price of a modern telephony card. Second, the
service charge rate of cell phones is already pretty competitive
when compared with land-line phones, and is expected to be
even more competitive as more and more land-line phones
are replaced by cell phones. Consequently using cell phones

in VoIP/PSTN gateways make perfect economic sense from
the standpoints of both initial hardware acquisition cost and
recurring service charge.

The main technical challenges of using cell phones as
telephony cards are how to programmatically set up, tear
down, and manage phone connections on proprietary and
heterogeneous cell phones, and how to integrate multiple cell
phones into a gateway without requiring any modification on
them. We solve both problems by exploiting the Bluetooth
interface embedded in commodity cell phones. In particular,
we leverage the Bluetooth Hands-Free profile support in cell
phones for call control, and apply the Bluetooth channel as a
wireless backplane to integrate multiple Bluetooth cell phones
into a single VoIP/PSTN gateway.

The rest of this paper is organized as follows. Section 2
reviews previous works on supporting multimedia connections
over Bluetooth links, and building systems using cell phones as
building blocks. Section 3 describes the system architecture of
WGate and its various system components. Section 4 presents
the results of a comprehensive study of the current WGate
prototype. Section 5 concludes this paper with a summary of
research contributions and a brief outline of future work.

II. RELATED WORK

Bluetooth’s Synchronous Connection-Oriented (SCO) link
is aimed at supporting symmetric and real-time voice traffic
between master and slave devices. Zurbes and Stahl [5] have
done an extensive simulation study on the scalability of Blue-
tooth’s SCO connections. From their simulation results, 30
concurrent SCO connections with packet format HV3 result in
an average Frame Erasure Rate of 1 %, which is acceptable for
voice data transmission. However, from our empirical result,
the maximum number of SCO connections in a single collision
domain is 8 due to commodity hardware constraints. Also,
our testbed is setup such that all the Bluetooth adapters are
placed very close to one another, which is the worst case for
signal interference. On the other hand, Kapoor et al. [6] have
suggested to use the Asynchronous Connection-Less (ACL)
connection for voice data transmission to reduce the bandwidth
consumption. However, the commodity Bluetooth cell phones
only support the voice data transmission over SCO instead
of ACL connection. Thus, our design still relies on the SCO
connection.

Because Bluetooth operates in the same ISM band as IEEE
802.11b/g, the two can interfere with each other. Golmie et
al. [7], [8] have run experiments on IEEE 802.11b connections
co-existing with Bluetooth connections of different traffic
types. The result shows that Packet Error Rate (PER) of
Bluetooth voice links is low because its Frequency Hopping
technique limits the impact from IEEE 802.11b interference.
However, IEEE 802.11b links suffer severely from interfer-
ence coming from Bluetooth connections. When one IEEE
802.11b link and 10 Bluetooth voice links co-exist in the same
geographical area, the PER of IEEE 802.11b link is almost
100%. To address this interference problem, WGate uses IEEE

Digital Object Identifier: 10.4108//ICST.MOBIQUITOUS2009.7026
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

802.11a/n, which operates at the SGHz band, as the wireless
LAN link technology.

Cellular network infrastructure can also be used to ex-
pand the coverage of popular peer-to-peer applications, e.g.
Skype [9]. Lie et al. [10] have proposed a new architecture
for running peer-to-peer (P2P) applications on mobile cellular
networks based on Session Initiation Protocol (SIP). Specifi-
cally, with the help of SIP, the network operators can manage
and charge these P2P applications and overcome the user
mobility and security problems. Kim et al. [11] have proposed
a handoff mechanism for P2P VoIP applications that achieves
seamless hand-over between IP-based networks and cellular
networks. WGate provides a general infrastructure for the
above applications to run on, and helps to enable commodity
wireless VoIP phones such as iSkoot mobile phone [12] and
Netgear Skype Wi-Fi phone [13].

Cellular voice service has seen a tremendous growth in
recent years. For example, in United States, the number of
cellular network sites has grown from 30,045 in December
1996 to 175,725 in 2004 [14]. Recent government reports [15]
indicated that the customer expenditure on cell phone services
has already exceeded the expenditure on residential phone
services in 2007. Therefore, the economies of scale of cellular
voice service is expected to further drive down its service
charge in the next few years.

On the other hand, the availability of standardized mobile
cell phone reference design [16] revolutionizes the cell phone
manufacturing industry by driving down the time to market
for low-end cell phones and thus their prices, which in turn
stimulates the growth of the low-end cell phone market,
especially in developing countries. A key feature of WGate’s
design is its use of commodity cell phones. Although in theory,
WGate could be designed to use a proprietary backplane that
interfaces directly with cell phones’ radio circuitry, such a
design is considered undesirable in practice because it does
not take advantage of the economies of scale associated with
cell phone industries.

Through an extensive survey, we have determined that more
than 50 commercial VoIP/PSTN gateways [17] leverage the
cellular network technology to route voice calls. The use cases
for them include

o Provide VoIP connectivity in areas where traditional
telephone lines are unreachable but the cellular network
is present.

o Reduce international/long-distance cellular-to-cellular
call by first routing a call to a VoIP gateway via a
domestic GSM call, then forwarding it through Internet
to another VoIP gateway, which interacts with the target
cell phone via another domestic GSM call.

o Avoid the high cost associated with peering between
landline and cellular networks by routing a VoIP call
destined to a local customer’s cell phone through the
cellular network instead of the telephone network.

In addition to the ability to bridge VoIP calls and cellular
calls, WGate itself is also mobile because of its tetherless

capability. This mobility is particularly important for applica-
tions that require quick deployment of instant communications
infrastructure, for example, emergency response, sports event
(college football games), trade show, etc. Similar to our design,
GP-712 GSM VoIP Gateway [18] is a commercial product that
is meant to bridge VoIP calls and GSM calls via Bluetooth
connectivity, but is less scalable than WGate since it only
supports 2 concurrent VoIP calls.

ITI. DESIGN
A. System Architecture

WGate is designed to interface WLAN-based VoIP applica-
tions and cellular telephony, and thus consists of a Linux-based
server, a set of wireless LAN interfaces and a set of Bluetooth-
equipped cell phones. The main software component is an
open-source VoIP package called Asterisk [19], which sup-
ports such VoIP protocols as Session Initiation Protocol (SIP)
and is able to interface with various telephony cards such as
those from Dialogic [20]. The main implementation challenge
of WGate is to modify Asterisk so that it can perform call
control over cell phones through the Hands-Free profile of the
basic Bluetooth connectivity.

Assume the VoIP protocol used is SIP, when a SIP client
calls a target PSTN phone, it specifies the target’s phone
number to its associated SIP server, which, after recognizing
that the call’s target is specified in terms of a PSTN number,
sets up a PSTN connection to reach the target, and bridges
the VoIP connection and the PSTN connection until the
call is terminated. To establish a PSTN connection, WGate
interacts with a commodity cell phone over a Bluetooth link.
In the following subsections, we will briefly describe each of
WGate’s components in more detail.

The Session Initiation Protocol (SIP) is one of the most
popular VoIP protocols that set up, tear down and manage
voice connections between two or more end hosts across the
IP network. SIP is an application layer signaling protocol
for creating and terminating a phone call session defined by
IETF [21]. SIP User Agents (UAs) run on the end-user
devices, and create and manage a SIP session. A SIP UA has
two main components, the User Agent Client (UAC) sends
messages and answers with SIP responses and the User Agent
Server (UAS) responds to SIP requests sent by the peer. SIP
UAs may work in point to point mode. Typical implementa-
tions of a UA are SIP softphones or SIP hardphones. A SIP
proxy server is an intermediary entity that acts as both a server
and a client for the purpose of making requests on behalf of
other SIP clients.

B. Call Control Using Bluetooth’s Hands-Free Profile

1) Bluetooth Protocol Stack: Bluetooth is a wireless pro-
tocol for exchanging data over short distances between fixed
and mobile devices, and for creating personal area networks
(PANSs). In this project, we use Bluetooth 2.0, which operates
in the license-free ISM band at 2.4-2.4835 GHz and provides
a sustained data transfer rate of about 2.1 Mbits/sec. Commu-
nications between Bluetooth devices take place in an ad hoc

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.7026
http.//dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

Hands-Free Control
(AT-Command) idio
RFCOMM | spp Driver
L2CAP
e ACL SCO —HCI
LMP | Baseband

Bluetooth Radio

Fig. 1. Bluetooth protocol stack.

structure called a piconet, in which one device is designated as
master and all other devices, up to 7, serve as slaves. Inside a
piconet, all communications are synchronized with the master
device, with time divided into slots of 625 usec. In addition,
another structure called scatternet could be used to expand the
physical range of a Bluetooth network by interconnecting two
or more piconets. WGate uses the piconet instead of scatternet
structure because the focus is to expand the capacity of a
Bluetooth network rather than its coverage range.

To avoid interfering with other protocols that use the 2.45
GHz band, Bluetooth uses Frequency Hopping, in which the
entire frequency band is divides into 79 channels (each 1 MHz
wide) and time is divided into slots of size 625 usec, and
each piconet picks a unique hopping pattern. With their clocks
synchronized with the master, all slaves in a piconet hop from
one frequency carrier to another at the end of every time slot.

As Fig. 1 shows, Bluetooth assumes a layered protocol ar-
chitecture consisting of core protocols, optional protocols and
service profiles. The three mandatory protocols for the Blue-
tooth protocol stack are Link Management Protocol (LMP),
Logical Link Control and Adaptation Protocol (L2CAP) and
Service Discovery Protocol (SDP). Host/Controller Interface
(HCI) and Radio frequency communications (RFCOMM) are
two protocols that are almost universally supported. the full
Bluetooth protocol stack. The Radio layer of the stack specifies
the hardware parameters used in radio transmissions, and is
followed by the the Baseband layer that specifies lower-level
communication operations such as radio channel selection,
data error correction and encryption. Two types of links are
supported in the Baseband layer: asynchronous connection-
less (ACL) and synchronous connection-oriented (SCO). The
LMP layer manages the medium access control operations,
and specifies how connections are established and released
for ACL and SCO links.

The ACL link provides a packet-oriented data transmission
interface to the upper L2CAP layer, which in turn provides
a data transport interface to higher-layer protocols by taking
care of issues such as data segmentation, reassembly, and
multiplexing. On top of L2ZCAP, the RFCOMM layer emulates
a serial port interface and supports reliable data transmission
between two end devices. Service Discovery Protocol (SDP)
is a control protocol that applications use to determine the
profile and connection parameters supported by a Bluetooth
device.

2) Synchronous Connection-Oriented Link: Bluetooth sup-
ports SCO connections, which are designed to support real-
time and symmetric constant-data-rate connections between
two Bluetooth devices. More specifically, each SCO connec-
tion carries a 64-kbps voice connection using Continuous
Variable Slope Delta Modulation (CVSD), which is designed
to protect data transmitted over error-prone wireless media.
The input and output of Bluetooth’s CVSD module is 16-bit
PCM voice with a sampling rate of 8§ KHz.

A normal SCO packet contains the following fields:

o 72 bits of access code that represents the identity of the

piconet master,

o 54 bits of packet header that contains such link control
information as 3-bit slave address and forward error
correction (FEC) code for packet header recovery, and

o 240 bits of voice data payload.

To meet the real-time communication requirement, the base-
band controller schedules the transmission of a SCO packet
controller every 2, 4, or 6 time slots for the HV1, HV2, and
HV3 format, respectively. The HV1 packet has 10 information
bytes and is protected by a rate 1/3 FEC while HV2 has 20
information bytes and is protected by a rate 2/3 FEC. As
for HV3 packet, it has no FEC protection and contains 30
information bytes. In other words, a SCO connection using
HV1 packet supports the same 64kbps data rate as other packet
formates, but uses more FEC code and time slot to protect the
data completeness. Packet transmissions from the master to
a slave in a piconet can only start at the beginning of even
slot numbers whereas packet transmissions from a slave to the
master happen at odd slot numbers and right after the master
transmits data to the slave. Thus, SCO packet transmission is
effectively based on a polling mechanism from the master to
slaves.

When a user application requests to initiate a SCO con-
nection to a remote Bluetooth device, the SCO layer sends
an HCI command to inform the baseband controller to start
the connection establishment procedure. After the controller
successfully sets up the requested SCO connection with the
remote device, it sends up an HCI event packet to provide the
SCO layer with the corresponding connection handle. Then
the user application can start sending raw voice data of 16-bit
8KHz PCM format to the SCO layer, which encapsulates them
into HCI SCO data packets and send them to baseband con-
troller, which in turn schedules them for physical transmission.
Inside the SCO layer, the voice data from a user application
is partitioned into fixed-sized units whose size is equal to
Bluetooth’s Maximum Transmission Unit (MTU) size, which
is usually set to 48 bytes for USB-based Bluetooth adapters.

A Bluetooth master device may support up to 3 SCO
connections to the same slave or different slaves. However,
commercial Bluetooth devices do not support more than one
SCO connection. Thus, to support N voice connections, WGate
sets up N master-slave pairs, which forms N independent
Bluetooth piconets.

3) Hands-Free Profile: A Bluetooth profile describes an
interface specification for a high-level communications service

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.7026
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

that is built on top of Bluebooth’s core and optional protocols.
At a minimum, a Bluetooth profile specification contains in-
formation on (a) dependencies on other profiles, (b) suggested
user interface formats, and (c) specific parts of the Bluetooth
protocol stack required.

In this project, we leverage the Hands-Free profile to enable
a VoIP gateway to perform call control on a Bluetooth-
equipped cell phone. The Hands-Free profile is originally
designed to allow an end user to perform standard telephony
functions through a separate Bluetooth device that serves as
the voice input and output of a Bluetooth-equipped cellular
phone without interacting with the cellular phone. The control
plane of the Hands-Free profile is based on the Hands-Free
Control layer, which utilizes the conventional AT command
set for call monitor and control. The data plane of the Hands-
Free profile involves audio input and output and is based on
the Audio Driver layer of the Bluetooth stack, which acts as
an interface to the SCO layer and adapts the audio encoding
based on the application requirement.

Let’s take an in-car Hands-Free unit as an example. Two
types of devices are involved when a Hands-Free unit services
a phone call: the Audio Gateway (AG), usually a cellular
phone, communicates with the remote end via the cellular
network, whereas the Hands-Free unit (HF) acts as the input
and output device interacting with the user on behalf of AG,
and is able to set up, tear down, and manage calls through
the associated AG. Most commercial Bluetooth-equipped cell
phones support the Hands-Free profile, because many states
prohibit by law users from operating cell phones in moving
vehicles without using the Hands-Free mode. Although the
Hands-Free profile is originally meant to support hands-free
operation of cell phones, it also provides the necessary prim-
itives for a VoIP gateway to use a cell phone as a telephony
card. The following describes how a VoIP gateway use these
primitives to start, to receive, and to hang up a cellular phone
call. In this case, the VoIP gateway is an HF and the cell phone
is an AG.

HF AG

I Service Level Connection I
ATD12345678 -
OK Setup

= outgoing call
< +CIEV: (callsetup = 2)
Audio Connection
Remote

party answered

+CIEV: (call = 1)

+CIEV: (callsetup = 0)

Call active [« Call active

Fig. 2. Making a phone call to a remote party through a cell phone from a
VoIP gateway.

As shown in Figure 2, the VoIP gateway first sets up a
Service Level Connection with the cell phone, which is built

on top of the interface provided by the RFCOMM layer. To
initiate a phone call, the VoIP gateway sends to the cell phone
the AT command ATD with the target phone number as the
operand (in this case 12345678). When the cell phone receives
this command, it makes an outgoing call to the designated
target and replies with an OK response followed by the result
code +CIEV (callsetup = 2) to notify the VoIP gateway that
the call has been successfully initialized. After that, an audio
connection based on the Audio Driver layer is established
between the two sides. As the called party answers the phone
call, the cell phone sends two +CIEV commands to indicate to
the VoIP gateway the phone connection is up and the user can
start to talk with the remote party. From now on, the cell phone
will route the voice input and output on the audio connection
between the called party and the VoIP gateway.

HF AG
I Service Level Connection I
| ¢ Incoming call

Alert the user +CIEV: (callsetup = 1)

A

B RING AG is ringing
User answer o
ATA (ANSWER) .
- OK AG answer the call

+CIEV: (call = 1)

Call active +CIEV: (callsetup = 0)

A

Call active
Fig. 3. Receiving a phone call from a remote party to a VoIP gateway through
a cell phone.

Audio Connection

As shown in Fig. 3, after the Service Level Connection is
established between a VoIP gateway and a cell phone, the
cell phone notifies the VoIP gateway with +CIEV:(callsetup
=) and a RING message when there is an incoming call
from a remote party. The VoIP gateway in this case sets up
a VoIP connection to reach the target end user, and after
the user answers, sends an ATA response message to the
cell phone, which in turn returns a response to the remote
calling party. After that, the cell phone sends the VoIP gateway
two more +CIEV messages and creates an audio connection
between them to transport subsequent voice inputs and outputs.
When a user hangs up the call, a AT+ CHUP message is used
between the cell phone and VoIP gateway to terminate the
voice connection.

IV. TETHERLESS VOIP GATEWAY

We chose Asterisk [19] as the base VoIP gateway implemen-
tation, because it is an open-source Private Branch Exchange
(PBX) software that can be configured as a media gateway
to bridge traditional PSTN telephony with IP telephony. In
terms of IP telephony support, Asterisk supports both SIP and
H.323 [22]. In addition, Asterisk can be configured as a SIP
proxy server that propagates a SIP request to a SIP client
or a PSTN end point. Asterisk mediates between these two

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.7026
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

telephony network through a Dialplan, which translates user
identities from different networks. For example, a Dialplan
can specify that a SIP ID john@cs.sunysb.edu should be
translated into a PSTN or cellular telephone number 12345678.
This means when Asterisk receives a SIP connection request
targeted at john @cs.sunysb.edu, it knows that it should accept
the SIP connection request and initiate a PSTN call through
one of its telephony cards so as to reach the actual target user.
As we were developing an interface software that allows
Asterisk to interact with a cell phone through the Hands-
Free profile, the Asterisk project independently develops an
add-on module called chan_mobile, which supports a similar
functionality of connecting Asterisk with the cellular network
via Bluetooth-equipped cellular phones. Thus, we apply the
module directly and mainly put focus on solving hardware
compatibility problems, which are addressed later.

Wireless . VOIP ‘
g | client user |

¢ VoIP Gateway.

\
\
1

VoIP
Server

"Me‘ luetooth | Audio = !

i
1
1
]
m
1
1
1
]

| Component Connection Gateway
S e s R
\ fis
~ Cellular Cellular
phone

Network

Fig. 4. System architecture of the proposed tetherless VoIP gateway

To be completely tetherless, WGate interfaces VoIP connec-
tions over WLAN interfaces with cellular telephony connec-
tions on cell phones. Instead of using standard telephony cards,
WGate uses Bluetooth-equipped cell phones as telephony
cards by treating them as an Audio Gateway (AG) in the
Hands-Free profile. In the following, we describe how to build
and combine each system component of WGate as Fig. 4.

o VoIP Server: We install Asterisk on a Linux-based
industrial PC, set up its Dialplan, and configure the PC’s
wireless LAN interfaces and Bluetooth interfaces so that
Asterisk can work with them smoothly.

+ Hands-Free Component: The Bluetooth hardware
adapter supports the Baseband layer of the Bluetooth pro-
tocol stack, whereas Linux’s BlueZ supports the higher-
layer protocols such as RFCOMM, L2CAP and SDP. The
chan_mobile add-on module of Asterisk provides a basic
implementation of the Hands-Free profile. Together, these
Bluetooth components form a Hands-Free (HF) device
that is able to communicate with an Audio Gateway, and
can be used to perform basic call control over a cell
phone.

+ Audio Gateway: An AG is a software module running on
a Bluetooth cell phone that is responsible for mediating
phone calls between the cellular network and a Hands-
Free (HF) device, and mainly supports the following
functionalities:

— Set-up and release of service level connections over
the RFCOMM interface for exchanging AT com-
mands and responses,

— Set-up, release and transfer of audio connections over
the SCO interface for voice packet transport, where
“transfer” means routing an incoming cellular call to
an HF device and vice versa,

— Answering, rejecting, terminating, holding an incom-
ing cellular call,

— Placing a cellular call using a PSTN phone number
coming from an HF device,

— Transmission of DTMF signals during an ongoing
call, and

— Activate/deactivate some other features or notifica-
tion functions on AG, e.g. voice recognition.

Because modern Bluetooth cell phones support most of the
above AG functionalities, using these cell phones to replace
traditional wired telephony cards is not only cheaper, but also
much more functional.

VoIP VoIP HF AG
Client Server Component
SIP client : 3 % Bluetooth
john@cs.sunysb.edu Asterisk <Dialplan> chan_mobile ,qy1ar phone
joe@lsome ferve? joe? Service Level Connection
c >
HF/1234
-t
Dial 1234 .
Make call from HF
Channel [o inivic
0 I is ready

-

ACK

>

RTP Connection

Fig. 5. Making a SIP phone call through the gateway.

As shown in Figure 5, when a SIP client user makes a
phone call to joe@some.server, the request comes to WGate,
whose Asterisk component checks its Dialplan and finds out
the target user matches a cellular phone number 71234. Then
the Asterisk component asks its HF device, chan_mobile, to
dial the identified phone number through one of the AGs,
which initiates a cellular call using the procedure in Figure 2.
After a service level connection between the HF device and the
chosen AG is established, the HF device notifies the Asterisk
component accordingly, which in turn responds to the original
requesting SIP client user and starts an RTP connection for
voice transport. Asterisk and chan_mobile use an internal
buffer for voice traffic exchange because they reside in the
same address space.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.7026
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

More specifically, the RTP streaming between the SIP client
and Asterisk is segmented by time unit, e.g. 0.02 second, and
the packet size depends on the encoding data rate of the SIP
client. For the voice data between Asterisk and Bluetooth SCO
layer, chan_mobile segments them to MTU size as the input
to Bluetooth SCO layer, and assembles them to RTP packet
as the input to the SIP client.

One of the most time-consuming aspects of this project is
to resolve the hardware compatibility issue. Although many
Bluetooth cell phones support the Hands-Free profile, their
support is often incomplete and non-conforming because they
are designed to work only with proprietary in-car Hands-Free
devices. For example, we found their AT command messages
for call control usually do not follow the standard format as
defined in the Hands-Free profile. Eventually we chose to use
Motorola Razr V3 in this project because we found it is often
used in vendors’ testing of Bluetooth adapters and service
profile softwares.

As for Bluetooth adapters, we have tried adapters using
chips from several vendors such as Broadcom, CSR, and
ISSC, and most of them support the USB interface. The
Broadcom adapter with chip identity BCM92035DG fails to
establish an SCO connection with the V3 cellular phone while
BCM92045B3_ROM works improperly when sending the AT
commands. Finally, we decided to use the Bluetooth adapters
from ISSC with chip identity ISSCEDRBTA, which works fine
with the V3 cellular phone for most of the AT commands.

A Bluetooth 2.0 link is rated at 2.1 Mbits/sec, which is
equivalent to 34 64-Kbps SCO connections. To scale up

- WGate to support these many SCO connections, we need to

be able to integrate into it as many Bluetooth cell phones
as possible. For each cell phone, we need to install a USB-
based Bluetooth adapter. However, most industrial PCs do
not support more than 8 USB ports. This puts a hardware
limit on the number of phone calls that WGate can practically
support. To circumvent this, we have experimented with multi-
port USB hubs, which extends a single server-side USB port
to multiple USB ports into which USB-based adapters can
be plugged. Unfortunately, none of the USB hubs we have
tested support multiple concurrent SCO connections. Luckily,
we have found a PCl-based 4-port USB card from VIA that
can support 4 concurrent SCO connections simultaneously.
With three of such cards, the current WGate prototype can
support up to 12 SCO connections.

V. PERFORMANCE EVALUATION
A. Experiment Methodology

The main technical challenge in the development of WGate
is its scalability, specifically, the number of PSTN connections
it can support concurrently. Because WGate uses Bluetooth
as a wireless backplane to connect cell phones to the VoIP
gateway server, its scalability is mainly limited by the number
of SCO connections that a Bluetooth link can accommodate
at a time. In theory, a Bluetooth 2.0 link provides a sustained
throughput of 2.1 Mbits/sec, which is 33 to 34 times of a
single SCO connection’s bandwidth requirement, 64 Kbits/sec.

However, the actual number of concurrent SCO connections
that WGate can support is expected to be much lower because
the backplane Bluetooth link suffers from heavy interferences.
First, because the Bluetooth adapters and the cell phones are
packaged in close proximity, they interfere with one another
significantly. Second, because Wi-Fi links and Bluetooth
links both operate in the ISM band, there exists some hidden
interference in indoor environment, especially from IEEE
802.11b devices.

To empirically determine the scalability of the WGate
prototype, we built a testbed to measure the scalability of
its Bluetooth-based backplane. The testbed consists of three
computers, one acting as VoIP clients, one as the VoIP
gateway, and the third as an emulator for a set of Bluetooth cell
phones. All the computers used are a Dell desktop machine
with a Pentium-4 3-GHz CPU, 1 Gbytes of RAM and an
100Mbps Ethernet interface. All of them run the Linux 2.6.22
kernel with BlueZ core version 2.11. The WLAN interfaces
are Wistron NeWeb 802.11 a/b/g mini-PCI card (Model No.
CMD9), which are installed on a computer via a 4-port miniPCI-
to-PCI adaptor. This adapter uses the AR5004X chipset, which
is composed of an AR5213 MAC controller chip and an
ARS5112 dual-band radio. In the experiment, it is configured
to use one of the 802.11a channel. The Cyber-Bluetooth Slim
USB adapter with ISSC chipset is used together with the
DYNEX USB 2.0 4-port PCI Host Adapter with VIA chipset,
which is used to connect multiple Bluetooth adapters to a
computer.

To emulate a SIP client, we use the PJSIP tool [23], which
is an open-source program providing SIP and media stacks for
presence, messaging, and multimedia communication. To set
up the VoIP gateway, we install Asterisk 1.6.0-betad4 with the
add-on package containing the chan_mobile component. Be-
cause we don’t have many Motorola Razr V3 cellular phones,
we chose to implement a simple emulator that emulates the AG
behavior in the Hands-Free profile and supports the following
features:

o Set up and release a Service Level Connection.

o Transfer basic phone status by sending +CIEV messages

to an HF device.

o Process a phone call initiation request from an HF device,

which corresponds to the ATD message.

o Process a phone call hangup request from an HF device,

which corresponds to the AT+CHUP message.
Together with Linux’s BlueZ stack and a Bluetooth adapter,
the above AG emulator can effectively act as a real Bluetooth
cellular phone. Although this emulator does not support all the
features specified in the Hands-Free Profile, it is sufficiently
functional to be used in our testbed for the study of SCO
connection scalability.

B. Performance Metrics

To determine the maximal number of SCO connections
that WGate’s Bluetooth backplane can support, we need to
first decide the criteria used to assess the quality degradation
of a SCO link. One possibility is to use objective network

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.7026
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

performance metrics such as packet loss ratio, packet delay,
or jitter. Unfortunately, these metrics are surprisingly dif-
ficult to measure because the lossy compression algorithm
implemented inside Bluetooth adapters makes it difficult to
correlate between sent packets and received packets. Also,
because WGate is designed to support voice communication, it
is not clear how to map these objective metrics to a subjective
voice quality metric even if we can successfully compute
them. To overcome this problem, we decided to adopt the
voice quality metric produced by the Perceptual Evaluation of
Speech Quality (PESQ) method [24], which is recommended
by ITU, to measure the degree of performance degradation of
SCO connections.

The PESQ method is designed to compare the quality of
an original input voice signal with that of its corresponding
degraded output of a communication system. The result of this
method is a qualitative score that has the same interpretation as
the subjective Mean Opinion Score (MOS), which is typically
produced by a panel of human testers [25]. Aiming to capture
the end-to-end voice quality, the PESQ method takes into
account the following factors that contribute to the eventual
voice quality perceived by the receiving user:

o Transmission channel errors,

« Environmental noise at the sending side,

« Impact of varying delay or jitter on listening only tests,

o Short-term and Long-term time warping of audio signal

To prevent error accumulation, the PESQ standard cuts each
voice input into chunks, each 8 to 20 seconds in length, and
analyzes each of them independently of one another. Since the
PESQ method focuses on measuring one-way voice quality, it
may result in different user experience of our system for two-
way communication applications.

In addition to voice quality, we are also interested in the
end-to-end connection set-up time, because this is another
important metric that affects the user experience when making
a phone call. Finally, we also measure the CPU and memory
usage of the VoIP gateway itself to quantify their impact on
the entire system’s scalability. In this paper, we don’t vary
the WLAN conditions in the experiment since lots of research
works have been done for the voice quality analysis in WLAN
environment, e.g. [26], [27].

C. Scalability of Bluetooth Backplane

To measure the voice quality of a Bluetooth SCO connec-
tion, we set up a pair of Bluetooth adapters, each residing on
a separate machine, and establish a SCO connection between
these adapters. Then we feed a pre-recorded human voice
stream into one adapter, record the voice stream output by
the other adapter, and apply the PESQ method to compare the
original voice input with the degraded voice output to assess
the degree of distortion introduced by the SCO connection.

Originally we use two computers each equipped with
12 Bluetooth adapters such that we can run 12 concurrent
SCO connections between them. However, in this set-up the
distance between some Bluetooth adapters is approximately
one quarter of an inch, which leads to strong interference

Input/original voice

\ 4 \J
Computer 1 Computer 3 5
6 adapters 6 adapters v
= 12:SCO - | PESQ | Scorg
i connections | - | process
6 adapters 6 adapters 4

Computer 2 = Computer 4

v v
Output/degraded voice

Fig. 6. Testbed for measuring the voice quality of concurrent SCO connec-
tions. Each of these four computers is equipped with 6 USB-based Bluetooth
adapters.

among these Bluetooth adapters. To overcome this problem,
we use a different set-up as shown in Figure 6, where the
24 Bluetooth adapters are distributed to 4 computers, and the
closest distance between any two adapters is at least 1 inch.
Then, we start the SCO connection between each of the 12
pairs of Bluetooth adapters, e.g. first adapter of computer 1
connects with first adapter of computer 2, etc. Finally, we
feed into one end of each SCO connection a 207-second
English female voice stream from the online Open Speech
Repository [28], which provides several human voice data of
different languages, and record the voice output on the other
side.

When we set up 9 or 10 HV3-based SCO connections, we
found that one or more SCO connections may get disconnected
after a while. We take this to mean a Bluetooth link cannot
support more than 8 HV3-based SCO connections because
the degradation of some of the SCO connections is so bad
that the associated Bluetooth adapters decide to terminate
the connections altogether. Also, we found that if we tried
to start all SCO connections at the same time, some of the
SCO connections may not be established successfully. This
result is very different from previously reported results [5],
which were based only on simulations. We conjecture the
main explanation for this discrepancy is that the interference
among the Bluetooth piconets is much more serious than were
assumed in these simulation models because they are so close
physically in the WGate prototype.

From the above experience, we decide to reduce the total
number of SCO connections to 8. In addition, we start each
SCO connection one after another, and put a time gap, 2
seconds, between consecutive SCO connection set-up steps.
Then we perform the following steps to measure the PESQ
score for each SCO connection:

¢ Remove from consideration the first and last 15 seconds
of both input and output voice streams because the last
SCO connection is started 14 seconds later than the first
one.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.7026
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

o Decompose each voice stream into 12-second chunks.

o Calculate the PESQ score for each pair of voice in-
put/output chunks, e.g. chunk 1 of the input voice and
chunk 1 of output voice, etc.

We repeat the same experiment 7 times, gather 100 PESQ
scores for each SCO connection, and calculate their means.
The SCO packet format is first set to HV3.

Figure 7 shows the arithmetic average of the mean PESQ
scores of all SCO connections decreases with the number
of concurrent SCO connections in a Bluetooth link when
the HV1, HV2 and HV3 formats are used. As more SCO
connections are present in a Bluetooth link, the amount of
interference among them increases, and their avearge mean
PESQ score decreases. When the HV1 format is used, the
average mean PESQ score is 3.9, which represents good
voice quality, if there is only one SCO connection, and still
remains above 3 even when the number of SCO connections
is increased to 8.

When there is only one SCO connection, there is no no-
ticeable difference among the three packet formats. However,
when the number of SCO connections increases, the quality of
HV1 and HV2 start to degrade substantially more than HV3.
HV1 takes more channel time to send a fixed number of bits
than HV2 because HV1 uses stronger FEC code and spreads
the channel time over more time slots than HV2. HV2 in turn
takes more channel time to send a fixed number of bits than
HV3 because HV2 uses stronger FEC code and spreads the
channel time over more time slots than HV3. When more total
channel time is required and more time slots are needed to send
a fixed number of bits, the probability of inter-SCO connection
collision increases, and the resulting voice quality degrades
more. Empirically, the effect of higher collision probability
overshadows the quality gain from stronger FEC code.

o
< —6— HV3
v 4
(5]
[l
5]
O
7]
g
%)
& o |
c ™ bl i
S %
= % *
0| R
o
*x
T T T T T T T T
1 2 3 4 5 6 7 8
Number of Concurrent SCO Connections
Fig. 7. The average mean PESQ score of all SCO connections when the

number of concurrent SCO connections sharing one Bluetooth link is increased
from 1 to 8. These three lines corresponds to three different SCO packet formats
HV1, HV2, and HV3.

Figure 8 shows that when the number of concurrent SCO
connections is 8, the mean values of most SCO connections

are greater than 2.5, which means the voice quality is a little
annoying but still acceptable. The quality of the third SCO
connection is noticeably worse others, even though the same
hardware and software are used in all these SCO connections.
We conjecture this anomaly is due to the defects in the adapter
hardware. Figure 8 also shows the 95% confidence interval of
the PESQ scores of each SCO connection, which corresponds
to the interval in which 95% of a SCO connection’s PESQ
scores fall. In all cases, the 95% confidence interval of a SCO
connection’s PESQ scores is concentrated around its mean
value.

i

it

1
-

-
4

-

Mean PESQ Score
2
1

1 2 3 4 5
SCO Connection Number

6 7 8

Fig. 8. Mean value and 95% confidence interval of the 100 PESQ scores
associated with each SCO connection when 8 concurrent SCO connections are
sharing one Bluetooth link.

Figure 9 shows the temporal evolution of each SCO con-
nection’s PESQ score in one run when 8 concurrent SCO
connections are sharing one Bluetooth link. Although at some
point in time, the PESQ scores of some SCO connections drop
below 2, but they climb back up later so that the mean value
is above 2.5. Consequently, the overall voice quality of each
SCO connection in this run remains acceptable for human
consumption.

D. End-to-End Performance Testing

To test the end-to-end performance of the WGate prototype,
we set up another testbed shown in Figure 10. On Computer 1,
we run PJSIP to initiate 8 concurrent SIP phone calls. An IEEE
802.11a WLAN interface is installed on both Computer 1 and
Computer 2 so that they can communicate with each other
over a WLAN link. Asterisk and its chan_mobile module on
are installed on Computer 2. We set up one cell phone, Cell 1,
and Computer 3 with 7 Bluetooth adapters each of which has
established a service level connection with one of the eight
adapters installed on Computer 2. Another cell phone, Cell 2,
serves as the remote party for Cell 1, so that these two cell
phones can serve as targets of VoIP calls accessible through
T-mobile’s cellular network. For timing measurements, all
computers in the testbed run NTP to synchronize their clocks.

Digital Object Identifier: 10.4108//ICST.MOBIQUITOUS2009.7026
http.://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

PESQ Score

T T T
50 100 150
Time Unit (sec)

Fig. 9. The temporal evolution of each SCO connection’s PESQ score when
8 concurrent SCO connections are sharing one Bluetooth link.

Sound input,f' Comuterl i 8 SIP Sound output
3 P clients
A
Yw & Y-~V
| Asterisk and
| gmputeE 2 chan_mobile PPESQ
ey S rocess
8 adapters
\
8 SCO z PESQ Score
-~ connections -
7 adapters
Celll A i
| Computer 3 7 AG <Sound input
B emulators

A
A\ 4

' Tmobile Network = > Cell2 «

Fig. 10. The end-to-end performance testing testbed consists of three
computers, one running SIP clients, another acting as the VoIP gateway and
the third containing 1 real and 7 emulated Audio Gateways. Another real cell
phone serves as the remote party through T-mobile cellular network.

A phone call starts with PJSIP sending out a SIP INVITE
message over the WLAN to the VoIP gateway, which, after
consulting with Asterisk’s Dialplan, maps the target user of
the INVITE message to a cellular phone number, picks a local
HF device, and asks the HF device’s associated AG to initiate
a cellular call to the target user. At Cell 2, we pick up the
phone call as soon as the first hint of the ringing tone shows
up. We measured the connection establishment time, which is
the interval between when the PJSIP program sends the initial
INVITE message and when the VoIP gateway returns a final
OK to the PISIP after the associated cellular call is established.
The minimum and maximum of the connection establishment
times are 245 msec and 3487 msec respectively.

To measure the end-to-end quality of a VoIP/PSTN call
going through WGate, after such a call is set up, we feed

the PJSIP, 7 AG emulators, and Cell 2 with a 16-bit 8-
KHz linear PCM human voice data stream from the Open
Sound Repository, record the voice output from the PJSIP
program, and calculate the output voice stream’s PESQ score
with respect to the original voice input. Note that this voice
input experiences several voice codec transformations, such as
conversion to 8-bit §-KHz PCM plaw format between PJSIP
and Asterisk and 64kbps CVSD encoding before being sent
on SCO connections. Each call lasts for 15 minutes and we
repeat each call 5 times.

The mean PESQ score of a VoIP/PSTN call set up this
way is 3.52, when there is only one SCO connection running
on WGate’s Bluetooth backplane, and drops to 2.62 when
there are totally 8 SCO connections running on the Bluetooth
backplane. The difference between the two scores results from
the interference among concurrent SCO connections when the
7 AG emulators on Computer 3 are sending voice streams to
Computer 1. We also measured the CPU and memory usage of
the VoIP gateway machine when it bridges one VoIP/cellular
call and 7 emulated calls, and both CPU and memory usage
turn out to be below 1%, which suggests that the scalability of
the current WGate prototype mainly is limited by its Bluetooth
backplane rather than its CPU or memory.

VI. CONCLUSION

Although advances in wireless communications technolo-
gies such as wireless LAN and cellular telephony have enabled
unprecedented mobility for end users, VoIP/PSTN gateways,
which bridge between VoIP calls with PSTN calls, remain
largely immobile, because their key building blocks, computer
telephony cards, only work with wired PSTN lines. This paper
describes the design, implementation and evaluation of the first
known tetherless and thus mobile VoIP/PSTN gateway called
WGate. WGate is equipped with wireless LAN interfaces to
support VoIP connections and with cell phones to support
PSTN connections. A key innovation of WGate is its novel
use of the Hands-Free profile in the Bluetooth protocol stack
to connect multiple Bluetooth-equipped cell phones into a
VoIP gateway without requiring any modifications to these
phones. The ability to integrate commodity cell phones into
a server computer not only renders a mobile VoIP/PSTN
gateway possible, but also greatly reduces the acquisition and
service cost of the telephony hardware, thanks to the enormous
economies of scale of cellular phones and services. More
specifically, this project makes the following contributions to
the research area of mobile computing/networking systems:

« A novel application of Bluetooth’s Hands-Free Profile to
convert a Bluetooth link as a backplane of integrating cell
phones into a computer telephony server.

o The first working prototype of a tetherless VoIP/PSTN
gateway that can be quickly deployed to set up an
instant communication infrastructure for situations such
as disaster response or crisis management.

o The first empirical study on the research question of
how many SCO connections a Bluetooth link can support

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2009.7026
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2009.7026

(1
(2]
3]
(4]
[5]

(6]

7

(8]

9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]
[17]

(18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

10

simultaneously. The result of this study is very different
from previous studies, which are all based on simulations.
REFERENCES

Apple Inc., “iphone, an internet-connected multimedia smartphone,”
http://www.apple.com/iphone/.

T-mobile Inc., “G1, smartphone with google android software platform,”
http://www.htc.com/www/product/gl/overview.html.
AT&T Inc, “Tilt, windows mobile pocket pc phone,”

http://www.wireless.att.com.

UMAToday Inc., “Unlicensed mobile access (uma) technology,”
http://www.umatechnology.org/overview/.

S. Zubres, W. Stahl, K. Matheus, and J. Haartsen, “Radio network
performance of bluetooth,” IEEE International Conference on Commu-
nications, Jun. 2000.

R. Kapoor, L.-J. Chen, Y.-Z. Lee, and M. Gerla, “Bluetooth: carrying
voice over acl links,” 4th International Workshop on Mobile and Wireless
Communications Network, 2002.

N. Golmie, R. V. Dyck, and A. Soltanian, “Interference of bluetooth
and ieee 802.11: Simulation modeling and performance evaluation,” 4th
ACM International Workshop on Modeling, Analysis, and Simulation of
Wireless and Mobile Systems, July 2001.

N. Golmie, R. E. V. Dyck, A. Soltanian, A. Tonnerre, and O. Rebala,
“Interference evaluation of bluetooth and ieee 802.11b systems,” ACM
Wireless Networks, May 2003.

Skype Inc., “Skype, voip software,” http://www.skype.com/.

S. Liu, J. Chen, S. Zhao, and F. Na, “Peer-to-peer application in mobile
cellular systems,” Proceedings of the Fifth International Conference on
Information Technology: New Generations, 2008.

S. C. Kim, M. G. Kim, and B. H. Rhee, “Seamless connection for
mobile p2p and conventional wireless network,” The 9th International
Conference on Advanced Communication Technology, Feb. 2007.

iSkoot Inc., “iskoot, free mobile software for skype,”
http://www.iskoot.com/.
Netgear Inc., “Netgear skype wi-fi phone,”

http://www.netgear.com/Products/Communications VoIP.aspx.

C. C. Carbone, “Cutting the cord: telecommunications employment
shifts toward wireless,” Monthly Labor Review, Bureau of Labor Statis-
tics, United States Department of Labor, 2006.

United States Department of Labor, “Consumer expenditure survey,”
http://www.bls.gov/cex/cellphones2007.htm.

Mediatek Inc., “Mobile reference design,” http://www.mediatek.com.
Voip-info Org.,, “Voip gsm gateways,” http://www.voip-
info.org/wiki/view/VOIP+GSM+Gateways.

Gempro Technology Inc., “Gp-712 gsm/3g/cdma sip voip gateway,”
http://www.gempro.com.tw/.

Asterisk Org., “Open source private branch exchange (pbx), telephony
engine, and telephony application toolkit,” http://www.asterisk.org/.
Dialogic Inc., “Multimedia and signaling technologies and platforms
provider,” http://www.dialogic.com/.

J. H. Schulzrinne, “Internet telephony: Architecture and protocols - an
ietf perspective,” Computer Networks and ISDN Systems, Feb. 1999.
Recommendation H.323: Packet-based multimedia communications sys-
tems, International Telecommunication Union, Jun. 2006.

PJSIP Org., “Open source sip stack and media stack for
presence, im/instant messaging, and multimedia communication,”
http://www.pjsip.org/.

Perceptual Evaluation of Speech Quality (PESQ), an objective method
of end-to-end speech quality assessment of narrow-band telephone net-
works and speech codecs. ITU-T Recommendation P.862, International
Telecommunication Union, 2001.

Methods for subjective determiniation of transmission quality. ITU-T
Recommendation P.800, International Telecommunication Union, 1996.
M. Narbutt and M. Davis, “An assessment of the audio codec perfor-
mance in voice over wlan (vowlan) systems,” Proceedings of the 2nd
Annual International Conference on Mobile and Ubiquitous Systems,
2005.

F. Anjum, M. Elaoud, D. Famolari, A. Ghosh, and R. Vaidyanathan,
“Voice performance in wlan networks - an experimental study,” Global
Telecommunications Conference, 2003.

VoIP Troubleshooter Inc., “Open sound
http://www.voiptroubleshooter.com/open_speech/index.html.

repository,”

